2018-2019学年高二下学期第一次月考数学(文)试题
- 格式:doc
- 大小:1.02 MB
- 文档页数:20
惠来县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .92. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1B .2C .3D .43. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π4. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ5. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-6. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,267. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-28. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >29.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( ) A.B.C .D.10.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________④{}0∅⊆,正确的有( )个A.个B.个C.个D.个11.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .16. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17.(文科)与直线10x +-=垂直的直线的倾斜角为___________.18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.三、解答题19.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.20.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.21.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;(Ⅱ)证明:B1F∥平面A1BE;(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长23.已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.24.化简:(1).(2)+.25.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.26.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.惠来县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.2.【答案】A【解析】解:∵x2=2y,∴y′=x,∴抛物线C在点B处的切线斜率为1,∴B(1,),∵x2=2y的焦点F(0,),准线方程为y=﹣,∴直线l的方程为y=,∴|AF|=1.故选:A.【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键.3.【答案】C【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.4.【答案】D【解析】考点:球的表面积和体积. 5. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 6. 【答案】C【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .7. 【答案】B 【解析】考点:向量共线定理.8. 【答案】C【解析】解:由于f (x )=x 3+ax 2+(a+6)x ﹣1,有f ′(x )=3x 2+2ax+(a+6).若f (x )有极大值和极小值,则△=4a 2﹣12(a+6)>0,从而有a >6或a <﹣3, 故选:C .【点评】本题主要考查函数在某点取得极值的条件.属基础题.9. 【答案】 A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c >b ,再平方,4c 2>b 2,在椭圆中,a 2=b 2+c 2<5c 2,∴;由,得b+2c <2a ,再平方,b 2+4c 2+4bc <4a 2, ∴3c 2+4bc <3a 2, ∴4bc <3b 2,∴4c <3b ,∴16c 2<9b 2, ∴16c 2<9a 2﹣9c 2, ∴9a 2>25c 2,∴,∴.综上所述,.故选A .10.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 11.【答案】B【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.12.【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.二、填空题13.【答案】【解析】 因为,所以,所以 ,所以答案:14.【答案】 (x ﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a ,b ),半径为r , ∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x+y=0上, ∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5. 故答案为:(x ﹣1)2+(y+1)2=5.15.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.16.【答案】①②④ 【解析】17.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.18.【答案】[]1,1- 【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.三、解答题19.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.20.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.21.【答案】【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,∴B1C1⊥平面ABB1A1;∵A1B⊂平面ABB1A1,∴B1C1⊥A1B.又∵A1B⊥AB1,B1C1∩AB1=B1,∴A1B⊥平面ADC1B1,∵A1B⊂平面A1BE,∴平面ADC1B1⊥平面A1BE;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B 1O ∥C 1D ,且,∴EF ∥B 1O ,且EF=B 1O , ∴四边形B 1OEF 为平行四边形. ∴B 1F ∥OE .又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE , ∴B 1F ∥平面A 1BE ,(Ⅲ)解:====.22.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.23.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.【解析】(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值; 当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值;当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.(3)()(221)xg x x k e =-+,∴'()(223)xg x x k e =-+,由'()0g x =,得32x k =-, 当32x k <-时,'()0g x <; 当32x k >-时,'()0g x >,∴()g x 在3(,)2k -∞-上递减,在3(,)2k -+∞递增,故323()()22k g x g k e -=-=-最小值,又∵35,22k ⎡⎤∈⎢⎥⎣⎦,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,∴()g x λ≥对[]0,1x ∀∈恒成立等价于32()2k g x e λ-=-≥最小值;又32()2k g x e λ-=-≥最小值对35,22k ⎡⎤∀∈⎢⎥⎣⎦恒成立.∴32min (2)k ek --≥,故2e λ≤-.1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.24.【答案】【解析】解(1)原式=======﹣1.(2)∵tan(﹣α)=﹣tanα,sin(﹣α)=cosα,cos(α﹣π)=cos(π﹣α)=﹣sinα,tan(π+α)=tanα,∴原式=+=+==﹣=﹣1.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力.25.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.26.【答案】【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),设A(x1,y1),B(x2,y2),由,得k2x2+(4k﹣4)x+4=0,则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,=,,所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,因为以AB为直径的圆经过原点O,所以∠AOB=90°,即,所以,解得k=﹣,即所求直线l的方程为y=﹣.(2)设线段AB的中点坐标为(x0,y0),则由(1)得,,所以线段AB的中垂线方程为,令y=0,得==,又由(1)知k<,且k≠0,得或,所以,所以=,所以△POQ面积的取值范围为(2,+∞).【点评】本题考查直线l的方程的求法和求△POQ面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.。
游仙区高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .42. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.3. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 894. P是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c 5. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.46. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 37.若(z a ai =-+为纯虚数,其中∈a R ,则7i 1ia a +=+( ) A .i B .1 C .i - D .1-8. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-9. 复数z 满足z (l ﹣i )=﹣1﹣i ,则|z+1|=( ) A .0B .1C.D .210.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .2711.已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.12.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.二、填空题13.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)14.下列四个命题申是真命题的是(填所有真命题的序号)①“p∧q为真”是“p∨q为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.15.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .16.不等式的解集为R,则实数m的范围是.17.设函数f(x)=,则f(f(﹣2))的值为.18.阅读如图所示的程序框图,则输出结果S的值为.【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.三、解答题19.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;中,求角B的正弦值.(2)若最短时间内两船在C处相遇,如图,在ABC20.已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.22.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.23.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?24.根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).25.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.26.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.游仙区高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.2. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .3. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.4. 【答案】A【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a . 故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.5. 【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.6. 【答案】D【解析】解:若a >0>b ,则,故A 错误;若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误;函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.7. 【答案】C【解析】∵z 为纯虚数,∴a =∴7i 3i i1i 3a a +-====-+. 8. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 9. 【答案】C【解析】解:∵z (l ﹣i )=﹣1﹣i ,∴z (1﹣i )(1+i )=﹣(1+i )2,∴2z=﹣2i , ∴z=﹣i , ∴z+1=1﹣i , 则|z+1|=,故选:C .【点评】本题考查了复数的化简与模的计算.10.【答案】C【解析】解:令log 2(x 2+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2+1=2,x=±1, 令log2(x 2+1)=2,得x 2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣},{0,1, },{0,﹣1,1,﹣ },{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C .【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.11.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.12.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.二、填空题13.【答案】, 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。
2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
益阳市箴言中学高二2019 年 4 月月考数学(文科)试卷(时量: 120 分钟;总分: 150 分)一、选择题(本大题共12 个小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
)1、已知全集U1,2,3,4,5, M3,4,5, N2,3,则会合C U N M()A.2B.1,3C.2,5D.4,52、设 z =,则|z|=()A.B.1C.2D.3、以下说法错误的选项是()A.自变量取值一准时,因变量的取值带有必定随机性的两个变量之间的关系叫做有关关系B.线性回归方程对应的直线,起码经过其样本数据点(x1,y1),(x2,y2),,(x n,y n)中的一个点C.在残差图中,残差点散布的带状地区的宽度越狭小,其模型拟合的精度越高D.在回归剖析中,R2为 0.98 的模型比R2为 0.80 的模型拟合的成效好4、已知sin x 3 cos x 8,则 cos(x) ()56A.-3B.3C.-4D .4 55555、若下面的程序框图输出的S 是 126,则条件①可为()A. n≤ 5B. n≤ 6C. n≤ 7D. n≤86、设函数f (x) 在 R 上可导,其导函数为 f ( x) ,且函数 f ( x) 在x2 处获得极小值,则函数 y xf ( x) 的图象可能是( )7、在△ ABC中,内角A, B,C所对应的边分别为a, b, c,若 c2 =( a﹣ b)2 + 6,C =,则△ ABC的面积()A.3B.C.D.38、已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π9、《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如下图,俯视图中虚线均分矩形的面积,则该“堑堵”的侧面积为()A. 2B.4+2C. 4+4D.6+410、将函数的图象向左平移个周期后,所得图象对应的函数g( x)的一个单一增区间为()A. [0 ,π ]B.C.D.[﹣π,0]11、焦点在y 轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A.B.C.D.12、(一) 11、已知函数 f ( x)=+1( a∈R),f ( ln ( log 5)) =5,则 f ( ln2(log 52)) =()A.﹣5B .﹣1 C . 3 D . 4二、填空题(本大题共 4 个小题,每题 5 分,共 20 分。
吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣52.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为05.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或19.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x)dx= .14.在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则.”15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()= .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)参考答案一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣5【考点】导数的几何意义.【分析】首先判断该点是否在曲线上,①若在曲线上,对该点处求导就是切线斜率,利用点斜式求出切线方程;②若不在曲线上,想法求出切点坐标或斜率.【解答】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,=﹣3,即切线斜率为﹣3.∴y′|x=1∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.2.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=【考点】导数的运算.【分析】按照基本初等函数的求导法则,求出A、B、C、D选项中正确的结果即可.【解答】解:对于A,(1﹣x2)′=﹣2x,∴A式错误;对于B,(cos30°)′=0,∴B式错误;对于C,[ln(2x)]′=×(2x)′=,∴C式错误;对于D, ===,∴D式正确.故选:D.3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误【考点】演绎推理的基本方法.【分析】根据演绎推理的方法进行判断,首先根据判断大前提的正确与否,若正确则一步一步往下推,若错误,则无需往下推;【解答】解:∵菱形四条边相等,对角线垂直,但对角线不一定相等,∴对于菱形的对角线相等,正方形是菱形,所以正方形的对角线相等这段推理,首先大前提错误,故选D.4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为0【考点】反证法与放缩法.【分析】把要证的结论否定之后,即得所求的反设.【解答】解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.5.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.【考点】定积分在求面积中的应用.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y2=x与直线所围成的封闭图形的面积,即可求得结论.【解答】解:由,可得或∴曲线y2=x与直线所围成的封闭图形的面积为:(﹣x+)dx=(﹣x2+x)=.故选B.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.【考点】定积分的简单应用.【分析】对速度求定积分求出的是物体的运动位移;利用微积分基本定理求出定积分值即位移.【解答】解:s=(t2﹣t+2)dt===.故选A7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】利用导数研究函数的单调性.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1【考点】利用导数研究函数的极值;函数的零点与方程根的关系.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x 轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.9.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.【考点】点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P到直线y=x﹣2的最小距离.【解答】解:过点P作y=x﹣2的平行直线,且与曲线y=x2﹣lnx相切,设P(x0,x2﹣lnx)则有k=y′|x=x0=2x﹣.∴2x0﹣=1,∴x=1或x=﹣(舍去).∴P(1,1),∴d==.故选B.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.【考点】利用导数研究函数的极值;函数的图象.【分析】由题设条件知:当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.由此观察四个选项能够得到正确结果.【解答】解:∵函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,∴当x>﹣2时,f′(x)>0;当x=﹣2时,f′(x)=0;当x<﹣2时,f′(x)<0.∴当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.故选A.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【分析】本题先根据导函数在区间(1,2)上有零点,得到b的取值范围,再利用b的取值范围,求出函数的单调增区间,结合b的取值范围,选择符合题意的选项.【解答】解:∵函数∴∵函数的导函数在区间(1,2)上有零点∴当时,b=x2,x∈(1,2)∴b∈(1,4)令f'(x)>0 得到即f(x)的单调增区间为(﹣∞,),()∵b∈(1,4)∴(﹣∞,﹣2)适合题意故选D12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)【考点】导数的运算.【分析】根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.【解答】解:由2f(x)+xf′(x)>x2,(x<0),得:2xf(x)+x2f′(x)<x3,即[x2f(x)]′<x3<0,令F(x)=x2f(x),则当x<0时,得F′(x)<0,即F(x)在(﹣∞,0)上是减函数,∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2),即不等式等价为F(x+2014)﹣F(﹣2)>0,∵F(x)在(﹣∞,0)是减函数,∴由F(x+2014)>F(﹣2)得,x+2014<﹣2,即x <﹣2016,故选:C .二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x )dx= 0 .【考点】定积分.【分析】方法一:由(x+cos2x )dx=(x 2+sin2x )=sin π=0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,由定积分的性质, xdx=0, cos2xdx=2cos2x=2sin π=0.【解答】解:方法一:由(x+cos2x )dx=(x 2+sin2x )=()2+sin2()﹣[(﹣)2+sin2(﹣)]=sin π=0,(x+cos2x )dx=0,故答案为:0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,∴由定积分的性质,xdx=0, cos2xdx=2cos2x=2(sin2x )=2sin π=0,∴(x+cos2x )dx=xdx+cos2xdx=0,14.在平面几何里,有勾股定理“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则S△ABC 2+S△ACD2+S△ADB2=S△BCD2.”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是0<t<1或2<t<3 .【考点】利用导数研究函数的单调性.【分析】先由函数求f′(x)=﹣x+4﹣,再由“函数在[t,t+1]上不单调”转化为“f′(x)=﹣x+4﹣=0在区间[t,t+1]上有解”从而有在[t,t+1]上有解,进而转化为:g(x)=x2﹣4x+3=0在[t,t+1]上有解,用二次函数的性质研究.【解答】解:∵函数∴f′(x)=﹣x+4﹣∵函数在[t,t+1]上不单调,∴f′(x)=﹣x+4﹣=0在[t,t+1]上有解∴在[t,t+1]上有解∴g(x)=x2﹣4x+3=0在[t,t+1]上有解∴g(t)g(t+1)≤0或∴0<t<1或2<t<3.故答案为:0<t<1或2<t<3.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()=.【考点】导数的运算.【分析】求函数的导数,令x=,先求出f′()的值即可得到结论.【解答】解:∵f(x)=x2f′()+sin x,∴f′(x)=2xf'()+cosx令x=,则f′()=2×f'()+cos则f′()=,故答案为:三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)先对函数f(x)进行求导,根据f'(1)=3,f′=0,f(1)=4可求出a,b,c的值,得到答案.(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[﹣3,1]上的单调性,最后可求出最值.【解答】解:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b当x=1时,切线l的斜率为3,可得2a+b=0.①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0.②由①、②解得a=2,b=﹣4.由于l上的切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2﹣4x+5,∴f′(x)=3x2+4x﹣4.令f′(x)=0,得x=﹣2,或x=.∴f(x)在x=﹣2处取得极大值f(﹣2)=13.在x=处取得极小值f=.又f(﹣3)=8,f(1)=4.∴f(x)在[﹣3,1]上的最大值为13,最小值为.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.【考点】利用导数求闭区间上函数的最值;导数在最大值、最小值问题中的应用.【分析】(1)求出导数f′(x),易判断x>1时f′(x)的符号,从而可知f(x)的单调性,根据单调性可得函数的最值;(2)令F(x)=f(x)﹣g(x)=﹣+lnx,则只需证明F(x)<0在(1,+∞)上恒成立,进而转化为F(x)的最大值小于0,利用导数可求得F(x)的最大值.【解答】(1)解:∵f(x)=x2+lnx,∴f′(x)=2x+,∵x>1时,f′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2;(2)证明:令F(x)=f(x)﹣g(x)=﹣+lnx,则F′(x)=x﹣2x2+===,∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)==﹣<0,即f(x)<g(x),∴当x∈(1,+∞)时,函数f(x)的图象总在g(x)的图象下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(e),f′(e)的值,从而求出切线方程即可;(2)求出函数f(x)的导数,解关于导函数的不等式,得到函数的单调区间,从而求出函数的最小值即可.【解答】解:(1)∵f(x)定义域为(0,+∞),f'(x)=lnx+1,f(e)=e又f'(e)=2,∴函数y=f(x)在点(e,f(e))处的切线方程为:y=2(x﹣e)+e,即y=2x﹣e﹣﹣﹣﹣﹣﹣(2)∵f'(x)=lnx+1,令f'(x)=0,,时,F'(x)<0,f(x)单调递减;当时,F'(x)>0,f(x)单调递增.当,…..20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f (x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(1)求导数,利用导数的正负,即可求函数f(x)的单调区间;(2)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x恒成立转化为恒成立.构造函数,只需b≤g(x)min即可,因此又需求g(x)min.【解答】解:(1)当a=0时,f(x)=x﹣xlnx,函数定义域为(0,+∞).f'(x)=﹣lnx,由﹣lnx=0,得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣x∈(0,1)时,f'(x)>0,f(x)在(0,1)上是增函数.x∈(1,+∞)时,f'(x)<0,f(x)在(1,+∞)上是减函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x﹣xlnx,由f(x)≥bx2+2x,得(1﹣b)x﹣1≥lnx,又∵x>0,∴恒成立,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,可得,∴g(x)在(0,1]上递减,在[1,+∞)上递增.=g(1)=0∴g(x)min即b≤0,即b的取值范围是(﹣∞,0].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求函数的导数,利用函数的导数和最值之间的关系,即可求函数f(x)的最大值;(Ⅱ)利用函数的单调性,证明不等式.【解答】解:(Ⅰ)f′(x)=﹣xe x.当x∈(﹣∞,0)时,f′(x)>0,f(x)单调递增;当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.∴f(x)的最大值为f(0)=0.(Ⅱ)由(Ⅰ)知,当x>0时,f(x)<0,g(x)<0<1.当﹣1<x<0时,g(x)<1等价于设f(x)>x.设h(x)=f(x)﹣x,则h′(x)=﹣xe x﹣1.当x∈(﹣1,0)时,0<﹣x<1,<e x<1,则0<﹣xe x<1,从而当x∈(﹣1,0)时,h′(x)<0,h(x)在(﹣1,0]单调递减.当﹣1<x<0时,h(x)>h(0)=0,即g(x)<1.综上,总有g(x)<1.。
台州市书生中学 2018学年第二学期 第一次月考高二数学试卷命题人:骆兆文 (满分:150分 考试时间:150 分钟) 2019.3 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 直线y=x+1的倾斜角是( )A.B.C.D.2. 抛物线y=x 2的准线方程是( )A.y=-B.y=-C.y=D.y=3. 若直线3x+y+a=0过圆x 2+y 2+2x-4y=0的圆心,则a 的值为( )A.-1B.1C.3D.-34. 已知直线m 、n 与平面α、β,下列命题正确的是( )A. m∥α,n∥β且α∥β,则m∥nB. m∥α,n∥β且α⊥β,则m⊥nC. α∩β=m ,n⊥β且α⊥β,则n⊥αD. m⊥α,n⊥β且α⊥β,则m⊥n 5. 已知直线()()()12:120,:1430l mx m y l m x m y +++=+++-=,则“2m =-”是“12l l ⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件直线l 的斜率为( )7. 已知三次函数在x ∈(-∞,+∞)是增函数,则m 的取值范围是( ) A. m <2或m >4B. -4<m <-2C. 2<m <4D. 以上皆不正确8. 如图,正四棱锥P-ABCD .记异面直线PA 与CD 所成角为α,直线PA 与面ABCD 所成角为β,二面角P-BC-A 的平面角为γ,则( )A.β<α<γB.γ<α<βC.β<γ<αD.α<β<γ诚信考试 谨慎作答 书生阶段性考试第 - 2 - 页 共 4 页9. 已知双曲线()222210,0x y a b a b-=>>与函数)0y x =≥的图像交于点P ,若函数y =在点P 处的切线过双曲线左焦点F (-1,0),则双曲线的离心率为( )D.3210. 已知函数f (x )的导函数为f '‘(x ),且f '‘x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A. f (ln2)>2f (0),f (2)>e 2f (0)B.f (ln2)<2f (0),f (2)<e 2f (0)C. f (ln2)<2f (0),f (2)>e 2f (0)D. f (ln2)>2f (0),f (2)<e 2f (0)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)11. 双曲线22154x y -=的离心率为______,渐近线方程为______. 12. 已知函数()2ln f x x x =-,则()f x 在x=1处的切线方程为_________;单调递增区间是_______.的面积为______,△F 1PF 2内切圆半径为______.14. 某几何体的三视图如图(单位:cm ),则该几何体的体积 为______cm 3,表面积为______cm 3.15. 已知抛物线y 2=2px (p >0)的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足NF =,则∠NMF =______.16. 若函数()ln f x x x mx =--在区间[1,e 2]内有唯一的零点,则实数m 的取值范围是______.诚信考试 谨慎作答 书生阶段性考试 第2 页 共 4 页三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 18. 已知函数()32f x x ax bx c =+++,当1x =-时,()f x 的极大值为7;当3x =时,()f x 有极小值。
太仓市高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=2. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .63. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( ) A .[5,10] B .(5,10)C .[3,12]D .(3,12)4. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .5. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,96. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.7. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④8. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)9. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .410.下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )11.设a ,b 为正实数,11a b+≤,23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.12.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定二、填空题13.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .14.阅读右侧程序框图,输出的结果i 的值为 .15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 16.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________17.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 .18.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .三、解答题19.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.20.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列. (1)求数列{a n }的通项公式; (2)若b n =,求数列{b n }的前n 项和S n .21.(本小题满分12分)已知A 、B 、C 、D 为同一平面上的四个点,且满足2AB =,1BC CD DA ===,设BAD θ∠=,ABD ∆的面积为S ,BCD ∆的面积为T . (1)当3πθ=时,求T 的值; (2)当S T =时,求cos θ的值;22.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.23.已知函数f(x)=2|x﹣2|+ax(x∈R).(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)﹣2存在零点,求a的取值范围.24.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.25.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.26.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.太仓市高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:直线的方程.2.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.3.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.4.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
2018—2019学年度第二学期第一次考试高二年级理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.(1)已知集合{1,2,}M zi =,i 为虚数单位,{3,4}N =,{4}MN =,则复数z =(A )2i - (B )2i (C )4i - (D )4i (2)已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则()()11f f +'的值等于(A )1 (B )52 (C )3 (D )0 (3)已知函数52()ln 33f x x x =-,则0(1)(1)limx f f x x∆→-+∆=∆ (A )1 (B )1- (C )43- (D )53-(4)某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是 (A )甲 (B )乙 (C )丙 (D )丁 (5)已知,x y R ∈, i 为虚数单位,若()123xi y i +=--,则x yi +=(A (B )3 (C (D (6)函数()()3e xf x x =-的单调递增区间是(A )()0,3 (B )()1,4 (C )()2,+∞ (D )(),2-∞(7)函数32()23f x x x a =-+的极大值为6,那么a 的值是(A )6 (B )5 (C )1 (D )0(8)以正弦曲线sin y x =上一点P 为切点得切线为直线l ,则直线l 的倾斜角的范围是(A )30,,424πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ (B )[)0,π (C )3,44ππ⎡⎤⎢⎥⎣⎦(D )30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭(9)在复平面内,若2(1)(4)6z m i m i i =+-+-所对应的点位于第二象限,则实数m 的取值范围是(A )(0,3) (B )(,2)-∞- (C )(2,0)- (D )(3,4)(10)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,错误..的是(11)若函数()2(0)xf x a x a=>+在[)1,+∞a =(A 1 (B )34 (C )43(D 1 (12)已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则(A )4(1)(2)f f < (B )4(1)(2)f f > (C )(1)4(2)f f < (D )(1)4(2)f f '<第II 卷二、填空题:本题共4小题,每小题5分. (13)若函数321()(1)3f x x f x x '=-⋅+,则(1)f '=__________. (14)由曲线xy e x =+与直线0,1,0x x y ===所围成图形的面积等于__________. (15)观察下列各式: 1a b +=, 223a b +=, 334a b +=, 447a b +=, 5511a b +=,…,则1010a b +=(16)若直线y kx b =+是曲线ln 1y x =+的切线,也是曲线ln(2)y x =+的切线,则k =_______.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知复数()()227656z a a a a i a R =-++--∈,求a 分别为何值时,(1)z 是实数; (2)z 是纯虚数;(3)当6za =-z 的共轭复数.(18)(本小题满分10分)已知数列{}n a 满足)(1,111++∈+==N n a a a a nnn (1)分别求234,,a a a 的值;(2)猜想{}n a 的通项公式n a ,并用数学归纳法证明.(19)(本小题满分12分)已知函数32()f x x ax bx =++在23x =-与1x =处都取得极值. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[2,2]-的最大值与最小值.(20)(本小题满分12分)已知函数f (x )=ln xx.(1)判断函数()f x 的单调性;(2)若y =xf (x )+1x的图象总在直线y =a 的上方,求实数a 的取值范围.(21)(本小题满分12分)某商场为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加的销售额为25t t -+(百万元)03t ≤≤(). (1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为32133x x x -++(百万元),请设计一个资金分配方案,使该商场由这两项共同产生的收益最大.(22)(本小题满分12分) 已知函数()ln m f x x x=+(其中m R ∈),()161x g x e x +=-+(其中e 为自然对数的底数).(1)若曲线()y f x =在1x =处的切线与直线2450x y -+=垂直,求()f x 的单调区间和极值;(2)若对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥成立,求实数m 的取值范围.2018—2019学年度第二学期第一次考试高二年级理科数学试题参考答案一、 选择题(1)【答案】C 【解析】由M ∩N ={4},知4∈M ,故z i =4,故z =i =i 2=-4i.(2)【答案】C 【解析】由导数的几何意义得()()1151,112.222k f f ===⨯+=' 所以()()11f f +'=15+=322,故选C. (3)【答案】B(4)【答案】B 【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项A ;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项C ;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项D ,故选B.(5)【答案】A 【解析】()123xi y i +=-- 21{3y x -=⇒=- 3{1x y =-⇒=,则x yi +=(6)【答案】C 【解析】()()()e 3e e2xxxf x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . (7)【答案】A 【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-,令()0,f x '=可得0,1x =,容易判断极大值为()06f a ==.故选A. (8)【答案】D 【解析】由题得cos y x '=,设切线的倾斜角为α,则][3tan cos 1tan 10,,44k x ππαααπ⎡⎫==∴-≤≤∴∈⋃⎪⎢⎣⎭,故选D.(9)【答案】D 【解析】整理得22(4)(6)z m m m m i =-+--对应的点位于第二象限,则224060m m m m ⎧-<⎪⎨-->⎪⎩,解得34m <<. (10)【答案】D 【解析】经检验,A :若曲线为原函数图象,先减后增,则其导函数先负后正,正确;B :若一直上升的函数为原函数图象,单调递增,则其导函数始终为正,正确;C:若下方的图象为原函数图象,单调递增,则其导函数始终为正,正确;D :若下方的函数为原函数,则其导函数为正,可知原函数应单调递增,矛盾;若上方的函数图象为原函数图象,则由导函数可知原函数应先减后增,矛盾.故选D. (11)【答案】A1≤,即1a ≤时, ()f x 在[)1,+∞上单调递减,故()()max 111f x f a ==+.令11a =+,解得1a =,符合题意.综上1a =.(12)【答案】B 【解析】设函数2()()f x g x x=(0)x >, 则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<, 所以函数()g x 在(0,)+∞上为减函数,所以(1)(2)g g >,即22(1)(2)12f f >, 所以4(1)(2)f f >,故选B. 二、填空题 (13)【答案】23【解析】∵f (x )=13x 3-f ′(1)·x 2+x ,∴f ′(x )=x 2-2f ′(1)·x +1, ∴f ′(1)=1-2f ′(1)+1,∴f ′(1)=23. (14)【答案】e -12 【解析】由已知面积S =10⎰(e x+x )d x =⎝⎛⎭⎪⎫e x +12x 210|=e +12-1=e -12.(15)123(16)【答案】12【解析】设直线y kx b =+与曲线ln 1y x =+和ln(2)y x =+的切点分别为()11,x kx b +,()22,x kx b +.由导数的几何意义可得12112k x x ==+,得122x x =+,再由切点也在各自的曲线上,可得1122ln 1,(),ln 2kx b x kx b x +=++=+⎧⎨⎩三、解答题(17)解:(1)Z 是实数, 2560a a --=,得61a a ==-或(2)Z 是纯虚数, 2760a a -+=,且2560a a --≠,得1a = (3)当6za =- ()()11a a i -++=, 得()()221110a a -++=,得2a =± 当2a =时, 412z i =--,得412Z i =-+; 当2a =-时, 248z i =+,得248Z i =-(18) 解: (1)3111,2112121223112=+=+==+=a a a a a a ,41113131334=+=+=a a a (2)猜想)(1+∈=N n na n ①当n =1时命题显然成立②假设)(+∈=N k k n 命题成立,即ka k 1= 当11111111+=+=+=+=+k a a ,ak n kk k k k 时 1+=∴k n 时命题成立综合①②,当+∈N n 时命题成立(19)解:(1) 2()32f x x ax b '=++,由题意2()03(1)0f f ⎧'-=⎪⎨⎪'=⎩即44033320ab a b ⎧-+=⎪⎨⎪++=⎩ 解得122a b ⎧=-⎪⎨⎪=-⎩,经检验符合题意,321()22f x x x x ∴=--(2)由(1)知2()3()(1)3f x x x '∴=+-, 令()0f x '=,得122,13x x =-=, 当x 变化时,f ′(x ),f (x )的变化情况如下表:max min (20)解:(I) 21ln ()xf x x-'=当0x e << 时,()0f x '>,()f x 为增函数; 当x e >时,()0f x '<,()f x 为减函数. (2)依题意得,不等式1ln a x x<+对于0x >恒成立.令1()ln g x x x =+,则22111()x g x x x x-'=-=. 当(1,)x ∈+∞时,21()0x g x x -'=>,则()g x 是(1,)+∞上的增函数; 当(0,1)x ∈时,()0g x '<,则()g x 是(0,1)上的减函数. 所以()g x 的最小值是(1)1g =, 从而a 的取值范围是(,1)-∞.(21)解:(1)设投入广告费t (百万元)后由此增加的收益为()f t (百万元),则()2254f t t t t t t =-+-=-+ ()224t =--+, 03t ≤≤.所以当2t =时, ()max 4f t =,即当商场投入两百万元广告费时,才能使商场由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的费用为()3x -(百万元),则由此两项所增加的收益为()()23213[33g x x x x x =-+++-- ()3153]3433x x x +--=-++.()2'4g x x =-+,令()2'40g x x =-+=,得2x =或2x =-(舍去).当02x <<时, ()'0g x >,即()g x 在[)0,2上单调递增; 当23x <<时, ()'0g x <,即()g x 在(]2,3上单调递减, ∴当2x =时, ()()max 2523g x g ==. 故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样商场由此所增加的收益最大,最大收益为253百万元. (22)(2)由()161x g x ex +=-+, ()1'6x g x e +=-,当[]2,3x ∈时, ()'0g x >, ()g x 单调递增,故()g x 有最小值()3211g e =-,因为对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥,即()()31212f x e g x +-≥成立,所以对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有()3311211f x e e +-≥-,即()11f x ≥, 也即11ln 1m x x +>成立,从而对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有111ln m x x x ≥-成立, 构造函数()ln x x x x ϕ=- 1,22x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()'ln x x ϕ=-,令()'0x ϕ=,得1x =,当1,12x ⎛⎫∈ ⎪⎝⎭时, ()'0x ϕ>, ()x ϕ单调递增;当()1,2x ∈时, ()'0x ϕ<, ()x ϕ单调递减,∴()x ϕ的最大值为()11ϕ=,∴1m ≥,综上,实数m 的取值范围为[)1,+∞.。
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
电白区高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3) 2. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 3. 如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为( )A. B. C. D.4. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]5. 数列1,,,,,,,,,,…的前100项的和等于( ) A.B.C.D.6. 一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( ) A.B.C.D.7. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( ) A. B.C.D.8. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A .(0,) B .(0,] C.(,] D .[,1)9.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( ) A.B.C .2D .﹣2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.11.设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .12.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .二、填空题13.曲线y=x 2与直线y=x 所围成图形的面积为 .14.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .15.1785与840的最大约数为 .16.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.17.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .18.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .三、解答题19.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.20.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.21.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.22.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .23.已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =a n b n ,求数列{c n }的前n 项和S n .24.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R ) (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.25.已知f (x )=x 2﹣3ax+2a 2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.26.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.电白区高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.2. 【答案】A【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系.3. 【答案】 C【解析】解:∵线段MN 的长度为1,线段MN 的中点P ,∴AP=,即P 的轨迹是分别以A ,B ,C ,D 为圆心,半径为的4个圆,以及线段GH ,FE ,RT ,LK ,部分. ∴G 的周长等于四个圆弧长加上线段GH ,FE ,RT ,LK 的长,即周长==π+4x ﹣2+2x ﹣2=6x+π﹣4,面积为矩形的面积减去4个圆的面积,即等于矩形的面积减去一个整圆的面积为,∴f (x )=6x+π﹣4﹣=,是一个开口向下的抛物线,∴对应的图象为C , 故选:C .【点评】本题主要考查函数图象的识别和判断,根据条件确定点P 的轨迹是解决本题的关键,综合性较强,难度较大.4. 【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.5.【答案】A【解析】解:=1×故选A.6.【答案】C显然甲掷得的向上的点数比乙大的有15种,故甲掷得的向上的点数比乙大的概率为P=.故选:C.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比7.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.8.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+﹣2×××cos∠F1PF2,由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),即<4c2<,∴<<1,即<e2<1,∴<e<1;当P与两焦点F1,F2共线时,可得a+c=2(a﹣c),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.9.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.10.【答案】C11.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.12.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.二、填空题13.【答案】.【解析】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=(﹣)|01=﹣=∴曲边梯形的面积是故答案为:.14.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC ,高为AC ,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.15.【答案】 105 .【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为10516.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式. 17.【答案】 90° .【解析】解:∵∴=∴∴α与β所成角的大小为90° 故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.18.【答案】[1,)+∞ 【解析】解析:不等式,1,x y a x y +≥⎧⎨-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处z 取得最大值,综上所述,1a ≥.三、解答题19.【答案】【解析】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x 1<x 2则f (x 1)﹣f (x 2)=﹣=因为函数y=2x在R 上是增函数且x 1<x 2∴f (x 1)﹣f (x 2)=>0即f (x 1)>f (x 2)∴f (x )在(﹣∞,+∞)上为减函数(III )f (x )在(﹣∞,+∞)上为减函数,又因为f (x )是奇函数,所以f (t 2﹣2t )+f (2t 2﹣k )<0等价于f (t 2﹣2t )<﹣f (2t 2﹣k )=f (k ﹣2t 2), 因为f (x )为减函数,由上式可得:t 2﹣2t >k ﹣2t 2. 即对一切t ∈R 有:3t 2﹣2t ﹣k >0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.20.【答案】【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),消去参数,得x+y﹣=0,直线l的直角坐标方程为x+y﹣=0,∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).∴(x+)2+(y+)2=r2(r>0).∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)圆心C到直线x+y﹣=0的距离为d==2,又∵圆C上的点到直线l的最大距离为3,即d+r=3,∴r=3﹣2=1.【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.21.【答案】【解析】解:(Ⅰ)用茎叶图表示如下:(Ⅱ)=,==80,=[(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,=[(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,∵=,,∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.22.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:平面与平面平行的判定;空间中直线与直线的位置关系.23.【答案】【解析】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q:∵a1=b1=1,a2=b2,2a3﹣b3=1.∴1+d=q,2(1+2d)﹣q2=1,解得或.∴a n=1,b n=1;或a n=1+2(n﹣1)=2n﹣1,b n=3n﹣1.(II)当时,c n=a n b n=1,S n=n.当时,c n=a n b n=(2n﹣1)3n﹣1,∴S n=1+3×3+5×32+…+(2n﹣1)3n﹣1,3S n=3+3×32+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)3n=﹣1﹣(2n﹣1)3n=(2﹣2n)3n﹣2,∴S n=(n﹣1)3n+1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;(2)z为纯虚数⇔,解得:m=0;(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.25.【答案】【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.(2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0…对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};26.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。
文科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】利用复数代数形式的乘除运算化简求出坐标得答案.【详解】解:∵,∴复数在复平面内对应的点的坐标为(),位于第三象限.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形是由正n+2边形扩展而来,则第n个图形的顶点个数是()(1)(2)(3)(4)A. (2n+1)(2n+2)B. 3(2n+2)C. 2n(5n+1)D. (n+2)(n+3)【答案】D【解析】【分析】由已知图形中,我们可以列出顶点个数与多边形边数,然后分析其中的变化规律,然后用归纳推理可以推断出一个一般性的结论.【详解】由已知中的图形我们可以得到:当时,顶点共有(个),时,顶点共有(个),时,顶点共有(个),时,顶点共有(个),…由此我们可以推断:第个图形共有顶点个,故选D.【点睛】本题考查的知识点是归纳推理,解答的关键是:先通过观察个别情况发现某些相同性质;然后从已知的相同性质中推出一个明确表达的一般性命题或猜想.3.设i是虚数单位,是复数的共扼复数,若,则复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】把已知z代入z+i•,利用复数代数形式的乘法及加法运算化简,求得坐标得答案.【详解】∵z=1+2i,∴z+i•1+2i+i(1﹣2i)=1+2i+i+2=3+3i.∴复数z+i•在复平面内对应的点的坐标为(3,3),位于第一象限.故选:A.【点睛】本题考查了复数的代数表示法及其几何意义,是基础题.4.三角形的面积为为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为()A. B.C. ,(h为四面体的高)D. (分别为四面体的四个面的面积,为四面体内接球的半径)【答案】D【解析】【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【详解】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,∴V(S1+S2+S3+S4)r,故选:D.【点睛】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想),本题是由平面图形面积类比立体图形的体积,属于基础题.5.如图是计算值的一个程序框内,其中判断框内应填入的条件是()A. B. C. D.【答案】B【解析】【分析】根据算法的功能确定循环的次数为,确定跳出循环体的值为,的值为,由此可得判断框内应该填的条件。
【详解】算法的功能是计算值,循环的次数为跳出循环体的值为,的值为,故判断框内应该填的条件为或故选B【点睛】本题主要考查了补全程序框图,由已知的算式结合程序的循环次数来求出结果,较为基础6.某家具厂的原材料费支出(单位:万元)与销售额(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为()A. B. C. D.【答案】A【解析】【分析】根据回归直线经过样本平均数中心点,求得平均值,代入即可求得b。
【详解】因为回归直线方程经过样本中心点,代入回归直线方程得所以选A【点睛】本题考查了回归直线的简单应用,注意回归直线会经过平均数中心点,而不是某个样本点,属于基础题。
7.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有()参考数据及公式如下:A. 12B. 11C. 10D. 18【答案】A【解析】【分析】设男生人数为,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论.【详解】设男生人数为,依题意可得列联表如下:若在犯错误的概率不超过的前提下认为是否喜欢追星和性别有关,则,由,解得,为整数,若在犯错误的概率不超过的前提下认为是否喜欢追星和性别有关,则男生至少有人,故选A.【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.8.已知下列4个命题:①若复数的模相等,则是共轭复数.②都是复数,若是虚数,则的共轭复数.③复数是实数的充要条件是.(是的共轭复数).④已知复数(是虚数单位),它们对应的点分别为A,B,C. O 为坐标原点.若(),则.则其中正确命题的个数为().A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】本道题结合复数的概念和向量的加减法,代入,即可。
【详解】1号可能复数相等,故错误。
2号明显正确,因为如果为共轭复数,则相加为实数,不会为虚数。
4号,,计算得到b=0,故正确。
3号,由题可知,,建立等式,建立等式,得到,解得,故错误。
故选B。
【点睛】本道题考查了复数的概念和向量坐标运算,代入,即可得出答案。
9.若实数满足,给出以下说法:①中至少有一个大于;②中至少有一个小于;③中至少有一个不大于1;④中至少有一个不小于.其中正确说法的个数是()A. 3B. 2C. 1D. 0【答案】B【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意满足,则在①、②中,当时,满足,所以命题不正确;对于③中,假设三个数列都大于,则,这与已知条件是矛盾的,所以假设不成立,则中失少有一个不大于,所以是正确的;对于④中,假设三个数列都小于,则,这与已知条件是矛盾的,所以假设不成立,则中失少有一个不小于,所以是正确的;综上可知,正确的命题由两个,故选B.点睛:本题主要考查了命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下:甲说:“、同时获奖”;乙说:“、不可能同时获奖”;丙说:“获奖”;丁说:“、至少一件获奖”.如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是()A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品【答案】D【解析】【分析】根据条件可判断出乙丁预测正确,而甲丙预测错误,这样根据这四位同学的预测即可得出获奖的作品.【详解】乙,丁预测的是正确的,甲,丙预测的是错误的;丙预测错误,∴C不获奖;丁预测正确,A,C至少一件获奖,∴A获奖;甲预测错误,即A,B不同时获奖,∴B不获奖;∴D获奖;即获奖的作品是作品A与作品D.故选:D.【点睛】本题考查进简单合情推理的过程和方法,属于中档题.11.在平面几何里有射影定理:设三角形的两边,是点在上的射影,则.拓展到空间,在四面体中,面,点是在面内的射影,且在内,类比平面三角形射影定理,得出正确的结论是()A. B.C. D.【答案】A【解析】【分析】这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,若中,,,是垂足,则,我们可以类比这一性质,推理出若三棱锥中,面,面,为垂足,则.【详解】由已知在平面几何中,若中,,,是垂足,则. 可以类比这一性质,推理出:若三棱锥中,面,面,为垂足,如图所示:则.故选A.【点睛】本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类对象上去,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).12.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,,按此规律一直运动下去,则()A. 1006B. 1007C. 1008D. 1009【答案】D【解析】分析:由题意得,即,观察前八项,得到数列的规律,求出即可.详解:由直角坐标系可知,,即,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于所在的项数除以2,则,每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,因为,则,,故选D.点睛:本题考查了归纳推理的问题,关键是找到规律,属于难题. 归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,若为实数,则__________.【答案】【解析】【分析】根据复数的乘法运算化简,利用复数的相关概念即可求解.【详解】因为,又知为实数,所以,即.【点睛】本题主要考查了复数的运算,复数的概念,属于中档题.14.微信支付诞生于微信红包,早期知识作为社交的一部分“发红包”而诞生的,在发红包之余才发现,原来微信支付不仅可以用来发红包,还可以用来支付,现在微信支付被越来越多的人们所接受,现从某市市民中随机抽取300为对是否使用微信支付进行调查,得到下列的列联表:根据表中数据,我们得到的统计学的结论是:由__________的把握认为“使用微信支付与年龄有关”。
其中【答案】95%【解析】由条件可得的列联表为:∴,∴有95%的把握认为“使用微信支付与年龄有关”。
答案:95%15.如下图所示的茎叶图为高三某班30名学生的某次考试成绩,该班学生的学号依次为1,2,3,,30.算法框图中输入的为该班这次考试中的学号为的学生的成绩,则输出的值为____.【答案】15【解析】【分析】该算法的功能是计算在30名学生的成绩中,成绩大于等于60且小于80的人数,根据茎叶图即可得出结果.【详解】有程序框图可知:该算法的功能是计算在30名学生的成绩中,成绩大于等于60且小于80的人数;有茎叶图可知:60,62,65,67,67,69,71,72,73,73,75,76,76,78,79共15个在范围内,因此输出值为15.【点睛】本题主要考查程序框图中的判断条件,只需准确理解判断框中的判断条件,即可结合茎叶图求解.16.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为,高皆为的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面上,用平行于平面且与平面任意距离处的平面截这两个几何体,可横截得到及两截面.可以证明总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.【答案】【解析】【分析】由已知条件推导出椭球体的体积公式,然后代入求出结果【详解】总成立则半椭球体的体积为:椭球体的体积椭球体半短轴长为1,半长轴长为3即椭球体的体积故答案为【点睛】本题考查了求椭球体体积,通过已知条件得到椭球体体积公式是解题关键,然后再代入相关数值求出结果。