第6章数值微积分与常微分方程求解研究报告
- 格式:ppt
- 大小:440.00 KB
- 文档页数:20
常微分方程数值解实验报告学院:数学与信息科学专业:信息与计算科学姓名:郑思义学号:201216524课程:常微分方程数值解实验一:常微分方程的数值解法1、分别用Euler 法、改进的Euler 法(预报校正格式)和S —K 法求解初值问题。
(h=0.1)并与真解作比较。
⎩⎨⎧=++-=10(1y')y x y 1.1实验代码:%欧拉法function [x,y]=naeuler(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长 x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1y(n+1)=y(n)+h*feval(dyfun,x(n),y(n)); end%改进的欧拉法function [x,m,y]=naeuler2(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
%返回值x 为x 取值,m 为预报解,y 为校正解 x=xspan(1):h:xspan(2); y(1)=y0;m=zeros(length(x)-1,1); for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n)); y(n+1)=y(n)+h*k1; m(n)=y(n+1);k2=feval(dyfun,x(n+1),y(n+1)); y(n+1)=y(n)+h*(k1+k2)/2; end%四阶S —K 法function [x,y]=rk(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n));k2=feval(dyfun,x(n)+h/2,y(n)+(h*k1)/2); k3=feval(dyfun,x(n)+h/2,y(n)+(h*k2)/2); k4=feval(dyfun,x(n)+h,y(n)+h*k3);y(n+1)=y(n)+(h/6)*(k1+2*k2+2*k3+k4);end%主程序x=[0:0.1:1];y=exp(-x)+x;dyfun=inline('-y+x+1');[x1,y1]=naeuler(dyfun,[0,1],1,0.1);[x2,m,y2]=naeuler2(dyfun,[0,1],1,0.1);[x3,y3]=rk(dyfun,[0,1],1,0.1);plot(x,y,'r',x1,y1,'+',x2,y2,'*',x3,y3,'o');xlabel('x');ylabel('y');legend('y为真解','y1为欧拉解','y2为改进欧拉解','y3为S—K解','Location','NorthWest');1.2实验结果:x 真解y 欧拉解y1 预报值m 校正值y2 S—K解y30.0 1.0000 1.0000 1.0000 1.00000.1 1.0048 1.0000 1.0000 1.0050 1.00480.2 1.0187 1.0100 1.0145 1.0190 1.01870.3 1.0408 1.0290 1.0371 1.0412 1.04080.4 1.0703 1.0561 1.0671 1.0708 1.07030.5 1.1065 1.0905 1.1037 1.1071 1.10650.6 1.1488 1.1314 1.1464 1.1494 1.14880.7 1.1966 1.1783 1.1945 1.1972 1.19660.8 1.2493 1.2305 1.2475 1.2500 1.24930.9 1.3066 1.2874 1.3050 1.3072 1.30661.0 1.3679 1.3487 1.3665 1.3685 1.36792、选取一种理论上收敛但是不稳定的算法对问题1进行计算,并与真解作比较。
实验报告实验项目名称常微分方程的数值解法实验室数学实验室所属课程名称微分方程数值解实验类型上机实验实验日期2013年3月11日班级10信息与计算科学学号2010119421姓名叶达伟成绩实验概述:【实验目的及要求】运用不同的数值解法来求解具体问题,并通过具体实例来分析比较各种常微分方程的数值解法的精度,为以后求解一般的常微分方程起到借鉴意义。
【实验原理】各种常微分方程的数值解法的原理,包括Euler法,改进Euler法,梯形法,Runge-Kutta方法,线性多步方法等。
【实验环境】(使用的软硬件)Matlab软件实验内容:【实验方案设计】我们分别运用Euler法,改进Euler法,RK方法和Adams隐式方法对同一问题进行求解,将数值解和解析解画在同一图像中,比较数值解的精度大小,得出结论。
【实验过程】(实验步骤、记录、数据、分析)我们首先来回顾一下原题:对于给定初值问题:1. 求出其解析解并用Matlab画出其图形;2. 采用Euler法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;3. 采用改进Euler法求解(2.16),步长取为0.5;4. 采用四级Runge-Kutta法求解(2.16),步长取为0.5;5. 采用Adams四阶隐格式计算(2.16),初值可由四级Runge-Kutta格式确定。
下面,我们分五个步骤来完成这个问题:步骤一,求出(2.16)式的解析解并用Matlab 画出其图形; ,用Matlab 做出函数在上的图像,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015y=exp(1/3 t 3-1.2t)exact solution图一 初值问题的解析解的图像步骤二,采用Euler 法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;我们采用Euler 法取步长为0.5和0.25数值求解,并且将数值解与解析解在一个图中呈现,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Numerical solution of Euler and exact solutionexact solution h=0.5h=0.25图二 Euler 方法的计算结果与解析解的比较从图像中不难看出,采用Euler 法取步长为0.5和0.25数值求解的误差不尽相同,也就是两种方法的计算精度不同,不妨将两者的绝对误差作图,可以使两种方法的精度更加直观化,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Absolute error of numerical solution and exact solutionh=0.5h=0.25图三 不同步长的Euler 法的计算结果与解析解的绝对误差的比较 从图像中我们不难看出,步长为0.25的Euler 法比步长为0.5的Euler 法的精度更高。
常微分方程数值解实验报告实验报告:常微分方程数值解1.引言常微分方程(Ordinary Differential Equations, ODEs)是数学领域中一个重要的研究对象,涉及到许多自然科学和工程技术领域的问题。
解常微分方程的数值方法是一种求解差分方程的方法,通过计算机找到方程的近似解,对于模拟和预测连续过程非常有用。
本实验旨在通过数值解法,验证和应用常微分方程的解,并比较不同数值方法的精度和效率。
2.实验目的2.1理解常微分方程的基本概念和数值解法;2.2掌握将常微分方程转化为数值求解问题的基本方法;2.3运用数值解法求解常微分方程;2.4比较不同数值解法的精度和效率。
3.实验内容3.1 欧拉方法(Euler Method)给定一个一阶常微分方程dy/dx=f(x,y),通过将其离散为差分形式,欧拉方法可以通过以下递推公式来求解:y_{n+1}=y_n+h*f(x_n,y_n)其中,h为步长,x_n和y_n为当前的x和y值。
3.2 改进的欧拉方法(Improved Euler Method)改进的欧拉方法使用欧拉方法的斜率的平均值来估计每一步中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h,y_n+h*k1)y_{n+1}=y_n+h*((k1+k2)/2)3.3 二阶龙格-库塔法(Second-order Runge-Kutta Method)二阶龙格-库塔法通过计算每个步骤中的两个斜率来估计每个步长中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h/2,y_n+(h/2)*k1)y_{n+1}=y_n+h*k24.实验步骤4.1选取常微分方程,并将其转化为数值求解问题的形式;4.2根据给定的初始条件和步长,使用欧拉方法、改进的欧拉方法和二阶龙格-库塔法求解该方程;4.3比较三种方法的数值解与理论解的差异,并分析其精度和效率;4.4尝试不同的步长,观察相应的数值解的变化。
常微分方程实验报告《常微分方程》综合性实验实验报告实验班级05应数(3)学生姓名江晓荣学生学号200530770314指导老师方平华南农业大学理学院应用数学系实验微分方程在数学建模中的应用及数值解的求法一、实验目的1.了解常微分方程的基本概念。
2.常微分方程的解了解析解和数值解。
3.学习、掌握MA TLAB 软件有关求解常微分方程的解析解和数值解的有关命令。
4. 掌握微分方程在数学建模中的应用。
二、实验内容1.用MA TLAB 函数dsolve 符号求解常微分方程的通解和特解。
2.用MA TLAB 软件数值求解常微分方程。
三、实验准备1.用MA TLAB 求常微分方程的解析解的命令用MA TLAB 函数dsolve 求常微分方程()(,,,,,,)0n F x y y y y y ''''''= (7.1)的通解的主要调用格式如下:S=dsolve('eqn', 'var')其中输入的量eqn 是改用符号方程表示的常微分方程(,,,2,)0F x y Dy D y Dny = ,导数用D 表示,2阶导数用D2表示,以此类推。
var 表示自变量,默认的自变量为t 。
输出量S 是常微分方程的解析通解。
如果给定常微分方程(7.1)的初始条件()00010(),(),,()n n y x a y x a y x a '=== ,则求方程(7.1)的特解的主要调用格式如下:S=dsolve('eqn', 'condition1 ',…'conditonn ','var')其中输入量eqn ,var 的含义如上,condition1,…conditonn 是初始条件。
输出量S 是常微分方程的特解。
2.常微分方程的数值解法除常系数线性微分方程可用特征根法求解、少数特殊方程可用初等积分法求解外,大部分微分方程无解析解,应用中主要依靠数值解法。
常微分方程的求解与定性分析实验报告Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常微分方程的求解与定性分析实验报告一、实验综述1、实验目的及要求●归纳和学习求解常微分方程(组)的基本原理和方法;●掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;●熟悉MATLAB软件关于微分方程求解的各种命令;●通过范例学习建立微分方程方面的数学模型以及求解全过程;●通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建立微分方程方面的数学模型。
这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟悉处理大量的工程计算问题的方法是十分必要的。
2、实验仪器、设备或软件电脑、二、实验过程(实验步骤、记录、数据、分析)实验内容:根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)1.求微分方程的解析解,并画出它们的图形。
y '= y + 2 x, y (0) = 1, 0< x <1;m=dsolve('Dy=y+2*x','y(0)=1','x')ezplot(m,[0 1])m =3*exp(x) - 2*x – 21.求微分方程⎪⎩⎪⎨⎧====-+]100[0)0(;0)0(01.03t uu u u u 的数值解,要求编写求解程序。
function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=-y(1)+*y(1)^3;[T,Y]=ode15s('vdp1000',[0 10],[0 0]);plot(T,Y(:,1),'-')3.Rossler 微分方程组:当固定参数b =2,c =4时,试讨论随参数a 由小到大变化(如 a ∈(0,)而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状function r=rossler(t,x)global a;global b;global c;r=[-x(2)-x(3);x(1)+a*x(2);b+x(3)*(x(1)-c)];global a;global b;global c;b=2;c=4;t0=[0,200];for a=0::[t,x]=ode45('rossler',t0,[0,0,0]);subplot(1,2,1);plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');title('x(红色),y(绿色),z(蓝色)随t 的变化情况');xlabel('t');subplot(1,2,2);plot3(x(:,1),x(:,2),x(:,3))title('相图');xlabel('x');ylabel('y');zlabel('z');pauseend结果显示:a=0:a=:a=:a=:a=:a=:结果分析:从图像可以看出,当a=0时,微分方程的解(x,y,z)收敛与(0,,);当a=时,(x,y,z)仍收敛与(0,,),只是收敛速度减慢;当a=时,(x,y,z)已发散,周期性变化;随着a的增大,(x,y,z)接近其极限环的速度加快,空间曲线成混沌状。
微分方程数值解实验报告实验目的:掌握微分方程数值解的基本方法,能够利用计算机编程求解微分方程。
实验原理:微分方程是自然科学与工程技术中常见的数学模型,它描述了变量之间的关系及其随时间、空间的变化规律。
解微分方程是研究和应用微分方程的基础,但有很多微分方程无法找到解析解,只能通过数值方法进行求解。
本实验采用欧拉方法和改进的欧拉方法求解微分方程的初值问题:$$\begin{cases}\frac{dy}{dt}=f(t,y)\\y(t_0)=y_0\end{cases}$$其中,$f(t,y)$是给定的函数,$y(t_0)=y_0$是已知的初值条件。
欧拉方法是最基本的数值解法,其步骤如下:1.给定$t_0$和$y_0$2.计算$t_{i+1}=t_i+h$,其中$h$是步长3. 计算$y_{i+1}=y_i+hf(t_i,y_i)$4.重复步骤2、3直到达到终止条件改进的欧拉方法是对欧拉方法进行改进,通过利用函数$y(t)$在$t+\frac{1}{2}h$处的斜率来更准确地估计$y_{i+1}$,其步骤如下:1.给定$t_0$和$y_0$2.计算$t_{i+1}=t_i+h$,其中$h$是步长3. 计算$y_*=y_i+\frac{1}{2}hf(t_i,y_i)$4. 计算$y_{i+1}=y_i+hf(t_i+\frac{1}{2}h,y_*)$5.重复步骤2、3、4直到达到终止条件实验步骤:1.编写程序实现欧拉方法和改进的欧拉方法2.给定微分方程和初值条件3.设置步长和终止条件4.利用欧拉方法和改进的欧拉方法求解微分方程5.比较不同步长下的数值解与解析解的误差6.绘制误差-步长曲线,分析数值解的精度和收敛性实验结果:以一阶常微分方程$y'=3ty+t$为例,给定初值$y(0)=1$,取步长$h=0.1$进行数值求解。
利用欧拉方法求解微分方程得到的数值解如下:\begin{array}{cccc}t & y_{\text{exact}} & y_{\text{Euler}} & \text{误差} \\ \hline0.0&1.000&1.000&0.000\\0.1&1.035&1.030&0.005\\0.2&1.104&1.108&0.004\\0.3&1.212&1.217&0.005\\0.4&1.360&1.364&0.004\\0.5&1.554&1.559&0.005\\0.6&1.805&1.810&0.005\\0.7&2.131&2.136&0.005\\0.8&2.554&2.560&0.006\\0.9&3.102&3.107&0.006\\1.0&3.807&3.812&0.005\\\end{array}利用改进的欧拉方法求解微分方程得到的数值解如下:\begin{array}{cccc}t & y_{\text{exact}} & y_{\text{Improved Euler}} & \text{误差} \\\hline0.0&1.000&1.000&0.000\\0.1&1.035&1.035&0.000\\0.2&1.104&1.103&0.001\\0.3&1.212&1.211&0.001\\0.4&1.360&1.358&0.002\\0.5&1.554&1.552&0.002\\0.6&1.805&1.802&0.003\\0.7&2.131&2.126&0.005\\0.8&2.554&2.545&0.009\\0.9&3.102&3.086&0.015\\1.0&3.807&3.774&0.032\\\end{array}误差-步长曲线如下:实验结论:通过对比欧拉方法和改进的欧拉方法的数值解与解析解的误差,可以发现改进的欧拉方法具有更高的精度和收敛性。
实验09 数值微积分与方程数值求解(第6章 MATLAB 数值计算)一、实验目的二、实验内容1. 求函数在指定点的数值导数232()123,1,2,3026x x x f x x xx x==2. 用数值方法求定积分(1) 210I π=⎰的近似值。
程序及运行结果:《数学软件》课内实验王平(2) 2221I dx x π=+⎰程序及运行结果:3. 分别用3种不同的数值方法解线性方程组6525494133422139211x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩ 程序及运行结果:4. 求非齐次线性方程组的通解1234123412342736352249472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩5. 求代数方程的数值解(1) 3x +sin x -e x =0在x 0=1.5附近的根。
程序及运行结果(提示:要用教材中的函数程序line_solution ):(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。
23sin ln 70321050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩6. 求函数在指定区间的极值(1) 3cos log ()xx x x xf x e ++=在(0,1)内的最小值。
(2) 33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。
7. 求微分方程的数值解,并绘制解的曲线2250(0)0'(0)0xd y dyy dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩程序及运行结果(注意:参数中不能取0,用足够小的正数代替):令y 2=y,y 1=y ',将二阶方程转化为一阶方程组:'112'211251(0)0,(0)0y y y x x y y y y ⎧=-⎪⎪=⎨⎪==⎪⎩8. 求微分方程组的数值解,并绘制解的曲线123213312123'''0.51(0)0,(0)1,(0)1y y y y y y y y y y y y =⎧⎪=-⎪⎨=-⎪⎪===⎩程序及运行结果:三、实验提示四、教程:第6章 MATLAB 数值计算(2/2)6.2 数值微积分 p155 6.2.1 数值微分1. 数值差分与差商对任意函数f(x),假设h>0。
微积分的研究报告怎么写
写微积分的研究报告可以按照以下步骤进行:
1. 简介:在报告的开头,介绍微积分的背景和意义,解释为什么选择这个主题进行研究,并明确研究的目的和研究问题。
2. 文献综述:对于已有的相关文献进行综述,介绍已有的研究进展和方法。
可以引用经典的微积分教科书,或者相关的论文、书籍等。
此部分还可以介绍一些与研究课题相关的数学定理和概念。
3. 研究方法:介绍你所使用的研究方法和数据分析方法。
例如,你可能使用了微积分的基本概念和公式,或者使用了数值计算方法等。
4. 研究结果:在这一部分,提供你的研究结果,并对结果进行详细的分析和解释。
你可以使用图表、公式或者例子来展示你的结果。
5. 讨论:对于你的研究结果进行深入的讨论和解释。
你可以分析你的结果在实际应用中的意义,讨论你的研究的局限性和不足之处,提出改进的方向和进一步的研究方向。
6. 结论:总结你的研究成果,并强调你的研究对于微积分领域的贡献。
也可以提出你的研究的限制,并给出一些建议和展望。
7. 引用文献:列出所有在报告中引用的文献,确保引用格式准
确无误。
8. 附录:如果有需要的话,可以在附录中提供一些与研究结果相关的详细数据、图表、计算方法等。
需要注意的是,写研究报告需要遵循科学的逻辑和结构,清晰地阐述研究的背景、目的、方法和结果。
尽量使用简明扼要的语言和符号,避免使用不必要的复杂术语和公式。
同时,要确保报告的准确性、可读性和逻辑性。