高阶导数与高阶微分学习笔记
- 格式:ppt
- 大小:1.01 MB
- 文档页数:14
第一章:函数与极限1.1函数的定义与性质1.2极限的概念与计算1.3右极限与左极限1.4极限的性质第二章:连续性2.1连续函数的定义2.2连续性的判别2.3连续函数的性质2.4介值定理第三章:导数与微分3.1导数的定义与几何意义3.2导数的计算法则3.3微分的概念与应用3.4逻辑与高阶导数第四章:应用导数4.1函数的单调性与极值4.2曲线的凹凸性与拐点4.3应用导数解决实际问题4.4L'Hôpital法则第五章:定积分5.1定积分的定义与性质5.2定积分的计算方法5.3牛顿莱布尼茨公式5.4定积分的应用第六章:不定积分6.1不定积分的基本概念6.2常见的不定积分公式6.3不定积分的计算技巧6.4分部积分法与换元积分法第1章:函数与极限函数的定义与性质函数的定义:一个函数是一个将每个输入(自变量)与一个唯一的输出(因变量)相对应的关系。
通常用f(x)表示,其中x是自变量。
定义域:函数的定义域是所有可能的自变量x的集合。
值域:函数的值域是所有可能的因变量f(x)的集合。
例子:f(x)=x^2,定义域为所有实数,值域为所有非负实数。
单调性:如果对于任意的x1<x2,有f(x1)<f(x2),则f(x)是单调递增的;反之则是单调递减的。
有界性:如果存在M,使得对所有x,|f(x)|≤M,则f(x)是有界的。
奇偶性:如果f(x)=f(x),则f(x)是奇函数;如果f(x)=f(x),则f(x)是偶函数。
周期性:如果存在T,使得f(x+T)=f(x),则f(x)是周期函数。
例子:正弦函数sin(x)是周期函数,其周期为2π。
复合函数:如果g(x)是另一个函数,则复合函数f(g(x))是将g(x)的输出作为f(x)的输入。
例子:若f(x)=x^2,g(x)=x+1,则复合函数f(g(x))=(x+1)^2。
反函数:若f(x)是单调函数,则存在反函数f^(1)(x),使得f(f^(1)(x))=x。
高等数学第二章知识总结在这一章里需要掌握的是求一阶导数的多种方法和求高阶导数的计算公式。
微分和导数的关系求导数与求微分方法相同,只不过在求微分时要在后面加上dx.函数在某点处的导数就是函数在该点处的变化率. 导数有很多种表现形式.一.(1)单侧导数即左右导数.函数可导的充要条件是:左右导数存在且相等. (2)可导与连续的关系:可导必然连续,连续不一定可导.注:函数的导数就是函数在某点处因变量与自变量比值的极限.◆求导数的方法有:(1)利用导数的定义.(简单一点就是△y/△x的极限)(2)利用导数的几何意义解决几何及物理,化学的实际问题.(3)利用初等函数的求导公式.(在书P59)(4)利用反函数求导法.(反函数的导数就是原函数导数的倒数.)(5)利用复合函数求导法.(由外到内,逐层求导)(6)利用隐函数求导法(7)利用参数方程确定函数的求导法.(8)利用分段函数求导法.(9)利用函数连续,可导的定义,研究讨论函数的连续性与可导性.二.高阶导数高阶导数可细分为:一阶导数,二阶导数,三阶导数……N阶导数等等.(一阶导数的导数是二阶导数) 应该掌握的是高阶导数的运算.方法有两种:(1)直接法.(2)间接法.间接法适用于阶数较高的运算.其规律性较强.常用的高阶导数公式在书P63上.注意查看.■计算uv相乘形式的高阶导数时,首先要判断u,v从一阶到n阶的结果,再运用莱布尼兹公式求出结果。
三.隐函数和由参数方程确定的函数的导数什么是隐函数?如果变量x,y的函数关系可以用一个二元方程表示,且对在给定范围内的每一个x,通过方程有确定的y与之对应,即Y是X的函数,这种函数就叫做隐函数F(x,y)=0从二元方程中解出y的值,就是隐函数的显化.有些隐函数不易显化,甚至不能显化.隐函数的求导方法:(例题在书P66 例40,41)(1)把y看做是复合函数的中间变量,把y看作y(x)即可。
再在方程两边分别对X求导.(2)从求导后的方程中求出y’.(3)在隐函数的求导结果中允许含有y,但是求某一以知点的导数时不仅要代X的值,还要代Y的值. 对数求导法:先两边取对数,再关于X求导.例题在书P68,例44(遇到指数形式的函数时就采用此类方法)对参数方程确定的函数求导方法很简单,就是用y’/x’.四.函数的微分.可微就可导,可导就可微.求函数的微分就是对函数求导,主要就是在所求结果后面加上dx.微分的几何意义是某点处的切线纵坐标的增量.常用的微分公式在书P76.五.微分的应用.1.微分在近似计算,误差估计中的应用.在书P80 P81.。
导数的概念例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速度?我们知道时间从t0有增量△t时,质点的位置有增量这就是质点在时间段△t的位移。
因此,在此段时间内质点的平均速度为:若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。
我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,即:质点在t0时的瞬时速度=为此就产生了导数的定义,如下导数的定义设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。
记为:还可记为:,函数在点x0处存在导数简称函数在点x0处可导,否则不可导。
若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。
这时函数对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。
注:导数也就是差商的极限左、右导数前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。
若极限存在,我们就称它为函数在x=x0处的左导数。
若极限存在,我们就称它为函数在x=x0处的右导数。
注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件函数的和差求导法则法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:。
其中u、v为可导函数。
常数与函数的积的求导法则法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。
用公式可写成:函数的积的求导法则法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。
用公式可写成:函数的商的求导法则法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。
高阶导数的计算技巧在微积分中,导数是一个非常重要的概念,它描述了函数在某一点的变化率。
而高阶导数则是对函数导数的导数,它可以提供更多关于函数曲线的信息。
在实际问题中,有时候需要计算高阶导数,因此掌握高阶导数的计算技巧是非常重要的。
下面将介绍一些计算高阶导数的技巧,希望能帮助大家更好地理解和运用高阶导数。
一、基本概念回顾在介绍高阶导数的计算技巧之前,我们先来回顾一下导数的基本概念。
对于函数y=f(x),它的导数可以表示为f'(x),也可以表示为dy/dx。
如果对导数再求导数,就得到了高阶导数,可以表示为f''(x),也可以表示为d^2y/dx^2。
以此类推,对于n阶导数,可以表示为f^(n)(x),也可以表示为d^n y/dx^n。
二、高阶导数的计算方法1. 利用导数的性质计算高阶导数时,可以利用导数的性质简化计算过程。
例如,如果函数f(x)是可微的,那么f''(x) = (f'(x))',f'''(x) =(f''(x))',以此类推。
这样可以通过反复求导简化计算。
2. 使用Leibniz公式Leibniz公式是计算高阶导数的一个重要方法。
对于函数y=f(x),它的n阶导数可以表示为:f^(n)(x) = d^n y/dx^n = ∑[C(n,k) * f^(k)(x) * g^(n-k)(x)]其中,C(n,k)是组合数,f^(k)(x)表示f(x)的k阶导数,g^(n-k)(x)表示g(x)的(n-k)阶导数。
通过Leibniz公式,可以将高阶导数的计算转化为低阶导数的计算,从而简化问题。
3. 使用泰勒级数泰勒级数是一种将函数表示为无穷级数的方法,可以用来计算高阶导数。
对于函数f(x),它的泰勒级数展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...通过泰勒级数展开,可以逐项求导得到各阶导数的表达式,从而计算高阶导数。