β肾上腺素能受体知识讲解
- 格式:ppt
- 大小:12.30 MB
- 文档页数:29
肾上腺素受体知识归纳总结第一章α、β肾上腺素受体所在位置及影响一、血管上的受体(注:缩血管反应使收缩压和舒张压均升高)(一)激动血管上的α1受体——血管收缩,主要是小动脉和小静脉收缩:1.皮肤粘膜血管收缩最明显,其次是肾脏血管;2.此外脑、肝、肠系膜、骨骼肌的血管也都呈收缩反应(二)激动血管平滑肌上的α受体——血管收缩。
1.小动脉及毛细血管前括约肌血管壁的α受体密度高,血管收缩较明显;2.皮肤、粘膜、肾和胃肠道等的血管平滑肌α受体数量多,收缩最强烈;3.对脑和肺血管作用——十分微弱,有时由血压升高而被动地舒张;4.静脉和大动脉的α受体密度低——收缩作用较弱。
5.使三角肌和括约肌收缩。
(三)激动血管平滑肌上的β2受体——血管舒张——降压。
1.骨骼肌和肝脏的血管平滑肌上β2受体占优势——血管舒张;2.激动冠脉β2受体——舒张血管。
3.激动α受体——三角肌和括约肌收缩。
4.激动β受体——膀胱逼尿肌舒张。
(四)激动支气管平滑肌的β2受体——强大的舒张作用。
原理:β2受体激动药的主要作用是松弛支气管平滑肌。
它与平滑肌细胞膜上的β2受体结合后,引起受体构型改变,激动兴奋性G蛋白(Gs),从而活化腺苷酸环化酶,催化细胞内ATP转变为cAMP,引起细胞内cAMP水平增加,转而激活cAMP依赖性蛋白激酶(PKA),通过[Ca2+]i(细胞内游离钙浓度)的下降、肌球蛋白轻链失活、钾通道开放三个途径,最终引起平滑肌松弛反应。
1.人气道中主要是β2受体。
它广泛分布于气道的不同效应细胞上,当激动β2受体时,气道平滑肌松弛、抑制肥大细胞与中性粒细胞释放炎症介质与过敏介质、增强气道纤毛无能运动、促进气道分泌、降低血管通透性、减轻气道粘膜下水肿等,均有利于缓解或消除喘息。
2.激动骨骼肌慢收缩纤维的β2受体,引起肌肉震颤。
(五)激动α受体和β2受体——可能致肝糖原分解。
(六)激动α2受体——抑制去甲肾上腺素能神经末梢释放去甲肾上腺素。
第一章α、β肾上腺素受体所在位置及影响一、血管上的受体(注:缩血管反应使收缩压和舒张压均升高)(一)激动血管上的α1受体——血管收缩,主要是小动脉和小静脉收缩:1.皮肤粘膜血管收缩最明显,其次是肾脏血管;2.此外脑、肝、肠系膜、骨骼肌的血管也都呈收缩反应(二)激动血管平滑肌上的α受体——血管收缩。
1.小动脉及毛细血管前括约肌血管壁的α受体密度高,血管收缩较明显;2.皮肤、粘膜、肾和胃肠道等的血管平滑肌α受体数量多,收缩最强烈;3.对脑和肺血管作用——十分微弱,有时由血压升高而被动地舒张;4.静脉和大动脉的α受体密度低——收缩作用较弱。
5.使三角肌和括约肌收缩。
(三)激动血管平滑肌上的β2受体——血管舒张——降压。
1.骨骼肌和肝脏的血管平滑肌上β2受体占优势——血管舒张;2.激动冠脉β2受体——舒张血管。
3.激动α受体——三角肌和括约肌收缩。
4.激动β受体——膀胱逼尿肌舒张。
(四)激动支气管平滑肌的β2受体——强大的舒张作用。
原理:β2受体激动药的主要作用是松弛支气管平滑肌。
它与平滑肌细胞膜上的β2受体结合后,引起受体构型改变,激动兴奋性G蛋白(Gs),从而活化腺苷酸环化酶,催化细胞内ATP 转变为cAMP,引起细胞内cAMP水平增加,转而激活cAMP 依赖性蛋白激酶(PKA),通过[Ca2+]i(细胞内游离钙浓度)的下降、肌球蛋白轻链失活、钾通道开放三个途径,最终引起平滑肌松弛反应。
1.人气道中主要是β2受体。
它广泛分布于气道的不同效应细胞上,当激动β2受体时,气道平滑肌松弛、抑制肥大细胞与中性粒细胞释放炎症介质与过敏介质、增强气道纤毛无能运动、促进气道分泌、降低血管通透性、减轻气道粘膜下水肿等,均有利于缓解或消除喘息。
2.激动骨骼肌慢收缩纤维的β2受体,引起肌肉震颤。
(五)激动α受体和β2受体——可能致肝糖原分解。
(六)激动α2受体——抑制去甲肾上腺素能神经末梢释放去甲肾上腺素。
α2受体——位于去甲肾上腺素能神经末梢突触前膜上,在介导交感神经系统反应中起重要作用,包括中枢与外周。
第一章β肾上腺素能受体阻滞剂的基础与临床β肾上腺素能受体阻滞剂(β阻滞剂)是20世纪70年代具有里程碑意义的心血管药物,它直接针对心血管受体发挥药理学效应,阻滞心血管病的病理生理重要靶点,开创了心血管病药物靶向治疗的新时代。
第一节β肾上腺素能受体阻滞剂的分类、药理学和药物代谢动力学[1]一、β阻滞剂的分类β阻滞剂为一组不同种类的化合物,其基本药理作用为阻断儿茶酚胺对β肾上腺素受体的兴奋作用。
β受体至少分为三种亚型,即β1、β2、β3受体。
其中β1受体主要存在于心脏、肾脏,而β2受体主要存在于血管平滑肌、肺支气管、肝脏内,心肌内也存在大量β2受体。
β阻滞剂按对受体的选择性可分为3种类型:①β1,β2、②β1、③α+β。
不同的β阻滞剂对β1或β2受体的阻滞具有相对选择性,此外,某些化合物具有内在拟交感活性,某些具有膜稳定作用,这种药理学特性上的差别决定了β阻滞剂的分类和其治疗特性(表1-1-1)。
表1-1-1 β阻滞剂分类和药理学特点类别药名心脏选择性内在拟交感活性膜稳定性β阻滞强度非选择性β1,β2普萘洛尔Propranolol- - ++ 1吲哚洛尔Pindolol- +++ -(±) 6纳多洛尔Nadolol- - - 2-9索他洛尔Sotalo- - - 0.3选择性β1 醋丁洛尔Acebutolol+ + + 0.3美托洛尔Metoprolol+ - -(±) 1比索洛尔Bisoprolol++ - -(±)40α+β阻滞拉贝洛尔Labetalol- - + 0.5卡维地洛Carvedilol- - - 4㈠Ⅰ类:阻滞β1和β2受体也称为非选择性β阻滞剂。
包括第一代的普奈洛尔(心得安)和噻吗洛尔,以及第三代的卡维洛尔(卡维地洛)、布新洛尔和拉贝洛尔(柳氨卞心安)。
㈡Ⅱ类:选择性阻滞β1受体第二代β阻滞剂均为选择性,可用于慢性阻塞性肺部疾患(COPD)、周围血管疾患、依赖于胰岛素的糖尿病患者等。
第一章α、β肾上腺素受体所在位置及影响一、血管上的受体(注:缩血管反应使收缩压和舒张压均升高)(一)激动血管上的α1受体——血管收缩,主要是小动脉和小静脉收缩:1.皮肤粘膜血管收缩最明显,其次是肾脏血管;2.此外脑、肝、肠系膜、骨骼肌的血管也都呈收缩反应(二)激动血管平滑肌上的α受体——血管收缩。
1.小动脉及毛细血管前括约肌血管壁的α受体密度高,血管收缩较明显;2.皮肤、粘膜、肾和胃肠道等的血管平滑肌α受体数量多,收缩最强烈;3.对脑和肺血管作用——十分微弱,有时由血压升高而被动地舒张;4.静脉和大动脉的α受体密度低——收缩作用较弱。
5.使三角肌和括约肌收缩。
(三)激动血管平滑肌上的β2受体——血管舒张——降压。
1.骨骼肌和肝脏的血管平滑肌上β2受体占优势——血管舒张;2.激动冠脉β2受体——舒张血管。
3.激动α受体——三角肌和括约肌收缩。
4.激动β受体——膀胱逼尿肌舒张。
(四)激动支气管平滑肌的β2受体——强大的舒张作用。
原理:β2受体激动药的主要作用是松弛支气管平滑肌。
它与平滑肌细胞膜上的β2受体结合后,引起受体构型改变,激动兴奋性G蛋白(Gs),从而活化腺苷酸环化酶,催化细胞内ATP 转变为cAMP,引起细胞内cAMP水平增加,转而激活cAMP 依赖性蛋白激酶(PKA),通过[Ca2+]i(细胞内游离钙浓度)的下降、肌球蛋白轻链失活、钾通道开放三个途径,最终引起平滑肌松弛反应。
1.人气道中主要是β2受体。
它广泛分布于气道的不同效应细胞上,当激动β2受体时,气道平滑肌松弛、抑制肥大细胞与中性粒细胞释放炎症介质与过敏介质、增强气道纤毛无能运动、促进气道分泌、降低血管通透性、减轻气道粘膜下水肿等,均有利于缓解或消除喘息。
2.激动骨骼肌慢收缩纤维的β2受体,引起肌肉震颤。
(五)激动α受体和β2受体——可能致肝糖原分解。
(六)激动α2受体——抑制去甲肾上腺素能神经末梢释放去甲肾上腺素。
α2受体——位于去甲肾上腺素能神经末梢突触前膜上,在介导交感神经系统反应中起重要作用,包括中枢与外周。
肾上腺素的作用机制肾上腺素是一种重要的神经递质和激素,它在人体内发挥着广泛的作用。
肾上腺素的作用机制主要涉及两个方面:α-肾上腺素能受体(α-Adrenergic Receptor)的激活和β-肾上腺素能受体(β-Adrenergic Receptor)的激活。
首先,肾上腺素通过激活α-肾上腺素能受体来发挥作用。
α-肾上腺素能受体主要分为α1受体和α2受体。
α1受体激活后,可以通过磷脂酰肌醇信号通路(Phospholipase C pathway)和蛋白激酶C激活(Protein Kinase C activation),引起细胞内钙离子浓度的增加和血管收缩等效应。
α2受体激活后,通过抑制腺苷酸环化酶(Adenylate Cyclase)而减少细胞内环磷酸腺苷(cAMP)水平,导致细胞内蛋白激酶A(Protein Kinase A)的活性降低,从而引起血管收缩、抑制神经递质释放等效应。
其次,肾上腺素通过激活β-肾上腺素能受体来发挥作用。
β-肾上腺素能受体主要分为β1受体、β2受体和β3受体。
β1受体激活后,可以通过激活腺苷酸环化酶和增加细胞内cAMP水平,从而激活蛋白激酶A,引起心肌收缩力和心脏的加快等效应。
β2受体激活后,通过激活腺苷酸环化酶和增加细胞内cAMP水平,引起平滑肌松弛、支气管扩张等效应。
β3受体激活后则主要参与脂肪细胞的脂肪分解。
此外,肾上腺素还可能通过直接与细胞膜蛋白质或离子通道结合,改变其构象或功能,从而发挥作用。
例如,肾上腺素通过与浓钾离子通道(Na+-K+ channel)结合,在高钾负荷的情况下抵消细胞内的去极化;另外,肾上腺素还可以激活蛋白酶C,引起胰岛B细胞内胰岛素分泌的增加。
综上所述,肾上腺素主要通过激活α-肾上腺素能受体和β-肾上腺素能受体,以及通过直接影响细胞膜蛋白质或离子通道等机制发挥作用。
肾上腺素的作用机制在维持机体内稳态、应激反应、调节心血管、支气管、胰岛等器官的功能中起着重要的作用。
肾上腺素受体知识归纳总结Revised on November 25, 2020第一章α、β肾上腺素受体所在位置及影响一、血管上的受体(注:缩血管反应使收缩压和舒张压均升高)(一)激动血管上的α1受体——血管收缩,主要是小动脉和小静脉收缩:1.皮肤粘膜血管收缩最明显,其次是肾脏血管;2.此外脑、肝、肠系膜、骨骼肌的血管也都呈收缩反应(二)激动血管平滑肌上的α受体——血管收缩。
1.小动脉及毛细血管前括约肌血管壁的α受体密度高,血管收缩较明显;2.皮肤、粘膜、肾和胃肠道等的血管平滑肌α受体数量多,收缩最强烈;3.对脑和肺血管作用——十分微弱,有时由血压升高而被动地舒张;4.静脉和大动脉的α受体密度低——收缩作用较弱。
5.使三角肌和括约肌收缩。
(三)激动血管平滑肌上的β2受体——血管舒张——降压。
1.骨骼肌和肝脏的血管平滑肌上β2受体占优势——血管舒张;2.激动冠脉β2受体——舒张血管。
3.激动α受体——三角肌和括约肌收缩。
4.激动β受体——膀胱逼尿肌舒张。
(四)激动支气管平滑肌的β2受体——强大的舒张作用。
原理:β2受体激动药的主要作用是松弛支气管平滑肌。
它与平滑肌细胞膜上的β2受体结合后,引起受体构型改变,激动兴奋性G蛋白(Gs),从而活化腺苷酸环化酶,催化细胞内ATP转变为cAMP,引起细胞内cAMP水平增加,转而激活cAMP依赖性蛋白激酶(PKA),通过[Ca2+]i(细胞内游离钙浓度)的下降、肌球蛋白轻链失活、钾通道开放三个途径,最终引起平滑肌松弛反应。
1.人气道中主要是β2受体。
它广泛分布于气道的不同效应细胞上,当激动β2受体时,气道平滑肌松弛、抑制肥大细胞与中性粒细胞释放炎症介质与过敏介质、增强气道纤毛无能运动、促进气道分泌、降低血管通透性、减轻气道粘膜下水肿等,均有利于缓解或消除喘息。
2.激动骨骼肌慢收缩纤维的β2受体,引起肌肉震颤。
(五)激动α受体和β2受体——可能致肝糖原分解。
(六)激动α2受体——抑制去甲肾上腺素能神经末梢释放去甲肾上腺素。
β肾上腺素能受体阻滞剂临床应用1.B受体阻滞剂分为水溶性、脂溶性和水脂双溶性三种水溶性以阿替洛尔为代表,但大量的试验结果都不近人意;脂溶性药物以倍他乐克为代表,其缺点是可透过血脑屏障而产生轻微的睡眠障碍;水脂双溶性药物以比索洛尔为代表,其具有很多药物动力学优点,如水脂双溶、作用长效、肝肾双通道排泄。
水是生物系统的基本溶剂,药物发挥药效前首先必须溶解,然后才能转运扩散至血液,所以需要具备一定的亲水性。
药物进入血液时,首先要透过毛细血管脂质的生物膜,所以需要具备一定的亲脂性。
药物在体内的转运(吸收、分布、排泄也必须通过各种组织细胞所组成的膜,进入细胞需要通过细胞膜,在细胞内又需要通过细胞器的膜,这种膜统称为生物膜。
因此,药物的转运实质上是药物通过生物膜的过程,所以称为跨膜转运。
药物的理化性质可影响转运过程,脂溶性大、极性小者易于通过生物膜。
药物的溶解性主要与药物结构有关。
主要体现药物的脂/水分配系数,脂/水分配系数越大,脂溶性越大,越具有高亲脂性;反之,脂/水分配系数越小,水溶性越大,越具有高亲水性。
β受体阻滞剂可以根据其脂/水分配系数大小分为亲脂性和亲水性两大类。
亲脂性β阻滞剂:如普奈洛尔、拉贝洛尔和卡维地洛,具有高亲脂性;美托洛尔为中度亲脂性。
亲脂性β受体阻滞剂很易为肠道吸收,吸收速度快,吸收率高(>90%,有较强的肝脏“首过效应”,口服生物利用度仅为30%~50%,同一剂量在不同个体的血药浓度高峰水平的差异很大,可达20倍。
通常药物半衰期较短(1~5小时,容易透过血脑屏障,可发生与其相关的中枢神经系统不良反应,如多梦、幻觉、失眠、疲乏、眩晕以及抑郁等症状。
亲脂性β阻滞剂的主要代谢清除场所是肝脏,所以肝功能受损时容易发生蓄积,常需减量,肾功能受损病人无需调整剂量。
亲水性β受体阻滞剂:如阿替洛尔和索他洛尔,具有高亲水性。
醋丁洛尔和吲哚洛尔等为中度亲水性。
亲水性β受体阻滞剂胃肠道的吸收率低,尽管首过效应低,但生物利用度也仅为50%~30%。
β肾上腺素能受体阻滞剂的规范使用第一章 β肾上腺素能受体阻滞剂的基础与临床β肾上腺素能受体阻滞剂(β阻滞剂)是20世纪70年代具有里程碑意义的心血管药物,它直接针对心血管受体发挥药理学效应,阻滞心血管病的病理生理重要靶点,开创了心血管病药物靶向治疗的新时代。
第一节 β肾上腺素能受体阻滞剂的分类、药理学和药物代谢动力学[1]一、β阻滞剂的分类β阻滞剂为一组不同种类的化合物,其基本药理作用为阻断儿茶酚胺对β肾上腺素受体的兴奋作用。
β受体至少分为三种亚型,即β1、β2、β3受体。
其中β1受体主要存在于心脏、肾脏,而β2受体主要存在于血管平滑肌、肺支气管、肝脏内,心肌内也存在大量β2受体。
β阻滞剂按对受体的选择性可分为3种类型:①β1,β2、②β1、③α+β。
不同的β阻滞剂对β1或β2受体的阻滞具有相对选择性,此外,某些化合物具有内在拟交感活性,某些具有膜稳定作用,这种药理学特性上的差别决定了β阻滞剂的分类和其治疗特性(表1-1-1)。
表类别 药名 心脏选择性 内在拟交感活性 膜稳定性 β阻滞强度非选择性β1,β2 普萘洛尔Propranolol- - ++ 1吲哚洛尔 Pindolol- +++ -(±) 6纳多洛尔Nadolol - - - 2-9索他洛尔Sotalo - - - 0.3选择性β1 醋丁洛尔Acebutolol+ + + 0.3美托洛尔Metoprolol+ - -(±) 1比索洛尔Bisoprolol++ - -(±) 40α+β阻滞 拉贝洛尔Labetalol- - + 0.5卡维地洛Carvedilol- - - 4㈠ 也称为非选择性β阻滞剂。
包括第一代的普奈洛尔(心得安)和噻吗洛尔,以及第三代的卡维洛尔(卡维地洛)、布新洛尔和拉贝洛尔(柳氨卞心安)。
㈡ Ⅱ类:选择性阻滞β1受体第二代β阻滞剂均为选择性,可用于慢性阻塞性肺部疾患(COPD )、周围血管疾患、依赖于胰岛素的糖尿病患者等。
第一章β肾上腺素能受体阻滞剂的基础与临床β肾上腺素能受体阻滞剂(β阻滞剂)是20世纪70年代具有里程碑意义的心血管药物,它直接针对心血管受体发挥药理学效应,阻滞心血管病的病理生理重要靶点,开创了心血管病药物靶向治疗的新时代。
第一节β肾上腺素能受体阻滞剂的分类、药理学和药物代谢动力学[1]一、β阻滞剂的分类β阻滞剂为一组不同种类的化合物,其基本药理作用为阻断儿茶酚胺对β肾上腺素受体的兴奋作用。
β受体至少分为三种亚型,即β1、β2、β3受体。
其中β1受体主要存在于心脏、肾脏,而β2受体主要存在于血管平滑肌、肺支气管、肝脏内,心肌内也存在大量β2受体。
β阻滞剂按对受体的选择性可分为3种类型:①β1,β2、②β1、③α+β。
不同的β阻滞剂对β1或β2受体的阻滞具有相对选择性,此外,某些化合物具有内在拟交感活性,某些具有膜稳定作用,这种药理学特性上的差别决定了β阻滞剂的分类和其治疗特性(表1-1-1)。
表㈠也称为非选择性β阻滞剂。
包括第一代的普奈洛尔(心得安)和噻吗洛尔,以及第三代的卡维洛尔(卡维地洛)、布新洛尔和拉贝洛尔(柳氨卞心安)。
㈡Ⅱ类:选择性阻滞β1受体第二代β阻滞剂均为选择性,可用于慢性阻塞性肺部疾患(COPD)、周围血管疾患、依赖于胰岛素的糖尿病患者等。
但是其对β受体阻滞的选择毕竟是相对的,大剂量的选择性β1阻滞剂仍可阻滞β2受体。
支气管哮喘是所有β阻滞剂的禁忌症,但只要没有支气管痉挛的因素参与,COPD患者可以使用β阻滞剂治疗。
最近一项研究表明,无论有无COPD,β阻滞剂治疗均可降低心肌梗死患者的死亡率。
多数吸烟者可获益于β阻滞剂治疗。
为了减少小气管痉挛的危险,应使用高选择性β1阻滞剂。
㈢Ⅲ类:阻滞α、β受体主要为第三代的卡维洛尔(卡维地洛)和拉贝洛尔。
对轻、中度高血压、心绞痛有明显疗效;对高血压伴肾功能不全、胰岛素抵抗患者较安全。
与普萘洛尔比较有用量较小、疗效更好、不良反应少的优点,与同类药拉贝洛尔比较有用量少、长效的优点。
第一章β肾上腺素能受体阻滞剂的基础与临床β肾上腺素能受体阻滞剂(β阻滞剂)是20世纪70年代具有里程碑意义的心血管药物,它直接针对心血管受体发挥药理学效应,阻滞心血管病的病理生理重要靶点,开创了心血管病药物靶向治疗的新时代。
第一节β肾上腺素能受体阻滞剂的分类、药理学和药物代动力学[1]一、β阻滞剂的分类β阻滞剂为一组不同种类的化合物,其基本药理作用为阻断儿茶酚胺对β肾上腺素受体的兴奋作用。
β受体至少分为三种亚型,即β1、β2、β3受体。
其中β1受体主要存在于心脏、肾脏,而β2受体主要存在于血管平滑肌、肺支气管、肝脏,心肌也存在大量β2受体。
β阻滞剂按对受体的选择性可分为3种类型:①β1,β2、②β1、③α+β。
不同的β阻滞剂对β1或β2受体的阻滞具有相对选择性,此外,某些化合物具有在拟交感活性,某些具有膜稳定作用,这种药理学特性上的差别决定了β阻滞剂的分类和其治疗特性(表1-1-1)。
表1-1-1β阻滞剂分类和药理学特点㈠Ⅰ类:阻滞β1和β2受体也称为非选择性β阻滞剂。
包括第一代的普奈洛尔(心得安)和噻吗洛尔,以及第三代的卡维洛尔(卡维地洛)、布新洛尔和拉贝洛尔(柳氨卞心安)。
㈡Ⅱ类:选择性阻滞β1受体第二代β阻滞剂均为选择性,可用于慢性阻塞性肺部疾患(COPD)、周围血管疾患、依赖于胰岛素的糖尿病患者等。
但是其对β受体阻滞的选择毕竟是相对的,大剂量的选择性β1阻滞剂仍可阻滞β2受体。
支气管哮喘是所有β阻滞剂的禁忌症,但只要没有支气管痉挛的因素参与,COPD患者可以使用β阻滞剂治疗。
最近一项研究表明,无论有无COPD,β阻滞剂治疗均可降低心肌梗死患者的死亡率。
多数吸烟者可获益于β阻滞剂治疗。
为了减少小气管痉挛的危险,应使用高选择性β1阻滞剂。
㈢Ⅲ类:阻滞α、β受体主要为第三代的卡维洛尔(卡维地洛)和拉贝洛尔。
对轻、中度高血压、心绞痛有明显疗效;对高血压伴肾功能不全、胰岛素抵抗患者较安全。
与普萘洛尔比较有用量较小、疗效更好、不良反应少的优点,与同类药拉贝洛尔比较有用量少、长效的优点。