滞后-超前校正
- 格式:doc
- 大小:306.00 KB
- 文档页数:16
超前校正和滞后校正的使用条件超前校正和滞后校正,这听起来像是那些高深莫测的数学概念,其实不然,今天我们就来聊聊这两位“调皮的小朋友”,看看它们在生活中怎么为我们服务的。
超前校正就像那种总是提前到达的朋友,永远想着“我得早点儿准备好”,而滞后校正呢,就像那种总是慢半拍的家伙,总是说“等一下,我再想想”。
这两者在实际应用中,真的是各有千秋,缺一不可。
说到超前校正,想象一下你正在开车,前方的红灯闪烁着,哦,这时候你得赶紧减速,不能等到快到才急急忙忙踩刹车。
超前校正的意思就是让你提前预判,防止意外的发生。
比如,在生产线上,如果你能提前发现产品的缺陷,咱们就可以及时调整,避免大规模的返工,这不就是为后续省下了不少麻烦嘛!在生活中,我们常常需要这种能力,想想考试前的复习,提前准备,才能在考试时游刃有余,不至于手忙脚乱。
咱们得提提滞后校正,它可不是“慢半拍”的代名词,虽然有时候让人觉得有点儿拖拉。
它其实是一种反应机制,更多的是在事后总结经验教训。
比如说,你刚刚做完一个项目,结果发现有些地方做得不够好,这个时候你得坐下来,分析一下问题出在哪儿,然后再来个大改进。
就像在玩游戏的时候,死了再重来,慢慢积累经验,下次就能把关卡打得漂亮多了。
滞后校正让我们在失误中成长,反思之后再出发,确实是种智慧。
现在,咱们再聊聊这两个“小家伙”在实际应用中的使用条件。
超前校正需要的是清晰的信息和准确的数据。
你得知道前方会发生什么,这样才能提前做出反应。
这就像是天气预报一样,知道今天要下雨,那就提前带把伞。
反之,如果你没有准确的数据,盲目预判,那就容易犯错误,搞得自己手忙脚乱。
试想一下,开车的时候,如果前面有个大坑,你不知道,结果“咣当”一声,别提有多尴尬了。
至于滞后校正,它最适合用在那些可以慢慢调整的地方,比如说生产流程、项目管理之类的。
你得留出时间来反思,不然就是在白忙活,像个无头苍蝇,乱撞不知所措。
特别是在团队合作中,每个人都有自己的意见,慢慢来,听听大家的反馈,咱们才能一起进步。
串联超前校正和滞后校正的不同之处在控制系统中,超前校正和滞后校正是两种常见的校正方法。
它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
本文将从理论和实践两个方面,分别探讨串联超前校正和滞后校正的不同之处。
一、理论分析1. 超前校正超前校正是指在控制系统中,通过提前控制信号的相位,使得系统的相位裕度增加,从而提高系统的稳定性和响应速度。
具体来说,超前校正是通过在控制信号中加入一个比例项和一个积分项,来提高系统的相位裕度。
这样,系统就能更快地响应外部干扰和变化,从而提高系统的性能。
2. 滞后校正滞后校正是指在控制系统中,通过延迟控制信号的相位,使得系统的相位裕度减小,从而提高系统的稳定性和抗干扰能力。
具体来说,滞后校正是通过在控制信号中加入一个比例项和一个微分项,来减小系统的相位裕度。
这样,系统就能更好地抵抗外部干扰和变化,从而提高系统的性能。
二、实践应用1. 超前校正超前校正在实践中的应用非常广泛。
例如,在电力系统中,超前校正可以用来提高电力系统的稳定性和响应速度。
在机械控制系统中,超前校正可以用来提高机械系统的精度和响应速度。
在化工生产中,超前校正可以用来提高化工生产的稳定性和生产效率。
2. 滞后校正滞后校正在实践中的应用也非常广泛。
例如,在飞行控制系统中,滞后校正可以用来提高飞行器的稳定性和抗干扰能力。
在汽车控制系统中,滞后校正可以用来提高汽车的稳定性和安全性。
在医疗设备中,滞后校正可以用来提高医疗设备的精度和稳定性。
总之,串联超前校正和滞后校正是两种常见的校正方法,它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
在实践中,我们需要根据具体的应用场景和需求,选择合适的校正方法,以达到最佳的控制效果。
相位超前和滞后在控制系统中的作用如下:
1. 超前校正:目的是改善系统的动态性能,在系统静态性能不受损的前提下,提高系统的动态性能。
通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。
一般使校正环节的最大相位超前角出现在系统新的穿越频率点。
2. 滞后校正:通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。
它利用滞后校正环节的低通滤波特性,在不影响校正后系统低频特性的情况下,使校正后系统中高频段增益降低,从而使其穿越频率前移,达到增加系统相位裕度的目的。
3. 滞后-超前校正:是滞后校正与超前校正的组合。
它具有超前校正的提高系统相对稳定性和响应快速性;同时又具有滞后校正的不影响原有动态性能的前提下,提高系统的开环增益,改善系统的稳定性能。
它具有低频端和高频端频率衰减的特性,故又称带通滤波器。
这种校正方式适用于对校正后系统的动态和静态性能有更多更高要求的场合。
目录摘要 (1)引言 (2)1 滞后-超前校正设计目的和原理 (2)1.1滞后-超前校正设计目的 (2)1.2滞后-超前校正设计原理 (2)2 滞后-超前校正的设计过程 (4)2.1校正前系统的参数 (4)2.1.1 用MATLAB绘制校正前系统的伯德图 (4)2.1.2 用MATLAB求校正前系统的幅值裕量和相位裕量 (5)2.1.3 用MATLAB绘制校正前系统的根轨迹 (6)2.1.4 对校正前系统进行仿真分析 (7)2.2滞后-超前校正设计参数计算 (8)ω (8)2.2.1 选择校正后的截止频率c2.2.2确定校正参数β、2T和1T (8)2.3滞后-超前校正后的验证 (9)2.3.1 用MATLAB求校正后系统的幅值裕量和相位裕量 (9)2.3.2 用MATLAB绘制校正后系统的伯德图 (10)2.3.3 用MATLAB绘制校正后系统的根轨迹 (11)2.3.4 用MATLAB对校正前后的系统进行仿真分析 (12)结束语 (14)参考文献 (15)用MATLAB进行控制系统的滞后-超前校正设计摘要自动控制技术的应用日益广泛,除了在国防、空间科技等尖端领域里成为不可或缺的重要技术之外,在机电工程、冶金、化工、轻工、交通管理、环境保护、农业等领域中,自动控制技术的作用也日显突出。
自动控制技术的运用大大提高了劳动生产率和产品质量,同时,也改善了劳动条件,在改善人类的居住环境和提高生活质量方面也发挥了非常重要的作用。
今天的社会生活中,自动化装置已经无所不在,为人类文明进步做出了重要的贡献。
自动控制系统的课程设计是检验我们学过知识扎实程度的好机会,也让我们的知识体系更加系统,更加完善。
在不断学习新知识的基础上得到了动手能力的训练,启发创新思维及独立解决实际问题的能力,提高设计、装配、调试能力。
关键词:滞后超前校正伯德图 MATLAB 校正参数引言如果系统设计要求满足的性能指标属频域特征量,则通过采用频域校正方法。
在开环系统对数频率特性基础上,满足稳态误差、开环系统截止频率和相角裕度等要求出发点,进行串联矫正的方法。
在伯德图上虽然不能严格定量的给出系统的动态性能,但却能方便地根据频域指标确定校正装置的形式和参数,特别是对校正系统的高频特性有要求时,采用频域法校正较其它方法更方便。
串联滞后校正-超前校正兼有滞后校正和超前校正的优点,当待校正系统不稳定,且要求校正后系统的响应速度、相角裕度和稳态精度要求较高时,应采用串联滞后-超前校正。
其基本原理是利用滞后-超前网络的超前部分来增大系统的相角裕度,同时利用滞后部分来改善系统的稳态性能。
1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类:分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
1.2 滞后-超前校正设计原理滞后-超前校正RC网络电路图如图1所示:图1 下面推导它的传递函数: ()()()()()222112122112211221111221111111)(s C R C R s C R C R C R s C R s C R sC R sC R sC R sC R s E s M s G c ++++++=++++== 令1,,,21221121222111>++=+==βββC R C R C R T T C R T C R T ,则 ()()()()s T s T s T s T s G c 21211111ββ+⎪⎪⎭⎫ ⎝⎛+++= 其中1T 为超前部分的参数,2T 为滞后部分的参数。
滞后-超前校正的频域设计实际是超前校正和滞后校正频域法设计的综合,基本方法是利用滞后校正将系统校正后的穿越频率调整到超前部分的最大相角处的频率。
具体方法是先合理地选择截止频率c ω,先设计滞后校正部分,再根据已经选定的β设计超前部分。
应用频率法确定滞后超前校正参数的步骤:1、根据稳态性能指标,绘制未校正系统的伯德图;2、选择校正后的截止频率c ω;3、确定校正参数β;4、确定滞后部分的参数2T ;5、确定超前部分的参数1T ;6、将滞后部分和超前部分的传递函数组合在一起,即得滞后-超前校正的传递函数;7、绘制校正后的伯德图,检验性能指标。
2 滞后-超前校正的设计过程2.1 校正前系统的参数根据初始条件,调整开环传递函数:()()()s s s Ks G 5.0115.0++=当系统的静态速度误差系数110-=S K v 时,v K K =5.0。
则120-=s K满足初始条件的最小K 值时的开环传递函数为()()()s s s s G 5.01110++=2.1.1 用MATLAB 绘制校正前系统的伯德图程序:num=[10];den=[0.5,1.5,1,0];bode(num,den)grid得到的伯德图如图2所示:图22.1.2 用MATLAB求校正前系统的幅值裕量和相位裕量用命令margin(G)可以绘制出G的伯德图,并标出幅值裕量、相位裕量和对应的频率。
用函数[kg,r,wg,wc]=margin(G)可以求出G的幅值裕量、相位裕量和幅值穿越频率。
程序:num=[10];den=[0.5,1.5,1,0];G=tf(num,den);margin(G)[kg,r,wg,wc]=margin(G)得到的幅值裕量和相位裕量如图3所示:图3运行结果: kg=0.3000 r=-28.0814wg=1.4142 wc=2.4253即幅值裕量dB h 5.103.0lg 20-==,相位裕量β=-28.0814o 。
2.1.3 用MATLAB 绘制校正前系统的根轨迹MATLAB 中专门提供了绘制根轨迹的有关函数。
[p,z]=pzmap(num,den)的功能是绘制连续系统的零、极点图。
[r,k]=rlocus(num,den)的功能是绘制∞→=0k 部分的根轨迹。
程序:num=[10];den=[0.5,1.5,1,0];rlocus(num,den)得到校正前系统的根轨迹如图4所示:图42.1.4 对校正前系统进行仿真分析Simulink是可以用于连续、离散以及混合的线性、非线性控制系统建模、仿真和分析的软件包,并为用户提供了用方框图进行建模的图形接口,很适合于控制系统的仿真。
仿真后得到的结果如图5和图6所示:图5图62.2 滞后-超前校正设计参数计算2.2.1 选择校正后的截止频率c ω若性能指标中对系统的快速性未提明确要求时,一般对应()︒-=∠180ωj G 的频率作为c ω。
从图3中得,c ω=1.5。
这样,未校正系统的相位裕量为0o ,与要求值仅差+45o ,这样大小的超前相角通过简单的超前校正是很容易实现的。
2.2.2确定校正参数β、2T 和1Tβ由超前部分应产生超前相角ϕ而定,即ϕϕβsin 1sin 1-+=。
在本题中,︒=︒+︒=50545ϕ,因此55.750sin 150sin 1≈︒-︒+=β 取c T ω15112=,以使滞后相角控制在-5o 以内,因此1.012=T ,滞后部分的传递函数为01.01.0++s s 。
过()()c c j G ωωlg 20,-,作20dB/dec 直线,由该直线与0dB 线交点坐标1T β确定1T 。
未校正系统的伯德图在c ω=1.5处的增益是13dB 。
所以过点(1.5,-13)画一条20dB/dec 的直线,与0dB 线的交点确定转折频率。
经计算得,转折频率89.011=T ,另一转折频率为7.61=T β。
所以超前部分的传递函数为7.689.0++s s 。
将滞后校正部分和超前校正部分的传递函数组合在一起,得滞后-超前校正的传递函数为:()01.01.07.689.0++++=s s s s s G c 系统校正后的传递函数为: ()()()()()()()()01.07.615.011.089.010++++++=s s s s s s s s G s G c 2.3 滞后-超前校正后的验证由于校正过程中,多处采用的是近似计算,可能会造成滞后-超前校正后得到的系统的传递函数不满足题目要求的性能指标。
所以需要对滞后-超前校正后的系统进行验证。
下面用MATLAB 求已校正系统的相角裕量和幅值裕量。
2.3.1 用MATLAB 求校正后系统的幅值裕量和相位裕量程序:num=[10,9.9,0.89];den=[0.5,4.855,11.0985,6.8055,0.067,0];G=tf(num,den);margin(G)[kg,r,wg,wc]=margin(G)得到的校正后系统的幅值裕量和相位裕量如图7所示:1010101010101010P h a s e (d e g )Bode DiagramGm = 15.4 dB (at 3.68 rad/sec) , P m = 47.6 deg (at 1.21 rad/sec)Frequency (rad/sec)-150-100-50050100150M a g n i t u d e (d B )图7运行结果: kg=5.9195 r=47.6239wg=3.6762 wc=1.2072即校正后系统的相位裕量︒=6239.47γ,()10lim 0==→s sG K s v 满足指标。
假设验证结果不满足指标,重新选择校正后的截止频率,重复上述过程,直到满足性能指标为止。
2.3.2 用MATLAB 绘制校正后系统的伯德图程序:num=[10,9.9,0.89];den=[0.5,4.855,11.0985,6.8055,0.067,0];bode(num,den)grid得到的伯德图如图8所示:图8 2.3.3 用MATLAB绘制校正后系统的根轨迹程序:num=[10,9.9,0.89];den=[0.5,4.855,11.0985,6.8055,0.067,0];rlocus(num,den)得到的校正后系统的根轨迹如图9所示:图92.3.4 用MATLAB对校正前后的系统进行仿真分析用Simulink对校正后的系统仿真。