第三讲 Sm-Nd法
- 格式:ppt
- 大小:6.15 MB
- 文档页数:82
1前言2同位素测年方法及其应用2.1U-Pb法测年及其应用2.2Rb-Sr法同位素测年法就是利用天然放射性同位素的衰变规律精确测定岩石或矿物中放射性母体同位素和放射成因的稳定子体同位素的含量来计算该岩石或矿物的地质年龄,主要的同位素测年法包括U-Pb法、Rb-Sr法、Sm-Nd法、K-Ar法、Re-Os法等几种方法。
U-Pb法是古老的同位素地质年代学方法之一,早期由于分析技术不够高,多使用U-Th含量比较高的矿物,如晶质铀矿、沥青铀矿、独居石等矿物,近来随着质谱同位素分析技术和U、Pb化学分离技术的进展,利用U-Pb地质年代学最多的矿物是锆石英、独居石、榍石等矿物。
一般的来说,采用U-Pb法测定成矿年龄限于含沥青铀矿和晶质铀矿等含铀矿物的伟晶岩矿床和热液铀矿床,这些矿物的特点是稳定,不大容易受到变质作用的影响,并且从基性岩到酸性岩、长英质的正副片麻岩都含有这些矿物,大大扩大了U-Pb法测年的范围,通常这些矿物的Pb/U年龄代表成矿年龄。
主要是把矿物按特定方法及不同的粒度分成几个粒级,通过加稀释剂,测定U,Pb同位素,并经过特定的公式进行修正,最后根据不一致线或一致线法来确定岩石的年龄。
这种方法在我国也得到广泛应用,并取得许多成果。
U-Pb同位素测年体系到目前为止发展的这些方法,各有优缺点,在实际工作中要根据自身条件和不同的成矿环境选择适合的方法,以获得满意的年龄数据。
Rb-Sr法同位素测年是基于Rb经过衰变生成Sr,由于所积累的放射性Sr的量是Rb含量及时间的函数,根据放射衰变定律及相应的计算公式,可以绘制出铷锶等时线年龄计算图,根据计算的结果代入等时线图表就可以确定矿石或岩体的年龄。
使用该方法必须满足的条件有:(1)同源,即具有共同的初始锶比值。
(2)同时,即在一个短暂的时刻共同形成,并且在形后一直保持Rb、Sr的地球化学封闭系统。
(3)样品形成时到样品测试时始终保持封闭体系。
由于Rb-Sr年龄数据可靠,在等时线测定过程中,所获得的Sr/Sr值还可用于推测成矿物质来源,而且,目前的实验技术可以检测矿物中极微量的Rb,Sr及其同位素组成,所以不少研究人员通过各种途径致力于Rb-Sr成矿年龄测定。
Sm—Nd同位素法地质年龄的测定作者:梁培基王广武兴龙焦天佳来源:《科学与财富》2014年第11期摘要:同位素地质学是地球科学、物理学、化学和技术科学相互交叉发展起来的一门新兴学科。
它根据放射性同位素衰变规律确定地质体形成和地质事件发生的时代,以研究地球和行星物质的形成历史和演化规律。
主要对Sm-Nd法同位素测年的研究现状、研究方法、适用对象、年龄测定、特点等方面予以简要总结和介绍。
关键词:Sm-Nd同位素测年;方法;特点1 Sm-Nd法同位素定年方法简介Sm在自然界有7个同位素,144Sm(3.16%),147Sm(15.07%),148Sm(11.27%),149Sm(13.84%),150Sm(7.47%),152Sm(26.63%),154Sm(22.53)。
Nd在自然界也有7个同位素,142Nd(27.09%),143Nd(12.14%),144Nd(23.83%),145Nd(8.29%),146Nd(17.26%),148Nd(5.74%),150Nd(5.63%)。
147Sm和148Sm具有放射性,通过α衰变转变成143Nd和144Nd。
144Nd也具有放射性,通过α衰变转变成140Ce,但是由于其极端长的半衰期(2.1×1015a),放射性所引起的变化可以忽略,实际上可作为稳定同位素看待。
由于148Sm衰变半衰期十分长(7×1015a),目前在地质应用上尚无价值。
因此仅147Sm (t12=1.06×1011a)能用于年龄测定。
通常所指的Sm-Nd测年法实际上是147Sm-143Nd法,利用的是147Sm→143Nd+α的核衰变过程。
Sm-Nd年龄计算方程:(143Nd/144Nd)=(143Nd/144Nd)i+(147Sm/144Nd)(eλ-1)方程中t为样品形成时间或被彻底改造Nd同位素均一化时间,λ为147Sm衰变常数(6.54×10-12a-1);(143Nd/144Nd)和(147Sm/144Nd)比值是样品现代值,由实验直接测定;(143Nd/144Nd)i是样品形成时或被彻底改造时值。
2014年 9月 September2014岩 矿 测 试 ROCKANDMINERALANALYSIS文章编号:0254 5357(2014)05 0640 09Vol.33,No.5 640~648玄武岩分相 Sm-Nd内部等时线定年方法流程张利国,段桂玲,杨红梅,杨 梅,谭娟娟,段瑞春,邱啸飞,刘重秡(中国地质调查局武汉地质调查中心同位素地球化学研究室,湖北 武汉 430205)摘要:长期以来,对玄武岩精确测年一直是困扰地质学家的重大科学问题。
玄武岩结构和组成特殊,岩石中矿物组成单一、锆石十分稀少,颗粒很细,采用物理方法挑选单矿物和锆石十分困难,很难应用内部等时线法和锆石 U-Pb法研究其成岩时代。
而全岩样品间因 岩浆 分 异 产 生 的 147Sm/144Nd比 值 差 别 很 小,等 时 线 年 龄 相 对 误 差 较大;Rb含量很低,Rb/Sr比值很小,全岩 Sm-Nd法、Rb-Sr法常常不能给出正确可信的年龄。
根据内部等时线法原理,本文通过化学方法,采用王水和氢氟酸 -硝酸对玄武岩样品进行分步溶解,分别对同一件样品的王水溶解相、王水不溶相和全岩开展 Sm-Nd同位素组成分析。
结果表明:通过不同酸介质分步溶解,可提取玄武岩中石英、透辉石、长石等矿物组合,该组合与 其全岩具有相同的 εNd(t)和一致的 Nd同位素模式年龄;矿物与全岩构筑的内部等时线中,147Sm/144Nd比值 的变化由全 岩 之 间 的 0.005扩 大 到 0.11,143Nd/144Nd值 的 变 化 由 全 岩 的 0.512500~0.512547扩 大 到0.512500~0.513145。
通过该方法获得了与已有锆石 U-Pb年龄在误差范围内一致的 Sm-Nd等时线年龄:t=(991±21)Ma(MSWD=2.1)。
通过对比研究,本文认为:玄武岩分相 Sm-Nd内部等时线定年方法,适用于前寒武纪及更古老的玄武岩样品的年龄测定。
热电离质谱法地质样品中Rb-Sr、Sm-Nd同位素组成
Rb-Sr、Sm-Nd同位素体系是同位素地球化学研究的经典体系,被广泛应用于同位素地质年代学和同位素示踪研究,在壳幔演化、岩浆活动、全球演化研究等方面具有重要应用价值。
天津地质矿产研究所同位素地质实验测试室为许多高校和地质部门提供过大量高质量的Rb-Sr、Sm-Nd同位素测试数据。
天津地质矿产研究所同位素地质实验测试室对Rb-Sr、Sm-Nd同位素测定采用I.D.(Isotope Dilution)和I.C.(Isotope Concentration)分别测定的
双流程分析测试程序。
分析I.D组份时,将地质样品用混合酸(HF+HNO
3+HClO
4
)
溶解,溶解前加入适量稀释剂87Rb+84Sr和149Sm+146Nd,取上清液载入阳离子交换柱中,采用不同浓度的酸洗脱基体元素,收集Rb、Sr、LREE组份,收集的Sr 组份采用Sr-Spec树脂进行二次纯化。
分析I.C组份时,溶解后的样品直接进行离子交换柱化学分离, LREE组份采用Ln-Spec树脂进行Nd分离和富集。
收集目标元素,在TRITON热电离质谱上进行同位素测定。
本实验室用来校正TRITON热电离质谱的标样Sr、Nd同位素测定范围为:NBS987:87Sr/86Sr=0.710245±35,BCR-2:87Sr/86Sr=0.704958±30;LRIG:143Nd/144Nd=0.512202±25,BCR-2:143Nd/144Nd=0.512633±30。