高斯随机过程
- 格式:ppt
- 大小:206.50 KB
- 文档页数:13
第三章 随机过程学习目标通过对本章的学习,应该掌握以下要点: 随机过程的基本概念随机过程的数字特征(均值、方差、相关函数);平稳过程的定义、各态历经性、相关函数和功率谱密度;高斯过程的定义和性质、一维概率密度函数;随机过程通过线性系统、输出和输入的关系;窄带随机过程的表达式和统计特性;正弦波加窄带高斯过程的统计特性;高斯白噪声及其通过理想低通信道和理想带通滤波器。
3.1 内容概要3.1.1 随机过程的基本概念随机过程是一类随时间作随机变化的过程,具有不可预知性,不能用确切的时间函数来描述。
1.定义角度一:随机过程ξ(t )是随机试验的全体样本函数{ξ1 (t ), ξ2 (t ), …, ξn (t )}的集合。
角度二:随机过程ξ(t )是在时间进程中处于不同时刻的随机变量的集合。
这说明,在任一观察时刻t 1,ξ(t 1)是一个不含t 变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。
研究随机过程正是利用了它的这两个特点。
2.分布函数和概率密度函数 一维分布函数:ξ(t )在11111(,)[()]F x t P t x ξ=≤含义:随机过程ξ(t )在t 1时刻的取值ξ(t 1)小于或等于某一数值x 1的概率。
如果存在1111111),(),(x t x F t x f ∂∂=则称111(,)f x t 为ξ(t )的一维概率密度函数。
同理,任意给定12n t t t T ∈ ,,,,则ξ(t )的n 维分布函数为{}12121122(,,,;,,)(),(),,()n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤如果此能在n21n 21n 21n n n 21n 21n x )t x ()t x (∂∂∂∂= x x t t x x F t t x x f ,,,;,,,,,,;,,,则称其为ξ(t )的n 维概率密度函数。
显然,n 越大,对随机过程统计特性的描述就越充分。
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
高斯随机过程超参数
高斯过程(Gaussian Processes)是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。
在高斯过程中,超参数是指控制模型复杂性和行为的参数,这些参数在模型训练过程中需要进行优化。
高斯过程的超参数通常包括特征长度尺度(characteristic length-scale)和噪声水平(noise level)等。
特征长度
尺度用于控制高斯过程的平滑程度,而噪声水平则用于控制模型对数据的拟合程度。
在贝叶斯优化框架中,高斯过程的超参数可以通过最大化边缘似然函数(marginal likelihood function)来进行估计。
边缘似然函数是将超参数
与数据联系起来的关键,通过最大化该函数可以找到最优的超参数值,从而使得高斯过程模型能够最好地拟合给定的数据。
常用的核函数包括平方指数核(squared exponential kernel)和马顿核(Matern kernel)。
平方指数核的超参数包括特征长度尺度和噪声水平,而马顿核则还包括一个额外的超参数,用于控制核函数的形状。
总的来说,高斯过程的超参数对于模型的性能至关重要,需要通过优化算法进行仔细调整,以获得最佳的预测和泛化性能。
以上内容仅供参考,如需更专业的解释,建议咨询统计学或机器学习领域的专家,或查阅相关领域的专业书籍和文献。
高斯随机过程高斯随机过程(GaussianRandomProcess,GRP)是一种常见的随机过程,它由作为时间或空间的变量的永久的高斯噪声的函数组成。
高斯随机过程有着丰富的应用,如数据处理、图像处理、信号处理、机器学习等。
本文将介绍高斯随机过程的概念、定义、特性以及应用场景,并对计算和绘图进行详细讨论。
1. 什么是高斯随机过程高斯随机过程是一种随机模型,它由作为时间或空间变量的永久高斯噪声函数组成。
它是一个随机现象,它的像素点时间/空间和随机变量之间有着特定关系。
它可以用来描述复杂的现象,但又比普通的概率分布拥有更丰富的特性。
高斯随机过程具有两个主要特性:转移性(stationarity)和可预测性(predictability)。
(1)移性:高斯随机过程具有转移性,即无论何时何地,这个过程的随机期望值(Expectation Value)都是一个定值,也就是说,这个过程的随机情况在空间上是一致的,在时间上也是一致的。
(2)预测性:高斯随机过程可以通过观察其连续时间点的值,利用代数运算和概率论,对未来的结果进行预测。
2.斯随机过程的定义高斯随机过程由一个实数序列,每一个取值都是随机变量X的一个实例,称为一个随机函数(Random Function)X。
X的取值不仅受到时间的影响,而且还受到空间的影响,从而构成了一个随机过程。
设X是在某一范围[0,T]上的高斯随机过程,那么X可以定义为:X(t) =(t) (t [0,T])其中,ε(t)是具有零期望值和高斯分布的均匀随机变量,即: E [ε(t)] = 0E [(ε(t)-ε(t))] =(t,tγ(t,tX(t)与X(t之间的协方差函数,即X(t)与X(t之间的统计相关性。
3.斯随机过程的应用场景高斯随机过程拥有广泛的应用场景,可以用于模拟各种复杂的场景。
其中,最常见的应用场景有:(1)据处理:高斯随机过程可以用来处理原始的数据,用来实现数据增强,数据降维以及数据去噪等;(2)像处理:利用高斯随机过程可以进行图像分类,图像检索,目标检测,图像修复,图像降噪等;(3) 信号处理:高斯随机过程在信号处理中可以用于过滤噪声,多信号融合,模式识别,信号传输,信号分离,信号恢复,变换等;(4)器学习:高斯随机过程可以用于机器学习,如聚类,回归,分类,联想推理,强化学习,机器翻译等等。
29 窄带实平稳高斯随机过程概述窄带实平稳随机过程的一维包络分布和一维相位分布窄带实平稳随机过程,它的同相分量和正交分量 一个时刻同相分量和正交分量是联合高斯的: 一个时刻包络和相位分量的联合概率密度:一个时刻包络和相位是相互统计独立的随机变量: 窄带实平稳随机过程的二维(两个时刻)包络和相位分布两个时刻信号的表达式:两个时刻同相分量和正交分量是联合高斯的: 两个时刻同相分量和正交分量的协方差矩阵:两个时刻同相分量和正交分量的联合概率密度函数: 两个时刻包络和相位的联合概率密度函数: 两个时刻包络的联合边缘分布:两个相距无穷远时刻的包络联合边缘分布: 一个时刻包络的边缘分布: 两个时刻相位的联合边缘分布:两个时刻相位和两个时刻包络的分布不是统计独立的:29.1 窄带实平稳随机过程的一维包络分布和一维相位分布 29.1.1 窄带实平稳随机过程,它的同相分量和正交分量tf t t f t t x t f t t f t t x c c s cc c πξπξπξπξ2cos )(ˆ2sin )()(2sin )(ˆ2cos )()(−=+=以及t f s t x t f t x t tf t x t f t x t cs c c c s c c ππξππξ2cos )(2sin )()(ˆ2sin )(2cos )()(−=+=因为窄带实平稳高斯随机过程的Hilbert 变换是一个高斯随机过程,它的同相分量与正交分量是它和它的Hilbert 变换的线性变换,同相分量和正交分量也是高斯过程。
上述高斯随机过程是联合高斯的。
29.1.2 一个时刻同相分量和正交分量是联合高斯的:同相分量和正交分量的一维相关矩阵,)(),(t x t x s c 的相关矩阵,⎟⎟⎠⎞⎜⎜⎝⎛=)0(00)0(ξξξξR R R 同相分量和正交分量的联合概率密度是,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+−=⋅=22222exp 21)()(),(ξξσσπy x y f x f y x f s c s c x x x x 29.1.3 一个时刻包络和相位分量的联合概率密度:同相分量、正交分量与包洛和相位分量的关系是,)(sin )()()(cos )()(t t V t x t t V t x s c φφ⋅=⋅=以及,)()(tan)())(())(()(122t x t x t t x t x t V c s s c −=+=φ同相分量、正交分量到包洛和相位分量的变换行列式是,)()(cos )()(sin )()(sin )(cos ),(),(t V t t V t t V t t V x x s c =⎟⎟⎠⎞⎜⎜⎝⎛−=∂∂φφφφφ 一个时刻包洛和相位分量的联合概率密度是πφσσσσπφφξξξξφ21)(2exp 1)(2exp 21),(),(222222=f r r r f r r y x f r r f V x x V s c ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧−=⎪⎭⎪⎫⎪⎩⎪⎨⎧−=⋅= 29.1.4 一个时刻包络和相位是相互统计独立的随机变量:)()(),(φφφφf r f r f V V ⋅=一维包洛分量的数字特征是:{}{}{}2222/12222ξξξσπσσπ⋅⎟⎠⎞⎜⎝⎛−==⎟⎠⎞⎜⎝⎛=V D V E V E29.2 窄带实平稳随机过程的二维包络和相位分布 29.2.1 两个时刻信号的表达式:两个时刻信号的同相分量和正交分量表达式11111111112cos )(2sin )()(ˆ2sin )(2cos )()(t f s t x t f t x t t f t x t f t x t c s c c c s c c ππξππξ−=+=22222222222cos )(2sin )()(ˆ2sin )(2cos )()(t f s t x t f t x t t f t x t f t x t c s c c c s c c ππξππξ−=+=两个时刻信号的包络和相位表达式)](2cos[)()(1111t t f t V t c φπξ+= )](2cos[)()(2222t t f t V t c φπξ+=两个时刻同相分量和正交分量是联合高斯的:由于ξ(t)是高斯分布的随机过程,而x c (t 1),x c (t 2),x s (t 1),x s (t 2)都是由ξ(t)经过线性变换得到的,它们是联合高斯分布的随机变量。
高斯随机过程高斯分布•中心极限定理证明:在满足一定条件下,大量随机变量和的极限分布是高斯分布。
•特殊地位:无线电技术理论中最重要的概率分布。
•噪声理论、信号检测理论、信息理论•高斯过程-统计特性最简单{}{}ik X i k X X i k X Xk i X k i X ik X i k X X X k i X k i X ik n n ikn n ik C m t t R m t t R m t t R t t C C m t t R m m t t R t t C C C C C C =−−=−+−+=′−++=++=′−−=−==′=′=××2222)()]()[(),(),()(),(),(..,.........εεεεεεv v Q Xi X i X X m t m t m m ==+=′)()(εQ ),...,;,...,(),...,;,...,(1111n n X n n X t t x x f t t x x f =++∴εε所以,高斯随机过程的宽平稳↔等价严平稳。
C C v v =′XX M M =′∴如果高斯过程X(t)在n 个不同时刻的状态两两互不相关,即则这些状态之间也是互相独立的。
n t t ,...,1)(),...,(1n t X t X )(,0)])()()([(),(k i m t X m t X E t t C C k k i i k i X ik ≠=−−==0=ik C ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)(0...0:...:::...)(00...0)(22212n t t t C σσσv 2、互不相关↔互相独立证明:由于则:t B t A t X 00sin cos)(ωω+=0][][==B E A E 222][][σ==B E A E 0ω1.已知随机过程其中A 与B 是相互独立的高斯变量,且, ,为常数。
求此过程的一、二维概率密度。
第六章 高斯(Gauss )过程(六)维纳过程(布朗运动)1. 维纳过程的定义设质点每经过t ∆时间,随机地以概率2/1=p 向右移动0>∆x 距离,以概率2/1=q 向左移动0>∆x 距离,且每次移动是相互独立的。
记:−=次质点向左移动第次质点向右移动第i i X i ,1,1若)(t X 表示在t 时刻质点所处的位置,则有:)()(][21tt XX X x t X ∆+++∆=L显然有:1}{}{,0}{2===i i i X E X D X E故有:∆∆==t t t t X D t X E 2)()}({,0)}({假设t c x ∆=∆,其中c 为常数,它由物理意义确定。
0>令∆0→t ,即研究连续的游动,则有:0)}({=t X Et c t t t c t t x t X D t t t 220200lim )(lim )}({lim = ∆∆=∆∆=→∆→∆→∆ 另一方面,任取两个时刻210t t <<,令:∆= ∆=t t n t t n 2211,则有:)()(1211n X X X x t X +++∆=L)()(2212n X X X x t X +++∆=L)()()(21112n n X X x t X t X ++∆=−+L由于(与)121n X X X +++L )(211n n X X +++L )(是相互独立的,因此与相互独立。
即随机过程)(1t X )()12t X −(t X t X 是一独立增量过程。
由此)(t X 可以看作由许多微小的相互独立的随机变量)(1−)(−i t i X t X 组成之和。
由中心极限定理,当∆0→t 时,我们有:)(0200lim x x t c xX P t t i i t Φ=≤−∆∑ ∆=→∆ 即有:∫∞−→∆−=Φ=≤xt du u x x t c t X P }2exp{21)()(lim 220π故当∆0→t 时,)(t X 趋向于正态分布,即0→∆t 时,),0(~)(2t c N t X 由此,我们引入维纳过程(Wienner Process )的定义:定义:若一随机过程{}0);(≥t t W 满足: (1))(t W 是独立增量过程;(2)∀; ),0(~)()(,0,2t c N s W t s W t s −+>(3))(t W 是关于t 的连续函数;则称{}0);(≥t t W 是布朗运动或维纳过程(Wienner Process )。
wss高斯过程
WSS高斯过程是一种统计学方法,用于描述信号在时间或空间上的随机变化。
WSS是“宽平稳随机过程”的缩写,它的特点是在任意时刻,其统计特性不随时间改变,其一阶和二阶统计量只和时间和信号的时间差有关。
高斯过程基于高斯分布,其随机过程中的任意一组数据是一个多元高斯分布,这个分布是完全由期望向量和协方差矩阵所决定的。
在WSS高斯过程中,任意一组数据的协方差只和它们的时间差有关,这种特性使得WSS高斯过程在时间或空间上的随机变化表现得非常平稳。
WSS高斯过程广泛应用于信号处理领域,包括图像处理、语音识别、无线通信等方面。
它可以对信号进行预测和滤波,以便把噪声降低到最小,提高信号的质量。
此外,WSS高斯过程也被应用于金融市场的预测和模拟中。
总之,WSS高斯过程是一种重要的统计学方法,它的特点是平稳和高斯分布。
这种方法可以用于信号处理和金融预测等领域,可视情况而定进行合理的应用。