2012高三数学一轮复习单元练习题:解析几何
- 格式:doc
- 大小:2.98 MB
- 文档页数:9
第8章 第6节一、选择题1.(2010·湖北黄冈)若抛物线y2=2px 的焦点与椭圆x26+y22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4D .4[答案] D[解析] ∴右焦点2.已知点则这个圆与A .相交 C .相离 [答案] B[解析] B ;由点M 作准线l则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2 =DM 2=MF 2,∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y2=2px(p>0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A(x1,y1),B(x2,y2),则线段AB 的中点(x1+x22,y1+y22),∴y1+y22=2,∵A 、B 在抛物线y2=2px 上,∴⎩⎪⎨⎪⎧y12=2px1 ①y22=2px2 ② ①-②得y12-y22=2p(x1-x2),=y1-y2=2p =p ,∵4y2=C [[(x ,y2=2px5P 到该抛物线准线的距离之和的最小值为C. 5D.92[答案] A[解析] 记抛物线y2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A.6.已知抛物线C :y2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF(其中O 为坐标原点)的面积之比为3 1,则点A 的坐标为( ) A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF|=1,由抛物线定义得,|AF|=|AM|,∵△AMF 与△AOF(其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =∴|AM|=3解得y0=∴点A 7.(2010·2反射后通过抛物线A .y2=-C .y2=4xD .y2=-4x[答案] D[解析] 设过P(-3,1),方向向量为a =(2,-5)的直线上任一点Q(x ,y),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y)+13=0,即5x -2y +5=0,此直线过抛物线y2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D. 8.已知mn≠0,则方程是mx2+ny2=1与mx +ny2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn>0,则mx2+ny2=1应为椭圆,y2=-mn x 应开口向左,故排除C 、D ;∴mn<0,此时抛物线y2=-mn x 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y2=4x 上的不同两点,F 为抛物线C 的焦点,若FA →=-A .±23 C .±34 [答案] D[解析] ∵-|BB1|=|AF|-∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x2=12y ,过点A(0,-4)和点B(t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ C .(-∞,-22)∪(22,+∞)D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得, 2x2-4x t +4=0,∴Δ=16t2-32<0, ∴t>22或[点评] 相切的直线与抛物线切点为M(x0,∵过A ∴x0=±2令y =0得二、填空题11.已知点P 的坐标是[答案] (0,0) [解析] 设P⎝⎛⎭⎫-y24,y ,则AP→=⎝⎛⎭⎫-y24-2,y ,BP →=⎝⎛⎭⎫-y24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y24-4+y2=y416+52y2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y2=2px(p>0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|FA|=3,则抛物线的方程是________.[答案] y2=3x[解析] 设抛物线准线为l ,作AA1⊥l ,BB1⊥l ,FQ ⊥l ,垂足分别为A1、B1、Q ,作BM ⊥AA1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF|=t ,则|NF|=t2,|MA|=t +32,∵3x.(理)(2010·y 2p>0)点A 、B 、C[答案] y2[解析] =|BF|,∵|BC|=|BC |∴p =12|CF|解法2,又|AF|=3,从而点评:还可以由|BC|=2|BF|得出∠BCB1=30°,从而求得A 点的横坐标为|OF|+12|AF|=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32.13.已知F 为抛物线C :y2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于________. [答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A1,B1,则由条件知,⎩⎪⎨⎪⎧|AA1|+|BB1|=|AB|,|AA1|-|BB1|=22|AB|,解得⎩⎪⎨⎪⎧|AA1|=2+24|AB||BB1|=2-24|AB|,∴|AA1||BB1|=3+22,即|FA||FB|=3+2 2.14.(文)若点(3,1)是抛物线y2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________. [答案] 2[解析] 则⎩⎪⎨⎪⎧y12=y22=∵y1+y2=(理)(2010·衡水市模考A 、B [答案] 8[解析] 过=|AA1|+|BB1|=三、解答题15.(文)若椭圆C1:x24+y2b2=1(0<b<2)的离心率等于32,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上. (1)求抛物线C2的方程;(2)若过M(-1,0)的直线l 与抛物线C2交于E 、F 两点,又过E 、F 作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b2, 由离心率e =c a =4-b22=32得,b2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x2=4y.(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k(x +1),E(x1,y1),F(x2,y2),∵y =14x2,∴y ′=12x ,∴切线l1,当l1⊥l2由⎩⎪⎨⎪⎧y =k x x2=4y 由Δ=(-4×(又x1·x2∴直线l (理)在△(AB +C 在x 轴上移动.(1)求B (2)过点F ⎝⎛0,求直线l的方程.[解析] (1)设B(x ,y),C(x0,0),M(0,y0),x0≠0, ∵CA →⊥CB →,∴∠ACB =π2, ∴2x0·y0-x0=-1,于是x02=2y0①M 在y 轴上且AM →=12(AB →+AC →), 所以M 是BC 的中点,可得⎩⎪⎨⎪⎧x0+x2=0y +02=y0,∴⎩⎪⎨⎪⎧x0=-x ②y0=y2 ③ 把②③代入①,得y =x2(x≠0),所以,点B 的轨迹E 的方程为y =x2(x≠0). (2)点F⎝⎛0y =kx -14,由⎩⎪⎨⎪⎧y =kx y =x2Δ=k2-∵FH →=12HG →∴x1=12x2∵x1+x216.(文) 1. (1)求点P (2)设过点AB 为直径的圆恒过原点.[解析] (1)由题意得:x -12+y2-x =1,化简得:y2=4x (x≥0). ∴点P 的轨迹方程为y2=4x(x≥0).(2)设直线AB 为y =k(x -m),A(x1,y1),B(x2,y2),由⎩⎪⎨⎪⎧y =k x -m y2=4x,得ky2-4y -4km =0,∴y1+y2=4k ,y1·y2=-4m.∴x1·x2=m2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x1·x2+y1·y2=0.即m2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F(1,0)的距离比到y 轴的距离大1,即点P 到定点F(1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y2=4x.(理)已知抛物线y2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →(2)若线段[解析] (1)4)x +4=0①设A(x1y1y2=(kx1∵OA →·OB →=4,∴1± 2. ∴直线AB (2)设线段02=2k , ∴线段AB y -2k =-1k ⎝⎛令y =0,得n =2+2k +2k2=2k2+2k +2=2⎝⎛⎭⎫1k +122+32. 又由k>-12且k≠0得1k <-2,或1k >0,∴n>2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞).17.(文)(2010·全国Ⅰ)已知抛物线C :y2=4x 的焦点为F ,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (1)证明:点F 在直线BD 上;(2)设FA →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A(x1,y1),B(x2,y2),D(x1,-y1),l 的方程为x =my -1(m≠0)(1)将x =my -1(m≠0)代入y2=4x 并整理得y2-4my +4=0,从而y1+y2=4m ,y1y2=4①直线BD 的方程为y -y2=y2+y1x2-x1(x -x2) 即y -y2=4y2-y1⎝⎛⎭⎫x -y224 令y =0,得x =y1y24=1,所以点F(1,0)在直线BD 上-(x1+x2)BD 的距离由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23,所以圆M 的方程为⎝⎛⎭⎫x -192+y2=49. (理)(2010·揭阳市模考)已知点C(1,0),点A 、B 是⊙O :x2+y2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP|=|AP|=|BP|=12|AB|,由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9,设点P(x ,y),有(x2+y2)+[(x -1)2+y2]=9,化简得,x2-x +y2=4.法二:设A(x1,y1),B(x2,y2),P(x ,y),根据题意知,x12+y12=9,x22+y22=9,2x =x1+x2,2y =y1+y2,∴4x2=x12+2x1x2+x22,4y2=y12+2y1y2+y22故4x2+4y2=(x12+y12)+(2x1x2+2y1y2)+(x22+y22)=18+2(x1x2+y1y2)①又∵AC →·BC →=0,∴(1-x1,-y1)·(1-x2,-y2)=0∴(1-x1)×(1-x2)+y1y2=0,故x1x2+y1y2=(x1+x2)-1=2x -1,代入①式得,4x2+4y2=18+2(2x -1),化简得,x2-x +y2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中p 2=1,∴p =2,故抛物线方程为y2=4x ,由方程组⎩⎪⎨⎪⎧y2=4x x2-x +y2=4得,x2+3x -4=0, 解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
第4节双曲线课时训练练题感提知能【选题明细表】A组一、选择题1.设P是双曲线-=1上一点,F1,F2分别是双曲线左右两个焦点,若|PF1|=9,则|PF2|等于( B )(A)1 (B)17(C)1或17 (D)以上答案均不对解析:由双曲线定义||PF1|-|PF2||=8,又|PF1|=9,∴|PF2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c-a=6-4=2>1,∴|PF2|=17.故选B.2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C2:-=1的( D )(A)实轴长相等(B)虚轴长相等(C)离心率相等(D)焦距相等解析:双曲线Cc1==1,双曲线C2的半焦距=1,故选D.c2=3.(2012年高考湖南卷)已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由焦距为10,知2c=10,c=5.将P(2,1)代入y=x得a=2b.a2+b2=c2,5b2=25,b2=5,a2=4b2=20,所以方程为-=1.故选A.4.已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2等于( C )(A)(B)(C)(D)解析:∵c2=2+2=4,∴c=2,2c=|F1F2|=4,由题可知|PF 1|-|PF2|=2a=2,|PF1|=2|PF2|,∴|PF 2|=2,|PF1|=4,由余弦定理可知cos∠F1PF2==.故选C.5.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:在椭圆C1中,因为e=,2a=26,即a=13,所以椭圆的焦距2c=10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C2为双曲线,根据双曲线的定义可知,双曲线C2中的2a2=8,焦距与椭圆的焦距相同,即2c2=10,可知b2=3,所以双曲线的标准方程为-=1.故选A.二、填空题6.(2013年高考辽宁卷)已知F为双曲线C:-=1的左焦点,P,Q为C 上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF 的周长为.解析:由题知,双曲线中a=3,b=4,c=5,则|PQ|=16,又因为|PF|-|PA|=6,|QF|-|QA|=6,所以|PF|+|QF|-|PQ|=12,|PF|+|QF|=28,则△PQF的周长为44.答案:447.已知双曲线C:-=1(a>0,b>0)的离心率e=2,且它的一个顶点到较近焦点的距离为1,则双曲线C的方程为.解析:双曲线中,顶点与较近焦点距离为c-a=1,又e==2,两式联立得a=1,c=2,∴b2=c2-a2=4-1=3,∴方程为x2-=1.答案:x2-=18.(2013韶关模拟)设点P是双曲线-=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan ∠PF2F1=3,则双曲线的离心率为.解析:依题意得PF1⊥PF2,tan ∠PF2F1==3,|PF1|=3|PF2|,设|PF1|=k,则|PF2|=3k,|PF1|2+|PF2|2=10k2=|F1F2|2=4c2,又∵2a=|PF1|-|PF2|=2|PF2|=2k,即a=k,∴e==,即双曲线的离心率为.答案:9.(2013年高考湖南卷)设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.解析:设点P在双曲线右支上,由题意,在Rt△F1PF2中,|F1F2|=2c,∠PF1F2=30°,得|PF 2|=c,|PF1|=c,|PF 1|-|PF2|=2a,(-1)c=2a,e===+1.答案:+110.设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为.解析:如图,由题意得|PF2|=|F1F2|=2c,|F2M|=2a.在△PF2M中,|PF2|2=|F2M|2+|PM|2,而|PM|=|PF1|,又∵|PF1|-|PF2|=2a,∴|PF1|=2a+2c,即|PM|=a+c.∴|PF2|2=(2c)2=(2a)2+(a+c)2.又c2=a2+b2,∴=,渐近线方程为y=±x,即4x±3y=0.答案:4x±3y=0三、解答题11.已知双曲线x2-=1,过点P(1,1)能否作一条直线l,与双曲线交于A、B两点,且点P是线段AB的中点?解:法一设点A(x1,y1),B(x2,y2)在双曲线上,且线段AB的中点为(x0,y0),若直线l的斜率不存在,显然不符合题意.设经过点P的直线l的方程为y-1=k(x-1),即y=kx+1-k.由得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x0==.由题意,得=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB 的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得-=1,-=1,两式相减得(x1+x2)(x1-x2)-=0,即2-=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,联立得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2013南京质检)中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F 1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.解:(1)由已知c=,设椭圆长、短半轴长分别为a、b,双曲线实半轴、虚半轴长分别为m、n,则解得a=7,m=3.∴b=6,n=2.∴椭圆方程为+=1,双曲线方程为-=1.(2)不妨设F1、F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,∴|PF1|=10,|PF2|=4.|=2,又|F∴cos∠F1PF2===.13.已知双曲线-=1(b>a>0),O为坐标原点,离心率e=2,点M(,)在双曲线上.(1)求双曲线的方程;(2)若直线l与双曲线交于P,Q两点,且²=0.求+的值.解:(1)∵e=2,∴c=2a,b2=c2-a2=3a2,双曲线方程为-=1,即3x2-y2=3a2.∵点M(,)在双曲线上,∴15-3=3a2.∴a2=4.∴所求双曲线的方程为-=1.(2)设直线OP的方程为y=kx(k≠0),联立-=1,得∴|OP|2=x2+y2=.则OQ的方程为y=-x,有|OQ|2==,∴+===.B组14.已知点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R 在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是( C )(A)6 (B)8 (C)10 (D)12解析:依题意知P在曲线C1的左支上时|PQ|-|PR|取到最大值,|PQ|的最大值为|PC2|+1,|PR|的最小值为|PC3|-1,则|PQ|-|PR|的最大值是|PC2|+1-(|PC3|-1)=|PC2|-|PC3|+2=8+2=10.故选C.15.从双曲线-=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( B )(A)|MO|-|MT|>b-a (B) |MO|-|MT|=b-a(C)|MO|-|MT|<b-a (D)不确定解析:如图所示,取双曲线的右焦点为F',∵M为PF的中点,∴|MF|=|PF|.Rt△OFT中,|OT|=a,|OF|=c,∴|FT|=b,连接OM,PF',则|OM|=|PF'|,∴|MO|-|MT|=|PF'|-(|MF|-|FT|)=|PF'|-|PF|+b=-a+b=b-a.故选B.16.设点P在双曲线-=1(a,b>0)的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是. 解析:由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以4|PF2|-|PF2|=2a,所以|PF2|=a,|PF1|=a,所以整理得a≥c,所以≤,即e≤,又e>1,所以1<e≤. 答案:1<e≤。
2010-2011学年度第一学期江苏省南通市六所省重点高中联考试卷 数 学 Ⅰ试 题 2011.13、方程 x 2m + y 24-m = 1 的曲线是焦点在y 轴上的双曲线,则m 的取值范围是 ▲答案:0<m9、已知椭圆22221(0)y x a b a b+=>>的中心为O ,右焦点为F 、右顶点为A ,右准线与x 轴的交点为H ,则||||FA OH 的最大值为 ▲ 13、设M 1(0,0),M 2(1,0),以M 1为圆心,| M 1 M 2 | 为半径作圆交x 轴于点M 3 (不同于M 2),记作⊙M 1;以M 2为圆心,| M 2 M 3 | 为半径作圆交x 轴于点M 4 (不同于M 3),记作⊙M 2;……; 以M n 为圆心,| M n M n +1 | 为半径作圆交x 轴于点M n +2 (不同于M n +1),记作⊙M n ;…… 当n ∈N *时,过原点作倾斜角为30°的直线与⊙M n 交于A n ,B n .考察下列论断: 当n =1时,| A 1B 1 |=2;当n =2时,| A 2B 2 |15 当n =3时,| A 3B 3 |=23354213⨯+-当n =4时,| A 4B 4 |=34354213⨯--……由以上论断推测一个一般的结论:对于n ∈N *,| A n B n |= ▲17、(本题满分15分)已知圆:C 22(2)4x y ++=,相互垂直的两条直线1l 、2l 都过点(,0)A a . (Ⅰ)当2a =时,若圆心为(1,)M m 的圆和圆C 外切且与直线1l 、2l 都相切,求圆M 的方程; (Ⅱ)当1a =-时,求1l 、2l 被圆C 所截得弦长之和的最大值,并求此时直线1l 的方程. 解:(Ⅰ)设圆M 的半径为r ,易知圆心),1(m M 到点)0,2(A 的距离为r 2,∴⎪⎩⎪⎨⎧+=++=+-222222)2()21(2)21(r m r m ……………………………………………………………4分 解得2=r 且7±=m ∴圆M 的方程为4)7()1(22=±+-y x …………………7分(Ⅱ)当1-=a 时,设圆C 的圆心为C ,1l 、2l 被圆C 所截得弦的中点分别为F E ,,弦长分别为21,d d ,因为四边形AECF 是矩形,所以1222==+AC CF CE ,即124242221=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-d d ,化简得 …………………………10分 从而1422222121=+⋅≤+d d d d ,等号成立1421==⇔d d ,1421==∴d d 时,142)(max 21=+∴d d ,即1l 、2l 被圆C 所截得弦长之和的最大值为142 …………………………………13分 此时141=d ,显然直线1l 的斜率存在,设直线1l 的方程为:)1(+=x k y ,则 22)214(41-=+k k ,1±=∴k , ∴直线1l 的方程为:01=+-y x 或01=++y x …………………………15分江苏省2010高考数学模拟题(压题卷)8.已知F 1、F 2分别是椭圆12222=+by a x ,)0(>>b a 的左、右焦点,以原点O 为圆心,OF 1为半径的圆与椭圆在y 轴左侧交于A 、B 两点,若△F 2AB 是等边三角形,则椭圆的离心率等于13-.三、解析几何题1.已知过点(1,0)A -的动直线l 与圆22:(3)4C x y +-=相交于,P Q 两点,M 是PQ 中点,l 与直线:360m x y ++=相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ; (2)当23PQ =l 的方程;(3)探索AM AN ∙是否与直线l 的倾斜角有关?若无关,请求出其值;若有关,请说明理由.解:(1)l 与m 垂直,且11,3,3m k k =-∴=故直线l 方程为3(1),y x =+即330.x y -+=圆心坐标(0,3)满足直线l 方程,∴当l 与m 垂直时,l 必过圆心C .(2)①当直线l 与x 轴垂直时,易知1x =-符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为(1),y k x =+即0kx y k -+=,23,431PQ CM =∴=-= ,则由2311k CM k -+==+,得43k =, ∴直线:4340.l x y -+=故直线l 的方程为1x =-或4340.x y -+=(3),().CM MN AM AN AC CM AN AC AN CM AN AC AN ⊥∴⋅=+⋅=⋅+⋅=⋅①当l 与x 轴垂直时,易得5(1,),3N -- 则5(0,),3AN =- 又(1,3)AC = ,5AM AN AC AN ∴⋅=⋅=-.②当l 的斜率存在时,设直线l 的方程为(1),y k x =+则由(1),360,y k x x y =+⎧⎨++=⎩得365(,),1313k k N k k ---++ 则55(,).1313kAN k k --=++ 515 5.1313k AM AN AC AN k k--∴⋅=⋅=+=-++综上所述,AM AN ⋅ 与直线l 的斜率无关,且5AM AN ⋅=-.2.已知A 、B 是椭圆2214x y +=的左、右顶点,直线(22)x t t =-<<交椭圆于M 、N 两点,经过A 、M 、N 的圆的圆心为1C ,经过B 、M 、N 的圆的圆心为2C . (1)求证12C C 为定值;(2)求圆1C 与圆2C 的面积之和的取值范围. 解:(1)由题设A (-2,0),B (2,0),由2214x t x y =⎧⎪⎨+=⎪⎩,,解出22(1),(,1)44t t M t N t ---. 设1122(,0),(,0)C x C x ,由22112()14t x t x +=-+-解出13(2)8t x -=.同理,2222()14tx x t -=-+-23(2)8t x += ,122132C C x x =-=(定值).(2)两圆半径分别为131028t x ++=及210328tx --=, 两圆面积和222(310)(103)(9100)6432S t t t ππ⎡⎤=++-=+⎣⎦, 所以S 的取值范围是257,84ππ⎡⎤⎢⎥⎣⎦.3.已知圆221:(1)16F x y ++=,定点2(1,0),F 动圆过点2F ,且与圆1F 相内切. (1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且1ABF ∆3, 求直线l 的方程. 解:(1)设圆M 的半径为r ,因为圆M 与圆1F 内切,所以2MF r =, 所以124MF MF =-,即124MF MF +=. 所以点M 的轨迹C 是以12,F F 为焦点的椭圆,设椭圆方程为22221(0)x y a b a b+=>>,其中24,1a c ==,所以2,3a b ==.所以曲线C 的方程22143x y +=. (2)因为直线l 过椭圆的中心,由椭圆的对称性可知,112ABF AOF S S ∆∆=. 因为132ABF S ∆=,所以134AOF S ∆=.不妨设点11(,)A x y 在x 轴上方,则1111324AOF S OF y ∆=⋅⋅=11332y x ==± 即:A 点的坐标为3(3,)或3(3,-, 所以直线l 的斜率为12±,故所求直线方程为20x y ±=.4.已知圆C 的圆心在抛物线22(0)x py p =>上运动,且圆C 过(0,)A p 点,若MN 为圆C 在x轴上截得的弦. (1)求弦长MN ; (2)设12,AM l AN l ==,求1221l l l l +的取值范围. 解:(1)设00(,)C x y ,则圆C 的方程为:22220000()()()x x y y x y p -+-=+-.[来源:学科网]令0y =,并由2002x py =,得2220020x x x x p -+-=,解得1020,,x x p x x p =-=+从而212MN x x p =-=, (2) 设MAN θ∠=,因为21211sin 22MAN S l l OA MN p θ∆=⋅⋅=⋅=,所以2122sin p l l θ=,因为l 12+l 22-2 l 1 l 2cos θ=4p 2 ,所以l 12+l 22=)tan 11(4cos sin 44222θθθ+=+p p p . 所以22212122211214(1)sin tan 2(sin cos )2245)2p l l l l l l l l pθθθθθ+++===+=+︒. 因为0090θ<≤,所以当且仅当45θ=︒时,原式有最大值2290θ=︒时,原式有最小值为2,从而1221l l l l +的取值范围为[2,22]. 2011届江苏省苏州市迎二模六校联考数学试题5.若双曲线经过点(3,2),且渐近线方程是y=±13x ,则这条双曲线的方程是答案:2219x y -= 10.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为12. 若过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是答案:3312a a <-<<或18.(本小题满分16分)已知圆C 通过不同的三点P (m ,0)、Q (2,0)、R (0,1),且圆C 在点P 处的切线的斜率为1.(1)试求圆C 的方程;(2)若点A 、B 是圆C 上不同的两点,且满足→CP •→CA=→CP •→CB ,①试求直线AB 的斜率;②②若原点O 在以AB 为直径的圆的内部,试求直线AB 在y 轴上的截距的范围。
高三数学单元练习题:解析几何第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .4 9.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P 的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
2012年高三数学大题复习题组-解析几何1、已知椭圆22132xy+=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且A C B D ⊥,垂足为P . (1)设P 点的坐标为00()x y ,,证明:220132xy+<;(2)求四边形A B C D 的面积的最小值. 证明:(1)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤.(2)(ⅰ)当B D 的斜率k 存在且0k ≠时,B D 的方程为(1)y k x =+,代入椭圆方程22132xy+=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则2122632kx x k +=-+,21223632k x x k -=+1232BD x x k =-==+ ;因为A C 与B C 相交于点P ,且A C 的斜率为1k -,所以,221112332k AC k k⎫+⎪⎝⎭==+⨯+. 四边形A B C D 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当B D 的斜率0k =或斜率不存在时,四边形A B C D 的面积4S =. 综上,四边形A B C D 的面积的最小值为9625.2、在平面直角坐标系xOy中,有一个以(10,F和(2F2的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A 、B ,且向量OM OA OB =+ 。
求:(1)点M 的轨迹方程;(2)O M的最小值。
专题五:分析几何【备考策略】根据近几年高考命题特点和规律,复习本专题时,要注意以下几个方面:[来源:]1.直线的倾斜角、斜率及它们间的关系。
2.两直线平行和垂直的充要条件。
3.点到直线的距离、两平行线间的距离。
4.圆的方程(标准方程和一般方程)。
5.直线和圆的位置关系。
6.椭圆、双曲线、抛物线的定义、性质。
7.直线和圆锥曲线的位置关系,同时常和平面向量、数列、不等式结合,且每年必考。
第一讲直线和圆【最新考纲透析】1.直线和方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
(3)能根据两条直线的斜率判定这两条直线平行或垂直。
[来源:Z_xx_](4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式和一次函数的关系。
(5)能用解方程组的方法求两条相交直线的交点坐标。
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
2.圆和方程(1)掌握确定圆的几何要素,掌握圆的标准方程和一般方程。
(2)能根据给定直线、圆的方程判断直线和圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
(3)能用直线和圆的方程解决一些简单的问题。
(4)初步了解用代数方法处理几何问题的思想。
3.空间直角在系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置。
(2)会推导空间两点间的距离公式。
【核心要点突破】要点考向1:直线的倾斜角、斜率、距离问题考情聚焦:1.直线的倾斜角、斜率、距离问题是最基本问题,是高考中常考的知识。
2.该类问题常和平面向量结合,体现知识的交汇。
3.多以选择题、填空题的形式考查,属容易题。
考向链接:1.直线的倾斜角和斜率反映了直线的倾斜程度。
已知斜率求倾斜角时,通常可以结合正切函数的图象求解,要注意当斜率的取值范围有正有负时,倾斜角是分段的,如直线斜率的范围是[-1,1],则倾斜角的取值范围是,而不是2.对于距离要熟记有关公式,并能灵活运用。
高三数学一轮复习 解析几何单元练习题第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .4 9.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P 的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
§6.3 解析几何的综合问题考点核心整合解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:位置问题.直线与圆锥曲线的位置关系问题,是解析几何研究的重点内容.常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理. 最值问题.最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.范围问题.范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类讨论、逻辑推理等多方面的能力.考题名师诠释【例1】(浙江高考,5理)若双曲线m x 2-y 2=1上的点到左准线的距离是到左焦点距离的31,则m=( ) A.21 B.23 C.81 D.89 解析:∵到准线的距离是到左焦点距离的31,∴e=3,即mm 1 =3,∴m=81. 答案:C 【例2】已知双曲线22a x -22by =1(a >0,b >0)的左、右两个焦点分别为F 1、F 2,P 为双曲线左支上的一点,P 到左准线的距离为d.(1)若双曲线的一条渐近线是y=3x,问是否存在点P 使d,|PF 1|,|PF 2|成等比数列?若存在,求出P 点坐标,若不存在,说明理由;(2)在已知双曲线的左支上使d,|PF 1|,|PF 2|成等比数列的点P 存在时,求离心率e 的取值范围.解:(1)法一:由y=3x 是渐近线,得ab =3,c 2=a 2+b 2=4a 2,∴e=2,设P 点的坐标为(x 0,y 0),由双曲线的第二定义,得|PF 1|=ed=2d,|PF 2|=e(c a 2-x 0),d=-ca 2-x 0, ∴e 2d 2=d ·e(c a 2-x 0),化简得2(-2a -x 0)=2a -x 0 解得x 0=-23a <-a,∴点P 存在. 法二:同解法一得,|PF 1|=ed=2d,∴|PF 2|=2a+|PF 1|=2a+2d,又∵|PF 1|2=d ·|PF 2|,∴有4d 2=d ·(2a+2d)解得d=a,又∵d min =-c a 2-(-a)=a-c a 2=a-a a 22=2a ,d=a >2a , ∴存在点P ,使d,|PF 1|,|PF 2|成等比数列.(2)法一:由(1)得d=-c a 2-x 0,|PF 1|2=d ·|PF 2|∴有e 2d 2=d ·e(c a 2-x 0),∴ed=ca 2-x 0 即e(-c a 2-x 0)=(ca 2-x 0), 解得x 0=)1()1(e e e a -+≤-a,∴1<e ≤1+2. 法二:由||||12PF PF =d PF ||1=e,可得|PF 2|=e |PF 1|, 又|PF 2|-|PF 1|=2a,∴|PF 1|=12-e a ,|PF 2|=12-e ae . ∵|PF 1|+|PF 2|≥|F 1F 2|,而|F 1F 2|=2c=2ea, ∴1212-+-e ae e a ≥2ea, 又∵a >0,e >1,∴e 2-2e-1≤0,解得1<e ≤1+2.法三:由(1)得e 2d 2=d(2a+ed).解得d=ee a -22≥d min =-c a 2+a, ∴有e 2-2e-1≤0,解得1<e ≤1+2.点评:确定某几何量的值域或取值范围,一般需要建立起方程或不等式,因此,要树立用方程和不等式的解题思路.与圆锥曲线有关的参数范围问题的讨论常用的两种方法:①不等式(组)求解法;②函数值域求解法.本题要注意双曲线的离心率e >1,否则所得答案就不完整.【例3】(湖北黄冈、荆州高三联考)已知动点P 与双曲线22x -32y =1的两个焦点F 1、F 2的距离之和为定值2a(a >5),且cos ∠F 1PF 2的最小值为-91. (1)求动点P 的轨迹方程;(2)若已知D(0,3),M 、N 在动点P 的轨迹上,且DM =λDN ,求实数λ的取值范围.解:(1)由题意知c 2=5, 设|PF 1|+|PF 2|=2a(a >5),由余弦定理得cos ∠F 1PF 2 =||||102||||2||||||212212212221PF PF a PF PF F F PF PF -=-+-1. 又|PF 1|·|PF 2|≤(2||||21PF PF +)2=a 2, 当且仅当|PF 1|=|PF 2|时,|PF 1|·|PF 2|取最大值,此时cos ∠F 1PF 2取最小值22102a a --1, 令22102aa --1=-91⇒a 2=9. ∵c=5,∴b 2=4.故所求点P 的轨迹方程为92x +42y =1. (2)设N(s,t)、M(x,y),则由DM =λDN ,可得(x,y-3)=λ(s,t-3),故x=λs,y=3+λ(t-3),∴M 、N 在动点P 的轨迹上.故4922t s +=1且4)33(9)(22λλλ-++t s =1. 消去s 得4)33(222t t λλλ--+=1-λ2, 解得t=λλ6513-.又|t|≤2, ∴|λλ6513-|≤2.解得51≤λ≤5. 故λ的取值范围是[51,5]. 评述:本题考查了解析几何的基本方法以及解析几何与三角、不等式、向量的联系,是在知识的交汇点处命题的充分体现,体现了高考命题的方向.【例4】(2004上海高考,22)设P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(n ≥3,n ∈N )是二次曲线C 上的点,且a 1=|OP 1|2,a 2=|OP 2|2,…,a n =|OP n |2构成了一个公差为d(d ≠0)的等差数列,其中O 是坐标原点,记S n =a 1+a 2+…+a n .(1)若C 的方程为2510022y x +=1,n=3,点P 1(10,0)且S 3=255,求点P 3的坐标;(只需写出一个) (2)若C 的方程为22a x +22by =1(a >b >0),点P 1(a,0),对于给定的自然数n ,当公差d 变化时,求S n 的最小值.(1)解:a 1=|OP 1|2=100,由S 3=23(a 1+a 3)=255,得 a 3=|OP 3|2=70.由⎪⎩⎪⎨⎧=+=+,70,12510023232323y x y x 解得⎪⎩⎪⎨⎧==.10,602323y x ∴点P 3的坐标为(215,10).(2)解法一:原点O 到二次曲线C:22a x +22by =1(a >b >0)上各点的最小距离为b ,最大距离为a. ∵a 1=|OP 1|2=a 2,∴d <0,且a n =|OP n |2=a 2+(n-1)d ≥b 2. ∴122--n a b ≤d <0. ∵n ≥3,2)1(-n n >0, ∴S n =na 2+2)1(-n n d 在[122--n a b ,0]上递增. 故S n 的最小值为na 2+2)1(-n n ×122--n a b =2)(22b a n +. 解法二:对每个自然数k(2≤k ≤n),由⎪⎩⎪⎨⎧=+-+=+,1,)1(2222222b y ax d k a y x k k k k 解得y k 2=222)1(b a d k b ---. ∵0<y k 2≤b 2,得122--k a b ≤d <0,∴122--n a b ≤d <0. 以下与解法一相同.评述:本题主要考查了解析几何、数列、函数、不等式等基本知识,具有一定的综合性,是考查学生良好的数学思维和分析问题、解决问题能力的一道好题.链接·拓展请选定一条除椭圆外的二次曲线C 及C 上一点P 1,对于给定的自然数n,写出符合条件的点P 1,P 2,…,P n 存在的充要条件,并说明理由.解法一:若双曲线C:22a x -22by =1,点P 1(a,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.∵原点O 到双曲线C 上各点的距离h ∈[|a|,+∞),且|OP 1|2=a 2,∴点P 1,P 2,…,P n 存在当且仅当|OP n |2>|OP 1|2,即d >0存在.解法二:若抛物线C:y 2=2px,点P 1(0,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.理由同上.解法三:若圆C:(x-a)2+y 2=a 2(a ≠0),点P 1(0,0),则对于给定的n,点P 1,P 2,…,P n 存在的充要条件是0<d ≤142-n a .。
高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
2012高三数学一轮复习单元练习题:解析几何第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的 2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .49.直线3+=x y 与曲线1492=-xx y 的公共点的个数是( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
17.(12分)设直线1+=kx y 与圆0422=-+++my kx y x 交于N M ,两点,且N M ,关于直线0=+y x对称,求不等式组⎪⎩⎪⎨⎧≥≤-≥+-0001y m y kx y kx 表示平面区域的面积.18.(12分)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.19.(12分)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线. 20.(12分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (I )当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (II )当3,121-==x x 时,求直线l 的方程.21.(12分)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上. (I )求动圆圆心的轨迹M 的方程; (II )设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.22.(14分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为36,F 为椭圆在x 轴正半轴上的焦点,M 、N 两点在椭圆C 上,且)0(>=λλFN MF ,定点A (-4,0). (I )求证:当1=λ时⊥; (II )若当1=λ时有3106=⋅AM ,求椭圆C 的方程; (III )在(2)的条件下,当M 、N 两点在椭圆C 运动时,试判断MAN AN AM ∠⨯⋅tan 是否有最大值,若存在求出最大值,并求出这时M 、N 两点所在直线方程,若不存在,给出理由.参考答案(4)一、选择题1.C ;2.B ;3.B ;4.A ;5.B ;6.D ;7.D ;8.B ;9.C ;10.B ;11.D ;12.C . 二、填空题13.220x y -+=; 14.22(1)(2)4x y -+-=; 15.).2(161)47(22≠=-+y y x ; 16.35. 三、解答题17.解:由题意直线1+=kx y 与圆0422=-+++my kx y x 交于N M ,两点,且N M ,关于直线0=+y x 对称,则1+=kx y 与0=+y x 两直线垂直,可求出m k ,,又不等式组所表示的平面区域应用线性规划去求,易得面积为41。
18.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33,直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1.19.如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0 当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 20.解:(1)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F 直线l 的斜率不存在时,显然有021=+x x直线l 的斜率存在时,设为k ,截距为b 即直线l :y =kx +b ,由已知得:12121212221k bk y y x x y y ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩2212104b x x ⇒+=-+≥14b ⇒≥即l 的斜率存在时,不可能经过焦点1(0,)8F .所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F .(2)当121,3x x==-时,直线l 的斜率显然存在,设为l :y=kx+b则由(1)得:22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⎨⎪+=-⎪⎩12102122k b k x x +⎧⋅+=⎪⎪⇒⎨⎪-=-⎪⎩ 14414k b ⎧=⎪⎪⇒⎨⎪=⎪⎩ 所以,直线l 的方程为14144y x =+,即4410x y -+=. 21.(1)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x . 解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(2)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. 所以A 点坐标为(332,31),B 点坐标为(3,-23),|AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131(,)316()32()13(222222y y由①-②得42+(y +23)2=(34)2+(y -332)2, 解得y =-9314.但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2>|AC |2+|AB |2,即9256334928342822++->++y y y y ,即 y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->,即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2.圆心(332,35-)到直线l :x =-1的距离为38, 所以,以AB 为直径的圆与直线l 相切于点G (-1,-332).当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为)31(33332-=-x y .令x =-1得y =932.过点B 且与AB 垂直的直线方程为y +2333=(x -3).令x =-1得y =-3310. 又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).22.(1)设)0,(),,(),,(2211c F y x N y x M ,则),(),,(2211y c x y x c -=--=,当1=λ时,c x x y y FN MF 2,,2121=+=-∴=,由M ,N 两点在椭圆上,2221222222221221),1(),1(x x by a x b y a x =∴-=-=∴若21x x -=,则c x x 2021≠=+舍,21x x =∴.),0,4(),2,0(2AF MN c AF y MN ⊥∴+==∴ 。