串联滞后-超前校正剖析
- 格式:ppt
- 大小:172.00 KB
- 文档页数:10
目录一、设计目的-------------------------------------------------------------1二、设计要求-------------------------------------------------------------1三、实现过程-------------------------------------------------------------33.1系统概述-------------------------------------------------------- 33.1.1设计原理------------------------------------------------- 33.1.2设计步骤------------------------------------------------- 43.2设计与分析----------------------------------------------------- 53.2.1校正前参数确定--------------------------------------- 53.2.2确定校正网络的传递函数--------------------------- 53.2.3 理论系统校正后系统的传递函数和BODE 图-- 73.2.4系统软件仿真------------------------------------------ 8四、总结------------------------------------------------------------------15五、参考文献-------------------------------------------------------------16自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。
定常系统的频率法超前校正1问题描述用频率法对系统进行校正,是利用超前校正网络的相位超前特性来增大系统的相位裕量,从而提高系统的稳定性,致使闭环系统的频带扩展,以达到改善系统暂态响应的目的。
但系统频带的加宽也会带来一定的噪声干扰,为了系统具有满意的动态性能,高频段要求幅值迅速衰减,以减少噪声影响。
2设计过程和步骤2.1题目 已知单位反馈控制系统的开环传递函数:设计超前校正装置,使校正后系统满足:2.2计算校正传递函数(1)根据稳态误差的要求,确定系统的开环增益K则解得100k =(2)由于开环增益100k =,在MATLAB 中输入以下命令:z=[ ] ;p=[0,-10,-100];k=100000;[num,den]=zp2tf(z,p,k);[mag,phase,w]=bode(num,den);margin(mag,phase,w);则可得未校正系统的伯德图如图1所示:图1 校正前系统的伯德图由图中可以看出相位裕量角为061.1(3)谐振峰值为%0.161 1.250.4r M σ-=+=, 给定系统的相位裕量值1arcsin()53.1301r M γ==,由于未校正系统的开环对数幅频特性在剪切频率处的斜率为40/db dec -,一般取005~10ε=,在这里取为10,超前校正装置应提供的相位超前量φ,即:5201.611061.11301.531=+-=+-==εγγφφmε是用于补偿因超前装置的引入,使系统的剪切频率增大而增加的相角迟后量。
(4)根据所确定的最大相位超前角m φ,按下式计算相应的α(5)计算校正装置在m w 处的幅值110log α。
由于校正系统的对数幅频特性图,求得其幅值为110log α-处的频率,该频率m φ就是校正后系统的开环剪切频率c w ,即76.80==m c ωω(6)确定校正网络的转折频率和1ω、2ω4946.200644.076.8011=⨯===αωωm T ,(7)画出校正后系统的伯德图,并验算相应的相位裕量是否满足要求?如果不满足,则改变ε值,从步骤(3)开始重新进行计算。
题 目: 温度控制系统的滞后超前校正初始条件:某温箱的开环传递函数为 1.5()(61)sp e G s s s -=+要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 试用Matlab 绘制其波特图和奈奎斯特图,计算相角裕度和幅值裕度;2、 试设计滞后超前校正装置,使系统的相角裕度增加20度。
3、 用Matlab 对校正后的系统进行仿真,画出阶跃相应曲线时间安排:指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日温度控制系统的滞后超前校正1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类:分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
在此课题中,滞后-超前校正设计的主要目的是使开环传递函数的相角裕度增加20度。
1.2 滞后-超前校正设计原理滞后-超前校正RC 网络电路图如图1所示:图1 滞后-超前校正RC 网络它的传递函数:)1)(1()1)(1()(asT s aT s T s T s G b a b a c ++++=其中a>1,(1+)s T a /(1+aT )s a 为网络的滞后部分,(1+s T b )/(1+s T b /a)为网络的超前部分。
滞后-超前校正RC 网络特性如图2所示图2 滞后-超前校正RC 网络特性无源滞后-超前网络的对数幅频特性如上图,其低频部分和高频部分均起于和终于零分贝水平线。
串联校正6.3.1串联超前校正(基于频率响应法)用频率法对系统进行校正的基本思路是:通过所加校正装置,改变系统开环频率特性的形状,即要求校正后系统的开环频率特性具有如下特点:✍低频段的增益充分大,满足稳态精度的要求;✍中频段的幅频特性的斜率为-20dB/dec,并具有较宽的频带,这一要求是为了系统具有满意的动态性能;✍高频段要求幅值迅速衰减,以较少噪声的影响。
用频率法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目点。
为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。
对截止频率没有特别要求时。
用频率法对系统进行串联超前校正的一般步骤可归纳为:✍根据稳态误差的要求,确定开环增益K。
✍根据所确定的开环增益K,画出未校正系统的波特图,计算未校正系统的相位裕度 。
✍根据截止频率c ω''的要求,计算超前网络参数a 和T ;关键是选择最大超前角频率等于要求的系统截止频率,即c m ωω''=,以保证系统的响应速度,并充分利用网络的相角超前特性。
显然,c m ωω''=成立的条件是a L L c c c o lg 10)()(==''-ωω (6-35)由上式可求出aa T m ω1= (6-36)由(6-36)求出T。
✍验证已校正系统的相位裕度γ''。
✍由给定的相位裕度值γ,计算超前校正装置提供的相位超前量ϕ,即补偿校正前给定的←+-==↑↑''εγϕϕγmε是用于补偿因超前校正装置的引入,使系统截止频率增大而增加的相角滞后量。
ε值通常是这样估计的:如果未校正系统的开环对数幅频特性在截止频率处的斜率为-40dB/dec ,一般取︒︒=10~5ε;如果为-60dB/dec 则取︒︒=20~15ε。
✍根据所确定的最大相位超前角m ϕ按m ma ϕϕsin 1sin 1-+=(6-37) 算出a 的值。
课题:串联超前校正滞后装置专业:电气工程及其自动化班级:组长:组员:指导教师:设计日期:成绩:超前校正课程设计报告一、设计目的(1)把握操纵系统设计与校正的步骤和方式。
(2)把握对操纵系统相角裕度、稳态误差、剪切频率、相角穿越频率和增益裕度的求取方式。
(3)把握利用Matlab 对操纵系统分析的技术。
熟悉MATLAB 这一解决具体工程问题的标准软件,能熟练地应用MATLAB 软件解决操纵理论中的复杂和工程实际问题,并给以后的模糊操纵理论、最优操纵理论和多变量操纵理论等奠定基础。
(4)提高操纵系统设计和分析能力。
二、设计要求与内容已知单位负反馈系统的开环传递函数0()(1)(0.251)K G S S S S =++,试用频率法设计串联校正装置,要求校正后系统的静态速度误差系数1v K 5s -≥,系统的相角裕度045γ≥,校正后的剪切频率2C rad s ω≥已知参数和设计要求:1.前期基础知识,要紧包括MATLAB 系统要素,MATLAB 语言的变量与语句,MATLAB 的矩阵和矩阵元素,数值输入与输出格式,MATLAB 系统工作空间信息,和MATLAB 的在线帮忙功能等。
2.操纵系统模型,要紧包括模型成立、模型变换、模型简化,Laplace 变换等等。
3.操纵系统的时域分析,要紧包括系统的各类响应、性能指标的获取、零极点对系统性能的阻碍、高阶系统的近似研究,操纵系统的稳固性分析,操纵系统的稳态误差的求取。
4.操纵系统的根轨迹分析,要紧包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和操纵系统的根轨迹分析。
5.操纵系统的频域分析,要紧包括系统Bode图、Nyquist图、稳固性判据和系统的频域响应。
6.操纵系统的校正,要紧包括根轨迹法超前校正、频域法超前校正、频域法滞后校正和校正前后的性能分析。
三、实现进程1、系统概述所谓校正,确实是在系统中加入一些其参数能够依照需要而改变的机构或装置,使系统整个特性发生转变,从而知足给定的各项性能指标。
第1篇一、实验目的1. 理解超前校正的原理及其在控制系统中的应用。
2. 掌握超前校正装置的设计方法。
3. 通过实验验证超前校正对系统性能的改善效果。
二、实验原理超前校正是一种常用的控制方法,通过在系统的前向通道中引入一个相位超前网络,来改善系统的动态性能。
超前校正能够提高系统的相角裕度和截止频率,从而改善系统的快速性和稳定性。
超前校正装置的传递函数一般形式为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K \) 为校正装置的增益,\( T_{s} \) 为校正装置的时间常数。
三、实验设备1. 控制系统实验平台2. 数据采集卡3. 计算机及仿真软件(如MATLAB/Simulink)4. 待校正系统四、实验步骤1. 搭建待校正系统模型:在仿真软件中搭建待校正系统的数学模型,包括系统的传递函数、输入信号等。
2. 分析系统性能:通过仿真软件分析待校正系统的性能,包括稳态误差、超调量、上升时间等。
3. 设计超前校正装置:根据待校正系统的性能要求,设计合适的超前校正装置参数。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
5. 实验数据分析:对实验数据进行分析,比较校正前后系统的性能差异。
五、实验内容1. 系统模型搭建:搭建一个简单的二阶系统模型,其传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]2. 系统性能分析:分析该系统的稳态误差、超调量、上升时间等性能指标。
3. 设计超前校正装置:根据系统性能要求,设计一个超前校正装置,其传递函数为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K = 2 \),\( T_{s} = 0.5 \)。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
目录一、设计目的-------------------------------------------------------------1二、设计要求-------------------------------------------------------------1三、实现过程-------------------------------------------------------------33.1系统概述-------------------------------------------------------- 33.1.1设计原理------------------------------------------------- 33.1.2设计步骤------------------------------------------------- 43.2设计与分析----------------------------------------------------- 53.2.1校正前参数确定--------------------------------------- 53.2.2确定校正网络的传递函数--------------------------- 53.2.3 理论系统校正后系统的传递函数和BODE 图-- 73.2.4系统软件仿真------------------------------------------ 8四、总结------------------------------------------------------------------15五、参考文献-------------------------------------------------------------16自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。
6-2 串联超前(微分)校正一、RC 超前网络RC 超前网络如图6-3所示,其传递函数为111)()(++=Ts aTs a s U s U r c 式中 1;2212121>+=+=R R R a C R R R R T 为了讨论问题的方便,在网络前(或后)附加一个放大器,使其放大系数等于a 。
这样的超前网络作为校正装置,其传递函数可看成为11)(++=Ts aTs s G c其对数频率特性曲线如图6-4所示。
显然,超前网络对频率在1/aT ~1/T 之间的输入信号有明显的微分作用,在该频率范围内,输出信号的相角超前于输入信号的相角。
超前网络的名称也由此而来。
由图6-4可见,当频率等于最大超前角频率m ω时,相角超前量最大,以m ϕ表示。
而m ω又恰好是频率1/aT 和1/T 的几何中点,即aT T aT m 1lg )1lg 1(lg 21lg =+=ω 因此 a T m 1=ω (6-1)最大超前角为 T arctg T arctga m m m ωωϕ-=根据三角函数两角求和公式,可解得 a a arctg m 21-=ϕ 或 11arcsin +-=a a m ϕ (6-2) 上式表明,m ϕ仅与a 值有关,a 值选得越大,则超前网络的微分效应越强。
实际选用的a 值必须考虑到网络物理结构的限制及附加放大器的放大系数等原因,一般取值不大于20。
此外,m ω处的对数幅值为a j G L m c m lg 10|)(|lg 20==ω (6-3)a 与m ϕ和10lga 的关系曲线如图6-5所示。
二、串联超前校正利用超前网络进行串联校正的基本原理,乃是利用超前网络相角超前特性。
只要正确地将超前网络的交接频率1/aT 和1/T 设置在待校正系统截止频率c ω的两边,就可以使已校正系统的截止频率'c ω和相裕量满足性能指标要求,从而达到改善系统动态性能的目的。
串联超前校正设计的一般步骤为(1)根据稳态误差要求,确定开环增益K 。
在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。
控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。
校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。
常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。
常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。
在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。
各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。
不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。
在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。
摘要 (1)ABSTRACT (2)1 课程设计目的及要求 (3)1.1目的 (3)1.2要求 (3)1.3方案比较分析 (3)2 设计计算与分析 (3)2.1计算幅值与相位裕度 (4)2.2使用MATLAB软件获得系统的伯德图和相位,幅值裕度。
(4)3 确定校正网络传递函数 (6)3.1滞后超前校正设计 (6)3.2校验校正后系统是否满足要求 (6)4. 校正前后系统根轨迹的绘制 (7)4.1校正前系统根轨迹 (7)4.2校正后系统的根轨迹分析 (8)5 系统动态性能的分析 (9)5.1校正前系统的动态性能分析 (9)5.2校正后系统的动态性能分析 (10)心得体会 (13)参考文献 (14)摘要在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用,而自动控制理论是自动控制科学的核心。
超前滞后校正原理你看啊,在控制系统里就像在管理一个小世界一样。
有时候这个系统它表现得不太好,就像一个调皮的小孩,老是达不到我们想要的效果。
这时候呢,超前校正和滞后校正就像是两位神奇的小助手跑出来帮忙啦。
先说说超前校正吧。
超前校正就像是一个充满活力的小机灵鬼。
想象一下,系统就像一辆汽车在行驶,但是它的转向有点慢,不能很快地按照我们想要的方向改变。
超前校正就像是给这辆汽车装了一个超级灵敏的转向助力器。
它的原理呢,就是在系统的某个地方加进去一些东西,让系统能够提前做出反应。
比如说,在信号还没完全变大或者变小之前,就提前调整系统的状态。
这就好比你知道前面的路要拐弯了,你提前就开始转动方向盘,而不是等到到了拐弯的地方才开始转。
超前校正它主要是改变了系统的相角裕度,让系统变得更加稳定而且快速响应。
就像那个提前做好准备的人,不管遇到什么情况都能快速应对,不会手忙脚乱的。
再来说说滞后校正。
滞后校正就像是一个沉稳的老大哥。
它的作用方式有点不一样哦。
如果说超前校正像是快刀斩乱麻,那滞后校正就是慢条斯理地调整。
比如说系统里有些高频的噪声或者干扰,就像一群小苍蝇在捣乱。
滞后校正就像是一个大扇子,慢慢地把这些苍蝇给赶走。
它主要是通过降低系统的高频增益来达到这个目的的。
就像是在一个热闹的派对上,那些吵闹的高音部分被慢慢地降低了音量,让整个系统变得更加平稳。
滞后校正不会像超前校正那样让系统快速反应,但是它能让系统在长期的运行中更加稳定可靠。
它就像是给系统打了一针镇定剂,让那些过度兴奋或者不稳定的因素慢慢平静下来。
这超前校正和滞后校正啊,它们的存在都是为了让系统变得更好。
有时候我们的系统可能既需要快速反应的能力,又需要长期稳定的状态。
这时候呢,我们可能就要把超前校正和滞后校正结合起来用啦。
就像一个超级英雄组合,一个负责冲锋陷阵,快速应对危机,一个负责稳住后方,保证长期的稳定和平静。
你可别小看这两个校正原理哦。
在很多实际的工程应用里,它们可是发挥着巨大的作用呢。