预备知识高斯随机过程
- 格式:pptx
- 大小:697.81 KB
- 文档页数:49
高斯随机过程高斯随机过程(GaussianRandomProcess,GRP)是一种常见的随机过程,它由作为时间或空间的变量的永久的高斯噪声的函数组成。
高斯随机过程有着丰富的应用,如数据处理、图像处理、信号处理、机器学习等。
本文将介绍高斯随机过程的概念、定义、特性以及应用场景,并对计算和绘图进行详细讨论。
1. 什么是高斯随机过程高斯随机过程是一种随机模型,它由作为时间或空间变量的永久高斯噪声函数组成。
它是一个随机现象,它的像素点时间/空间和随机变量之间有着特定关系。
它可以用来描述复杂的现象,但又比普通的概率分布拥有更丰富的特性。
高斯随机过程具有两个主要特性:转移性(stationarity)和可预测性(predictability)。
(1)移性:高斯随机过程具有转移性,即无论何时何地,这个过程的随机期望值(Expectation Value)都是一个定值,也就是说,这个过程的随机情况在空间上是一致的,在时间上也是一致的。
(2)预测性:高斯随机过程可以通过观察其连续时间点的值,利用代数运算和概率论,对未来的结果进行预测。
2.斯随机过程的定义高斯随机过程由一个实数序列,每一个取值都是随机变量X的一个实例,称为一个随机函数(Random Function)X。
X的取值不仅受到时间的影响,而且还受到空间的影响,从而构成了一个随机过程。
设X是在某一范围[0,T]上的高斯随机过程,那么X可以定义为:X(t) =(t) (t [0,T])其中,ε(t)是具有零期望值和高斯分布的均匀随机变量,即: E [ε(t)] = 0E [(ε(t)-ε(t))] =(t,tγ(t,tX(t)与X(t之间的协方差函数,即X(t)与X(t之间的统计相关性。
3.斯随机过程的应用场景高斯随机过程拥有广泛的应用场景,可以用于模拟各种复杂的场景。
其中,最常见的应用场景有:(1)据处理:高斯随机过程可以用来处理原始的数据,用来实现数据增强,数据降维以及数据去噪等;(2)像处理:利用高斯随机过程可以进行图像分类,图像检索,目标检测,图像修复,图像降噪等;(3) 信号处理:高斯随机过程在信号处理中可以用于过滤噪声,多信号融合,模式识别,信号传输,信号分离,信号恢复,变换等;(4)器学习:高斯随机过程可以用于机器学习,如聚类,回归,分类,联想推理,强化学习,机器翻译等等。
高斯随机过程高斯分布•中心极限定理证明:在满足一定条件下,大量随机变量和的极限分布是高斯分布。
•特殊地位:无线电技术理论中最重要的概率分布。
•噪声理论、信号检测理论、信息理论•高斯过程-统计特性最简单{}{}ik X i k X X i k X Xk i X k i X ik X i k X X X k i X k i X ik n n ikn n ik C m t t R m t t R m t t R t t C C m t t R m m t t R t t C C C C C C =−−=−+−+=′−++=++=′−−=−==′=′=××2222)()]()[(),(),()(),(),(..,.........εεεεεεv v Q Xi X i X X m t m t m m ==+=′)()(εQ ),...,;,...,(),...,;,...,(1111n n X n n X t t x x f t t x x f =++∴εε所以,高斯随机过程的宽平稳↔等价严平稳。
C C v v =′XX M M =′∴如果高斯过程X(t)在n 个不同时刻的状态两两互不相关,即则这些状态之间也是互相独立的。
n t t ,...,1)(),...,(1n t X t X )(,0)])()()([(),(k i m t X m t X E t t C C k k i i k i X ik ≠=−−==0=ik C ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)(0...0:...:::...)(00...0)(22212n t t t C σσσv 2、互不相关↔互相独立证明:由于则:t B t A t X 00sin cos)(ωω+=0][][==B E A E 222][][σ==B E A E 0ω1.已知随机过程其中A 与B 是相互独立的高斯变量,且, ,为常数。
求此过程的一、二维概率密度。
第六章 高斯(Gauss )过程(六)维纳过程(布朗运动)1. 维纳过程的定义设质点每经过t ∆时间,随机地以概率2/1=p 向右移动0>∆x 距离,以概率2/1=q 向左移动0>∆x 距离,且每次移动是相互独立的。
记:−=次质点向左移动第次质点向右移动第i i X i ,1,1若)(t X 表示在t 时刻质点所处的位置,则有:)()(][21tt XX X x t X ∆+++∆=L显然有:1}{}{,0}{2===i i i X E X D X E故有:∆∆==t t t t X D t X E 2)()}({,0)}({假设t c x ∆=∆,其中c 为常数,它由物理意义确定。
0>令∆0→t ,即研究连续的游动,则有:0)}({=t X Et c t t t c t t x t X D t t t 220200lim )(lim )}({lim = ∆∆=∆∆=→∆→∆→∆ 另一方面,任取两个时刻210t t <<,令:∆= ∆=t t n t t n 2211,则有:)()(1211n X X X x t X +++∆=L)()(2212n X X X x t X +++∆=L)()()(21112n n X X x t X t X ++∆=−+L由于(与)121n X X X +++L )(211n n X X +++L )(是相互独立的,因此与相互独立。
即随机过程)(1t X )()12t X −(t X t X 是一独立增量过程。
由此)(t X 可以看作由许多微小的相互独立的随机变量)(1−)(−i t i X t X 组成之和。
由中心极限定理,当∆0→t 时,我们有:)(0200lim x x t c xX P t t i i t Φ=≤−∆∑ ∆=→∆ 即有:∫∞−→∆−=Φ=≤xt du u x x t c t X P }2exp{21)()(lim 220π故当∆0→t 时,)(t X 趋向于正态分布,即0→∆t 时,),0(~)(2t c N t X 由此,我们引入维纳过程(Wienner Process )的定义:定义:若一随机过程{}0);(≥t t W 满足: (1))(t W 是独立增量过程;(2)∀; ),0(~)()(,0,2t c N s W t s W t s −+>(3))(t W 是关于t 的连续函数;则称{}0);(≥t t W 是布朗运动或维纳过程(Wienner Process )。
高斯随机过程1.高斯随机过程的定义如果随机过程ξ(t)的任意n维(n=1,2,…)分布均服从正态分布,则称它为正态过程或高斯过程。
其n维正态概率密度函数表示为式中:;|B|为归一化协方差矩阵的行列式,即为行列式|B|中的元素b jk的代数余因子;b jk为归一化协方差函数,即2.高斯随机过程的重要性质(1)高斯过程的n维分布只依赖各个随机变量的均值、方差和归一化协方差;(2)广义平稳的高斯过程是严平稳的;(3)如果高斯过程在不同时刻的取值是不相关的,即对所有j≠k有b jk=0,那么它们也是统计独立的;(4)高斯过程经过线性变换后生成的过程仍是高斯过程,即若线性系统的输入为高斯过程,则系统的输出也是高斯过程。
3.高斯随机过程的随机变量(1)一维概率密度函数①表达式高斯过程在任一时刻上的取值是一个正态分布的随机变量,也称高斯随机变量,其一维概率密度函数为②图像图3-1 正态分布的概率密度③特性a.f(x)对称于x=a这条直线,即f(a+x)=f(a-x)b.及;c.a表示分布中心,σ称为标准偏差,f(x)图形将随着σ的减小而变高和变窄。
当a=0,σ=1时,称为标准化的正态分布。
即(2)正态分布函数①正态分布函数的定义正态分布函数定义为正态分布的概率密度f(x)积分,即②误差函数a.误差函数的定义erf(x)表示误差函数,其定义为b.误差函数的性质erf(0)=0,erf(∞)=1,erf(-x)=-erf(x)。
c.误差函数表示分布函数②互补误差函数a.互补误差函数的定义erfc(x)表示互补误差函数,其定义为b.互补误差函数的性质erfc(0)=1,erfc(∞)=0,erfc(-x)=2-erfc(x)。
c.误差函数表示分布函数正态分布函数可用互补误差函数erfc(x)表示为d.互补误差函数的应用当x>a,互补误差函数与高斯概率密度函数曲线尾部下的面积成正比。