11O线性代数(经管类)2011年1 月份历年真题
- 格式:doc
- 大小:856.00 KB
- 文档页数:7
试题类型:1单选题 难易程度:1 2 3 4 5 试题内容: 试题答案: 试题解析:第一章 行列式1.=4321( )A .-4B .-2C .2D .4难易:1 答案:B解析:2-32-41=⨯⨯2.199819992000200120022003200420052006=( ) A .-1 B .0 C .1 D .2难易:2 答案:B解析:0120051120021119991-200620052004200320022001200019991998==3.123024001-=( ) A .1 B .2 C .-1 D .-2难易:2 答案:D解析:-21042-110042-0321=⨯=4. 已知4阶行列式4D 第1行的元素依次是1,2,-1,-1,它们的余子式依次为2,-2,1,0,则4D =( ) A .-5 B .-3 C .3D .5难易:3 答案:D 解析:5011-2--22114141313121211114=+⨯⨯+⨯=-+-=)(M a M a M a M a D5. 设多项式11-1-11-11-11-1-1101-0)(xx f =,则)(x f 的常数项为( )A .-4B .-1C .1D .4难易:3 答案:D解析:42000201-1-1-1-11-11-111-1-1-1-11-1-11-11-11-1-1101-0)0(0,0)(=⨯=⨯====f x x x f 带入行列式中得到:将的常数项,则求 6. 已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=+0320320-321321321x x x ax x x x x x 有非零解,则a=( )A .-2B .-1C .2D .1难易:3答案:C 7. 已知行列式12211=b a b a ,22211=c a c a ,则=++222111c b a c b a ( )A .-3B .-1C .1D .3难易:2 答案:D 8.321=( )A .-6B .6C .7D .-7难易:1 答案:A9.齐次线性方程组只有零解当且仅当它的系数行列式|A|( ) A .|A|=0 B .|A|>0 C .|A|≤0 D .|A|≠0难易:2 答案:D10.若n 个方程的n 元线性方程组的系数行列式0≠=nij a D ,则方程有A .唯一解B .无穷解C .无解难易:2 答案:A 11.()的根是则方程设0)(f ,1312f =--=x x x ( )A .4B .-4C .5D .-5难易:2 答案:C12.二阶行列式35-42=D 的值A .26B .-26C .20D .-20难易:2 答案:A13.三阶行列式981564321=D 的值A .-28B .-30C .30D .28难易:2 答案:C14.3阶行列式222cc1b b 1a a 1的值为( )A. (b-a)(c-a)(c-b)B.(b+a)(c-a)(c-b)C.(b-a)(a-c)(c-b)D.(b-a)(a-c)(c+b) 难易:2 答案:A第二章 矩阵15.已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=17422365,13822103B A ,则=+B A 2( ) A.⎥⎦⎤⎢⎣⎡-112166651210 B .⎥⎦⎤⎢⎣⎡-117166651213C.⎥⎦⎤⎢⎣⎡-11116665123 D .⎥⎦⎤⎢⎣⎡-1117166651213 难易:2 答案:B16.已知()()121,102==B A T,则=AB ( )A .201402201⎛⎫ ⎪ ⎪ ⎪⎝⎭B .242000121⎛⎫ ⎪ ⎪ ⎪⎝⎭C .3D .无法计算难易:2 答案:B17.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,若存在初等矩阵P ,使得⎪⎪⎪⎭⎫⎝⎛=3332312322213313321231112-2-2-a a aa a a a a a a a a PA ,则P=( ) A .⎪⎪⎪⎭⎫ ⎝⎛102-010001 B .⎪⎪⎪⎭⎫⎝⎛1000102-01C .⎪⎪⎪⎭⎫ ⎝⎛100012-001 D .⎪⎪⎪⎭⎫⎝⎛10001002-1 难易:3 答案:B18.设n 阶矩阵ABC 满足ABC=E,则1-B =( ) A .11--C A B .11--A C C .AC D .CA难易:3 答案:D19.设AB 、为n 阶方阵,下列各形式不一定成立的是( ) A.BA AB = B .T T T A B AB =)(C .EA AE =D .BA AB = 难易:3 答案:D20.设矩阵()⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛==654321,4321,2,1C B A ,则下列矩阵运算中有意义的是( ) A.ACB B .ABC C .BAC D .CBA 难易:1 答案:B21.设A 为3阶矩阵,且2=A ,则=1-2-A ( )A.-4 B .-1 C .1 D .4 难易:3 答案:A22.设A,B 为任意n 阶矩阵,E 为n 阶单位矩阵,O 为n 阶零矩阵,则下列各式中正确的是( )A. ()()22B A B A B A -=-+ B .()222B A AB =C .()()E A E A E A -=-+2D .由AB=O 必可推出A=O 或B=O 难易:3 答案:C23.设⎪⎪⎭⎫⎝⎛-=*0320A ,则=-1A ( )A. ⎪⎪⎭⎫⎝⎛-02/13/10B .⎪⎪⎭⎫ ⎝⎛-03/12/10 C. ⎪⎪⎭⎫ ⎝⎛-03/12/10D .⎪⎪⎭⎫ ⎝⎛-02/13/10 难易:3 答案:A24.设A 为n 阶矩阵,如果E A 21=,则=A ( ) A . 21 B. 121-n C . n 21D .2难易:2 答案:C25.设A 为3阶矩阵,且0≠=a A ,将A 按列分块为),,(321ααα=A ,若矩阵),2,(3221αααα+=B ,则=B ( )A .0B .aC .a 2D .a 3 难易:3 答案:C26. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=412320101-321A 的等价标准形( ) A.()0EB.()00EC.⎪⎪⎪⎭⎫⎝⎛00ED.⎪⎪⎭⎫ ⎝⎛0E难易:3 答案:D27. ⎪⎪⎪⎭⎫ ⎝⎛=1131-12021A 的逆矩阵( )A.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/8-5/81/41/41/4- B.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/85/81/41/41/4 C.⎪⎪⎪⎭⎫ ⎝⎛3/8-5/8-1/81/8-1/85/81/4-1/41/4 D.⎪⎪⎪⎭⎫⎝⎛3/85/8-1/8-1/81/85/81/41/41/4难易:3 答案:A28. ⎪⎪⎪⎭⎫⎝⎛=44-311-21-12013A 的秩为( )A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=0 难易:2 答案:B29. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=172543421362B A ,则AB=( ) A 、⎪⎪⎪⎭⎫⎝⎛143614161911165018B 、⎪⎪⎭⎫ ⎝⎛23274228 C 、⎪⎪⎭⎫ ⎝⎛42282372D 、⎪⎪⎭⎫ ⎝⎛42282372难易:2 答案:A30.相乘可以交换与满足什么条件时,当⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=y x B A y x 213421,A 、y=x+1B 、y=-x+1C 、y=-x-1D 、 y=x-1 难易:3 答案:A31.设n 阶矩阵A ,B ,C 满足ABC=E ,则A. 111---=C B AB. 111---=B C AC. CA B =-1D. AC B =-1 难易:3第三章 向量空间32. 当t 为何值时,向量组()()()t ,3,51-,3,10,1,1321===ααα,,线性相关( )A . 3B .1C .2D .-1难易:3 答案:B33.向量组T T T t )5,4,0(,),0,2(,)1,2,1(121-==-=ααα的秩为2,则=t ( ) A .1 B .3 C .-2 D .-1 难易:3 答案:B34.设向量组s ααα,...,,21线性无关,并且可由向量组t 21,...,,βββ线性表出,则s 与t 的大小关系是( )A. S ≤tB.S >t C .S=t D .t ≤S难易:4 答案:A35.设向量组321,,ααα线性无关,则下列向量组中线性无关的是( ) A.2121,,αααα+ B.2121,,αααα- C.133221,,αααααα--- D.133221,,αααααα+++答案:D36.设向量组()()TT,0,1000,121==αα,,,下列向量中可以由21αα,线性表出的是( )A.()T00,2,B.()T42,3-, C.()T01,1, D.()T01-,0, 难易:3 答案:A37. 设向量组s ααα,...,,21线性相关,则必可推出( ) A.s ααα,...,,21中至少有一个向量为零向量 B.s ααα,...,,21中至少有两个向量成比例C.s ααα,...,,21中至少有一个向量可由其余向量线性表出D.s ααα,...,,21中每一个向量都可由其余向量线性表出难易:3 答案:C38. 设A 是n 阶矩阵(n ≥2),0=A 则下列结论中错误的是( ) A.r(A)<nB.A 必有两行元素成比例C.A 的n 个列向量线性相关D.A 有一个行向量可由其余的n-1个行向量线性表出难易:3 答案:B39. 向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=110001-2-10642302-1-032154321ααααα,,,,的秩是( ) A.5 B.4 C.3 D.2难易:2 答案:C 40. 设向量线性无关,线性相关,则下列结论中错误的是( ) A.21,a a 线性无关B.4a 可由21,a a 线性表出C.4321,,,a a a a 线性相关D.4321,,,a a a a 线性无关难易:4 答案:D41. 设向量组)3,2,1(1=α,)2,1,0(2=α,)1,0,0(3=α,)6,3,1(=β,则( ) A.βααα,,,321线性无关B .β不能由321,,ααα线性表示C .β可由321,,ααα线性表示,且表示法惟一D .β可由321,,ααα线性表示,但表示法不惟一难易:3 答案:C42.向量组()()()3,2,12,4,21,2,1321===ααα,,的秩( )A .1B .2C .3D .0 难易:2 答案:B321,,a a a 421,,a a a43.设()()()1,0,2-,1-0,0,1,2-1-,01,1===γβα,,, 则 γβα3-2+=( ) A. ()4-,0,90,B .()4-,9,00,C .()4-,0,50,D .()4,0,50, 难易:2 答案:A44.已知()()为则,,αβαβα,2,1,1,2431-,23,132TT=+=+( ) A. ()T10-,5-,9-,2 B .()T 10,5-,9-,2 C .()T 10,5,9-,2 D .()T10,5,9-,2-难易:3 答案:B 45.向量组()()()3,4,6,0,1-5,0,3,2,13,0,4,1,2321===ααα,,的秩( )A.1 B .2 C .3 D .0 难易:3 答案:C46.向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛132,121,32,13a b 的秩为2,则a,b 为( )A.a=2 b=5 B .a=5 b=2 C .a=-2 b=-5 D .a=-2 b=5 难易:2 答案:A第四章 线性方程组47.设A 是n m ⨯矩阵,则方程组0=Ax 有非零解的充要条件是( ) A.n A R =)( B .n A R <)( C .m A R =)( D .m A R <)( 难易:248.已知方程组⎪⎩⎪⎨⎧=+-+=-=++0)1(020232132321kx x k x x x x kx x 有非零解,则=k ( ) B .-1 B .-1或4 C .1或4 D .4 难易:3 答案:D49.设三元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1 D .0 难易:2 答案:C50.设A 是n m ⨯矩阵,则方程组b Ax =有唯一解的充要条件是( ) A .n b A R A R ==),()( B .n b A R A R <=),()( C .m b A R A R ==),()( D .m b A R A R <=),()( 难易:2 答案:A51.齐次线性方程组⎩⎨⎧=+=++0 032321x x x x x 的基础解系中解向量个数为( )A .3B .2C .1D .0难易:3 答案:C52.齐次线性方程组021=+++n x x x 的基础解系中解向量个数为( ) A .0 B .1 C . n D . 1-n 难易:353.设3元线性方程组b Ax =,已知2),()(==B A r A r ,其两个解21,ηη满足T T k )1,2,3(,)1,0,1(2121--=--=+ηηηη,k 为任意实数,则方程组的通解( ) A.T T k )1-,2,3()1,0,1(21-+- B. T T k )1,0,1()1,2,3(21-+-- C. T T k )1,2,3()1,0,1(--+- D. T T k )1,0,1()1,2,3(-+-- 难易:4 答案:A54.设3元非齐次线性方程组b Ax =的增广),(b A 经初等行变换可化为⎪⎪⎪⎭⎫ ⎝⎛-+---→1)2)(1(0021101301),(k k k b A若该方程无解,则数=k ( )A .2B .1C . -1D . -2 难易:4 答案:D55.设3元非齐次线性方程组12()2,(1,2,0),(1,3,1)T T Ax b r A a a ===-=满足为其两个解,则其导出组0Ax =的通解为( )A .()T1-1-2-,,=ξ B. ()为任意实数,,k k T,150=ξ C .()为任意实数,,k k T,1-1-2-=ξ D .()T150,,=ξ 难易:4 答案:C56.设A 为4×5矩阵且3)(=A r ,则齐次线性方程组0=Ax 的基础解系中所含向量的个数为( )A .1B .2C .3D .4答案:B57. 设线性方程组1231231232000x x x kx x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k 的值为( )A . -2B . -1C .1D . 2 难易:3 答案:D58. 设有非齐次线性方程组b Ax =,其中A 为n m ⨯矩阵,且1)(r A r =,2),(r b A r =,则下列结论中正确的是( )A. 若m r =1,则0=Ax 有非零解 B .若n r =1,则0=Ax 仅有零解 C. 若m r =2,则b Ax =有无穷多解 D .若n r =2,则b Ax =有唯一解 难易:3 答案:B59. 设非齐次线性方程组⎪⎩⎪⎨⎧=-+=-+=++2324321321321ax x x ax x x x x x 无解,则数=a ( ) A . -2 B . -1 C .1 D . 2 难易:2 答案:B60. 设四元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1D .0难易:2 答案:B第五章 特征值与特征向量61.已知向量T k )0,1,(=α和T ) 1 , 2 , 1(=β正交,则=k ( ) A .2 B .3C .-2D .-3难易:2 答案:C62.设⎪⎪⎪⎭⎫ ⎝⎛--=200710342A ,则E A 2+的一个特征值为( )A .2B .4C .-2D .-1难易:4 答案:B63.设三阶方阵A 的特征值为3,2,2,则=A ( ) A .7 B .-7 C .12 D .14难易:2 答案:C64.设3阶矩阵A 的3个特征向量是1,0.-2,相应的特性向量依次为⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛011101111,,,令⎪⎪⎪⎭⎫ ⎝⎛=110101111P ,则AP P -1为( )A.⎪⎪⎪⎭⎫ ⎝⎛02-1B.⎪⎪⎪⎭⎫ ⎝⎛102-C.⎪⎪⎪⎭⎫ ⎝⎛012-D.⎪⎪⎪⎭⎫ ⎝⎛2-01难易:2 答案:B65.下列矩阵不能对角化的是( )A.⎪⎪⎭⎫ ⎝⎛0221B.⎪⎪⎭⎫ ⎝⎛0221C.⎪⎪⎭⎫ ⎝⎛1022D.⎪⎪⎭⎫⎝⎛0122 难易:4 答案:B66.设A 为可逆矩阵,则与A 有相同特征值的矩阵为( ) A.T A B.2A C.1-A D.*A 难易:3 答案:A67.设3=λ是可逆矩阵A 的一个特征值,则矩阵1-41⎪⎭⎫⎝⎛A 有一个特征值为( )A.34-B. 43-C.43D.34 难易:3 答案:D68. 设矩阵⎪⎪⎪⎭⎫⎝⎛=110101011A ,则A 的特征值为( )A.1,0,1B. 1,1,2C.-1,1,2D.-1,1,1 难易:3 答案:C69.已知三阶矩阵A 的特征值为1,1,-2,则E A A 432-+的值为( ) A.1 B. -2 C.0 D.2 难易:3 答案:C第六章 实二次型70.若()2221231231323,,2322f x x x x x x x x tx x =++-+是正定二次型,则t 满足( )A.2t ≤B.2t 2-<<C.2-t >D.2t 2-t >且< 难易:3 答案:B71.下列各式哪个是二次型( ) A.023212221=+-+x x x x x B.23222--+z y xC. 322121x x x x ++ D.xz xy y x42322+-+难易:3 答案:D72.以下关于正定矩阵叙述正确的是( )A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵 难易:3 答案:C73.设二次型()2322321-,,x x x x x f =则f( )A.正定B. 不定C.负定D.半正定 难易:3答案:B74.二次型()323121321-,,x x x x x x x x x f +=的矩阵是( )A. ⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/1-2/12/1-0B. ⎪⎪⎪⎭⎫ ⎝⎛002/1-2/12/12/1-2/12/1-0C.⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/12/1-2/10 D.⎪⎪⎪⎭⎫⎝⎛02/12/12/102/12/12/10 难易:3 答案:C75.3121232221224-6-2-x x x x x x x f ++=的正定性为( ) A 、正定 B 、半正定 C 、半负定 D 、负定 难易:3 答案:D76.二次型()31212322213212462-,,x x x x x x x x x x f +-+=秩为( )A 、2B 、3C 、1D 、0 难易:2 答案:B77. 对称矩阵⎪⎪⎭⎫ ⎝⎛=0110A 对应的二次型为( )A 、212x x f =B 、2221x x f += C 、2221-x x f = D 、21x x f =难易:2 答案:A78. 已知3阶实对称矩阵A 的特征多项式)5)(2)(1(-+-=-λλλλA E ,则二次型Ax x x x x f T =),,(321的正惯性指数为( )A. 1B. 2C. 3D.0 难易:3 答案:B79.二次型212221212),(x x x x x x f +--=的规范形为( ) A. 2121-y ),(=x x f B. 2121y ),(=x x f C. 222121y y ),(+=x x f D.222121y y ),(-=x x f 难易:3 答案:A80.yz xz xy z y x f 44-2-7-222-+=的矩阵为( )A 、⎪⎪⎪⎭⎫ ⎝⎛7-22-2112-1-1B 、⎪⎪⎪⎭⎫ ⎝⎛7-2-2-2-11-2-1-1C 、⎪⎪⎪⎭⎫ ⎝⎛72-2-2-11-2-1-1D 、⎪⎪⎪⎭⎫⎝⎛7-2-2-2112-1-1难易:2 答案:B。
参考答案一.选择题(本大题共 5 小题,每小题 2 分,共 10 分)1—5 C A B B D二. 填空题(本大题共10 小题,每小题 2 分,共 20 分)6. ___6_____.7. 2111⎛⎫⎪⎝⎭8. 13 9. ()10,25,16- 10. ()2,1,0T- 11. -2 12. 3 13. 60 14. 43,55⎛⎫⎪⎝⎭15. 2 三.计算题(本大题共 7 小题,每小题 9 分,共 63 分)16 . 解一 100100010010011001001001a a a b a b D c a b c d d ++==-++--100010001000aa ba b c d a b c a b c d+==++++++++解二 ()()111410111111101101001bD c a d++-=-⋅⋅-+-⋅---a b c d =+++ 17.解: 2AB -A =B -E2∴AB -B =A -E ()2A-E B =A -E()()12-∴B =A -E A-E()()()1-=A -E A -E A +E()=A+E315052432⎛⎫ ⎪B =- ⎪⎪-⎝⎭()12412112412118.,123012001113233012015234T T --⎛⎫⎛⎫⎪ ⎪A B =→--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解:12412112032110152340103211001113001113---⎛⎫⎛⎫ ⎪ ⎪→----→-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 1003211100321101032110103211001113001113--⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭ 3211=3211113T -⎛⎫ ⎪X -- ⎪ ⎪-⎝⎭则,331=22111113-⎛⎫⎪X - ⎪ ⎪--⎝⎭故.19.解:()12345,,,,αααααT T T T TA =1114311143113210113121355000003156700000--⎛⎫⎛⎫⎪⎪----- ⎪ ⎪=→⎪ ⎪-⎪⎪-⎝⎭⎝⎭∴向量组的秩=2且1α,2α是一个极大无关组(回答1α,3α;1α,4α;1α,5α也可).20.解:对增广矩阵作初等行变换()101211012110121213140113201132=123450226400000112130113200000b ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-----⎪ ⎪ ⎪A A =→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭, 同解方程组为1342342132x x x x x x =---⎧⎨=-+-⎩,34x x ,是自由未知量,特解()*=1200ηT --,,, 导出组同解方程组为13423423x x x x x x =--⎧⎨=-+⎩,34x x ,是自由未知量,基础解系()1=1110ξT--,,,,()2=2301ξT-,,,,通解为*1122=k k ηηξξ++,12k k R ∈,21.解:特征方程()()2200=0212221001a a aλλλλλλλλ-E -A --=---+-=-- 将特征值=1λ代入特征方程有()()=1212210a a E-A ---+-=,则2a =. 故()()()=213=0λλλλE-A ---,特征值为123=2=1=3λλλ,,.1=2λ对应的齐次线性方程组为123000000100100x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为23=0=0x x ⎧⎨⎩,1x 是自由未知量,特征向量1100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1ξ单位化为1100p ⎛⎫⎪= ⎪ ⎪⎝⎭,2=1λ对应的齐次线性方程组为123100001100110x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨-⎩,3x 是自由未知量,特征向量2011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,2ξ单位化为2011p ⎛⎫⎪=-⎪⎪⎭,3=3λ对应的齐次线性方程组为123100001100110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨⎩,3x 是自由未知量,特征向量3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3ξ单位化为3011p ⎛⎫⎪=⎪⎪⎭, 正交矩阵()123100,,00Q p p p ⎛⎫⎪⎪==⎝,213⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,使得1Q Q -A =Λ.011101110-⎛⎫ ⎪A =- ⎪ ⎪⎝⎭22.解:二次型矩阵()()211=11=21=011λλλλλλ--A -E ---+--令,123=2==1λλλ-得,.1211101=22=121011112000λ-⎛⎫⎛⎫⎪ ⎪-A +E -→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当时,132333x x x x x x =-⎧⎪∴=-⎨⎪=⎩ 1111ξ-⎛⎫ ⎪∴=- ⎪ ⎪⎝⎭ 则1111-⎛⎫⎪P =-⎪⎪⎭ 23111111==1=111000111000λλ---⎛⎫⎛⎫ ⎪ ⎪A +E --→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当时,1232233x x x x x x x =-+⎧⎪∴=⎨⎪=⎩ 2110ξ-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭, 3112ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭则2110-⎛⎫⎪P =⎪⎪⎭,3112⎛⎫⎪P =⎪⎪⎭因此=0⎛ ⎪T ⎪ ⎪ ⎪ ⎪⎝⎭,X=TY . 化二次型为2221232f y y y =-++.四.证明题(本大题7分)23.证明:基础解系中向量个数为3.设()()()1123212331232220k k k ααααααααα++++++++=即()()()1231123212332220k k k k k k k k k ααα++++++++=123,,ααα是基础解系,故线性无关,因此123123123202020k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩,系数行列式21112140112A ==≠,则齐次线性方程组只有零解, 故1230k k k ===.因此1232ααα++,1232ααα++,1232ααα++线性无关. 又()()()1231231231231231232=2=02=2=02=2=0ααααααααααααααααααA ++A +A +A A ++A +A +A A ++A +A +A 则1232ααα++,1232ααα++,1232ααα++也是该方程组的基础解系.说明:1.试卷题目均要求为自学考试真题;2.命题参照自学考试试卷的题型、题量;3.根据课程性质不同,可以更换或调整题型;4.试卷格式统一为:宋体 五号 单倍行距;选择题选项尽量排在一行;其他题型留出适当的答题区域。
2011年考研数学一真题2011年考研数学一真题2011年的考研数学一真题,是考生们备战考研的重要参考资料之一。
这套试题共有12道选择题和8道填空题,涵盖了线性代数、概率统计、数学分析等多个数学领域。
本文将对其中几道题目进行分析和解答,以帮助考生更好地理解和掌握考点。
首先,我们来看一道线性代数的选择题。
题目如下:1. 设A为n阶实对称矩阵,且满足A²=A,则A的特征值的取值范围是()A. (-∞, 0)B. {0}C. {0, 1}D. {0, 1, 2}这道题考察了对实对称矩阵的性质和特征值的理解。
根据实对称矩阵的性质,它一定可以对角化,即存在一个正交矩阵P,使得P⁻¹AP为对角矩阵。
由于A²=A,我们可以得到A(A-I)=0,其中I为单位矩阵。
因此,A的特征值只能是0和1。
所以,选项C是正确答案。
接下来,我们来看一道概率统计的选择题。
题目如下:6. 设随机变量X服从参数为λ的指数分布,即其概率密度函数为f(x)=λe^(-λx),x>0。
则E(X)和Var(X)分别为()A. 1/λ, 1/λ²B. 1/λ, 1/λC. 1/λ², 1/λD. 1/λ², 1/λ²这道题考察了指数分布的期望和方差的计算。
指数分布的期望为1/λ,方差为1/λ²。
这是由指数分布的概率密度函数的性质得出的。
所以,选项A是正确答案。
最后,我们来看一道数学分析的填空题。
题目如下:16. 设函数f(x)=x³-3x²+2x-1,则f(x)在区间[0,2]上的最小值为____。
这道题考察了函数的最值问题。
我们可以通过求导数来找到极值点。
对f(x)求导得到f'(x)=3x²-6x+2。
令f'(x)=0,解得x=1±√3/3。
将这两个解代入f(x)可以得到对应的函数值,分别为f(1-√3/3)=-2√3/9-4/3和f(1+√3/3)=2√3/9-4/3。
中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。
二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。
三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。
四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。
五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。
六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。
全国2012年4月高等教育自学考试线性代数(经管类)试题 课程代码:04184说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r (A)表示矩阵A 的秩.一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( ) A.-12B.-6C.6D.122.设矩阵A =120120003⎛⎫⎪⎪ ⎪⎝⎭,则A *中位于第1行第2列的元素是( )A.-6B.-3C.3D.63.设A 为3阶矩阵,且|A |=3,则1()A --=( ) A.-3B.13-C.13D.34.已知4⨯3矩阵A 的列向量组线性无关,则A T 的秩等于( ) A.1B.2C.3D.45.设A 为3阶矩阵,P =100210001⎛⎫ ⎪⎪ ⎪⎝⎭,则用P 左乘A ,相当于将A ( )A.第1行的2倍加到第2行B.第1列的2倍加到第2列C.第2行的2倍加到第1行D.第2列的2倍加到第1列 6.齐次线性方程组123234230+= 0x x x x x x ++=⎧⎨--⎩的基础解系所含解向量的个数为( )A.1B.2C.3D.47.设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为( ) A.1212cηηη-+ B.1212c ηηη-+ C.1212cηηη++ D.1212c ηηη++8.设A 是n 阶方阵,且|5A +3E |=0,则A 必有一个特征值为( )A.53-B.35-C.35D.539.若矩阵A 与对角矩阵D =100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则A 3=( )A.EB.DC.AD.-E10.二次型f 123(,,)x x x =22212332x x x +-是( ) A.正定的 B.负定的 C.半正定的 D.不定的二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
全国2011年10月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵A 的行列式为2,则12A -=( ) A.-1 B.14- C.14D.1 2.设212()222122,323235x x x f x x x x x x x ---=------则方程()0f x =的根的个数为( ) A.0B.1C.2D.3 3.设A 为n 阶方阵,将A 的第1列与第2列交换得到方阵B ,若,≠A B 则必有( ) A.0=A B. 0+≠A B C. 0A ≠ D. 0-≠A B4.设A ,B 是任意的n 阶方阵,下列命题中正确的是( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A BC.()()()()-+=+-A E A E A E A ED.222()=AB A B5.设111213212223313233,a b a b a b a b a b a b a b a b a b ⎛⎫⎪= ⎪ ⎪⎝⎭A 其中0,0,1,2,3,i i a b i ≠≠=则矩阵A的秩为( ) A.0 B.1 C.2D.3 6.设6阶方阵A 的秩为4,则A 的伴随矩阵A *的秩为( )A.0 B.2 C.3 D.47.设向量α=(1,-2,3)与β=(2,k ,6)正交,则数k 为( )A.-10 B.-4 C.3 D.108.已知线性方程组1231231243224x x x x ax x x ax ++=⎧⎪++=⎨⎪+=⎩无解,则数a =( ) A.12- B.0 C.12 D.19.设3阶方阵A 的特征多项式为2(2)(3),λλλ-=++E A 则=A ( ) A.-18 B.-6 C.6 D.1810.若3阶实对称矩阵()ij a =A 是正定矩阵,则A 的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3二、填空题(本大题共10小题,每小题2分,共20分)11.设行列式304222,532D =-其第3行各元素的代数余子式之和为__________.12.设,,a a b b a a b b -⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭A B 则=AB __________.13.设A 是4×3矩阵且103()2,020,103r ⎛⎫⎪== ⎪ ⎪-⎝⎭A B 则()r =AB __________.14.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr 可由向量组β1,β2,…,βs 线性表示,则r 与s 的关系为__________.16.设方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,且数0,λ<则λ=__________.17.设4元线性方程组x =A b 的三个解α1,α2,α3,已知T 1(1,2,3,4),=αT 23(3,5,7,9),r() 3.+==A αα则方程组的通解是__________.18.设3阶方阵A 的秩为2,且250,+=A A 则A 的全部特征值为__________. 19.设矩阵21100413a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 有一个特征值2,λ=对应的特征向量为12,2x ⎛⎫ ⎪= ⎪ ⎪⎝⎭则数a =__________. 20.设实二次型T 123(,,),f x x x x x =A 已知A 的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵2323(,2,3),(,,),αγγβγγ==A B 其中23,,,αβγγ均为3维列向量,且18, 2.==A B 求.-A B22.解矩阵方程11101110221011.1104321--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭X23.设向量组α1=(1,1,1,3)T ,α2=(-1,-3,5,1)T ,α3=(3,2,-1,p+2)T ,α4=(3,2,-1,p+2)T 问p 为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩,(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A 的特征值为11λ=及21,3λ=-方阵2.=B A (1)求B 的特征值; (2)求B 的行列式.26.用配方法化二次型2221231231223(,,)22412f x x x x x x x x x x =---+为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A 是3阶反对称矩阵,证明0.=A。
2011年1月联考数学真题(共25题)一、问题求解1.已知船在静水中的速度为28km/h,水流的速度为2km/h ,则此船在相距78km 的两地间往返一次所需时间是()。
A .5.9h B.5.6h C.5.4h D.4.4h E.4h 答案:B 解析:t =7828+2+782828−−2=5.62.若实数a ,b ,c ,满足a −3+3b +5+(5(5c c −4)2=0,则a bc =()。
A .-4 B.-53C.-43D.45E.3 答案:A 解析:a −3+3b +5+(5(5c c −4)2=0,a −3=0,3b +5=0,5c −4=0,a =3,b =−53,c =45,a bc =−43.某年级60名学生中,有30人参加合唱团,45人参加运动队,其中参加合唱团而未参加运动队的有8人,则参加运动队而未参加合唱团的有()A .15人 B.22人C.23人D.30人E.37人答案:C 解析:4.现有一个半径为R 的球体,的球体,拟用刨床将其加工成正方体,拟用刨床将其加工成正方体,拟用刨床将其加工成正方体,则能加工成的最大正方体的则能加工成的最大正方体的体积是()。
A .83R 3B.839R 3C.43R 3D.13R 3E.39R 3答案:B 解析:本题既然求最大内接正方形,可知球的直径即为正方体的对角线,由此可知:2R =3a ,a =23R然后V =a 3=(23R)3=83R 395.2007年,某市的全年研究与试验发展(R&D )经费支出300亿元,比2006年增长20%,该市的GDP 为10000亿元,比2006年增长10%,2006年,该市的R&D 经费支出占当年GDP的()。
A .1.75% B.2% C.2.5% D.2.75% E.3% 答案:D 解析:R&D ,1.2x=300,所以R&D 经费为250 GDP ,1.1y=10000,所以GDP 经费为100001.1R&R&D DGDP =250100001.1=2.75% 6.现从5名管理专业,4名经济专业和1名财会专业的学生中随机派出一个3人小组,则该小组中3个专业各有1名学生的概率为(名学生的概率为( )。
1【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。
A、B、C、D、您的答案:D参考答案:D纠错查看解析2【单选题】已知n阶可逆矩阵A、B、C满足ABC=E,则C=A、B-1A-1B、A-1B-1C、BAD、AB您的答案:A参考答案:A纠错查看解析3【单选题】多项式的常数项是().A、-14B、-7C、7D、14您的答案:D参考答案:D纠错查看解析4【单选题】设向量组下列向量中可以表为线性组合的是().A、B、C、D、您的答案:A参考答案:A纠错查看解析5【单选题】设是n阶可逆矩阵,下列等式中正确的是()A、B、C、D、您的答案:D参考答案:D纠错查看解析6【单选题】设A为二阶方阵,B为三阶方阵,且行列式|A|=2,|B|=-1,则行列式|A||B|=A、8B、-8C、2D、-2您的答案:B参考答案:B纠错查看解析7【单选题】设向量组可由向量组线性表出,下列结论中正确的是()。
A、若,则线性相关B、若线性无关,则C、若,则线性相关D、若线性无关,则您的答案:A参考答案:A纠错查看解析8【单选题】设行列式,则A 、B 、C 、D 、您的答案:C 参考答案:C纠错 查看解析9【单选题】若四阶实对称矩阵A 是正定矩阵,则A 的正惯性指数为A 、1B 、2C 、3D 、4您的答案:D 参考答案:D纠错 查看解析10【单选题】若向量级α1=(1,t+1,0),α2=(1,2,0),α3=(0,0,t-1)线性无关,则实数tA、t≠0B、t≠1C、t≠2D、t≠3您的答案:B参考答案:B纠错查看解析11【单选题】已知2阶行列式则A、﹣2B、﹣1C、1D、2您的答案:B参考答案:B纠错查看解析12【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:B参考答案:B纠错查看解析13【单选题】设矩阵,则A、B、C、D、您的答案:B参考答案:B纠错查看解析14【单选题】设阶矩阵满足,则()。
考研真题(线性代数)2006数(一)(5)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(11)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关;(12) 设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )(T T PAP C D APP C C ==)()(20 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。
21 设3阶实对称矩阵A 的各行元素之和均为3,向量()T1211--=α,()T 1102-=α是线性方程组的两个解,(1)求A 的特征值;(2) 求正交矩阵Λ=ΛAQ Q Q T 使得和对角矩阵。
(6)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(13)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关; (14)设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )( T T PAP C D AP P C C ==)()(22 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
2011年1月高等教育自学考试全国统一命题考试
线性代数(经管类)试题
课程代码:04184
说明:本卷中,A -1
表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的
内积,E 表示单位矩阵,|A |表示方阵A 的行列式.
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式333231232221
131211
a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12
B.24
C.36
D.48
2.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )
A.A -1CB -1
B.CA -1B -1
C.B -1A -1C
D.CB -1A -1 3.已知A 2+A -E =0,则矩阵A -1=( )
A.A -E
B.-A -E
C.A +E
D.-A +E 4.设54321,,,,ααααα是四维向量,则( )
A.54321,,,,ααααα一定线性无关
B.54321,,,,ααααα一定线性相关
C.5α一定可以由4321,,,αααα线性表示
D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( )
A.A =0
B.A =E
C.r (A )=n
D.0<r (A )<(n )
6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( )
A.Ax =0只有零解
B.Ax =0的基础解系含r (A )个解向量
C.Ax =0的基础解系含n -r (A )个解向量
D.Ax =0没有解
7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( )
A.21ηη+是Ax =b 的解
B.21ηη-是Ax =b 的解
C.2123ηη-是Ax =b 的解
D.2132ηη-是Ax =b 的解
8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )
A.20
B.24
C.28
D.30 9.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.2
1 B.1 C.23 D.2
10.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( )
A.1
B.2
C.3
D.4
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式
1221---k k =0,则k =_________________________. 12.设A =⎥⎦
⎤⎢⎣⎡1101,k 为正整数,则A k =_________________________. 13.设2阶可逆矩阵A 的逆矩阵A -1=⎥⎦
⎤⎢⎣⎡4321,则矩阵A =_________________________. 14.设向量α=(6,-2,0,4),β=(-3,1,5,7),向量γ满足βγα32=+,则γ=_________________________.
15.设A 是m ×n 矩阵,A x =0,只有零解,则r (A )=_________________________.
16.设21,αα是齐次线性方程组A x =0的两个解,则A (3217αα+)=________.
17.实数向量空间V ={(x 1,x 2,x 3)|x 1-x 2+x 3=0}的维数是______________________.
18.设方阵A 有一个特征值为0,则|A 3|=________________________.
19.设向量=1α(-1,1,-3),=2α(2,-1,λ)正交,则λ=__________________.
20.设f (x 1,x 2,x 3)=31212322212224x x x tx x x x ++++是正定二次型,则t 满足_________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算行列式b
a c c c
b
c a b b a
a c
b a ------222222
22.设矩阵A =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---16101512211λλ,对参数λ讨论矩阵A 的秩.
23.求解矩阵方程⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100152131X =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--315241
24.求向量组:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=21211α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=56522α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11133α,⎥⎥⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡---=37214α的一个极大线性无关组, 并将其余向量通过该极大线性无关组表示出来.
25.求齐次线性方程组⎪⎩⎪⎨⎧=++--=-++-=++-032042305324321
43214321x x x x x x x x x x x x 的一个基础解系及其通解.
26.求矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---3142281232的特征值和特征向量.
四、证明题(本大题共1小题,6分)
27.设向量1α,2α,….,k α线性无关,1<j ≤k .
证明:1α+j α,2α,…,k α线性无关.。