肾上腺素能受体的分布及效应
- 格式:pdf
- 大小:73.48 KB
- 文档页数:1
第一章α、β肾上腺素受体所在位置及影响一、血管上的受体(注:缩血管反应使收缩压和舒张压均升高)(一)激动血管上的α1受体——血管收缩,主要是小动脉和小静脉收缩:1.皮肤粘膜血管收缩最明显,其次是肾脏血管;2.此外脑、肝、肠系膜、骨骼肌的血管也都呈收缩反应(二)激动血管平滑肌上的α受体——血管收缩。
1.小动脉及毛细血管前括约肌血管壁的α受体密度高,血管收缩较明显;2.皮肤、粘膜、肾和胃肠道等的血管平滑肌α受体数量多,收缩最强烈;3.对脑和肺血管作用——十分微弱,有时由血压升高而被动地舒张;4.静脉和大动脉的α受体密度低——收缩作用较弱。
5.使三角肌和括约肌收缩。
(三)激动血管平滑肌上的β2受体——血管舒张——降压。
1.骨骼肌和肝脏的血管平滑肌上β2受体占优势——血管舒张;2.激动冠脉β2受体——舒张血管。
3.激动α受体——三角肌和括约肌收缩。
4.激动β受体——膀胱逼尿肌舒张。
(四)激动支气管平滑肌的β2受体——强大的舒张作用。
原理:β2受体激动药的主要作用是松弛支气管平滑肌。
它与平滑肌细胞膜上的β2受体结合后,引起受体构型改变,激动兴奋性G蛋白(Gs),从而活化腺苷酸环化酶,催化细胞内ATP转变为cAMP,引起细胞内cAMP水平增加,转而激活cAMP 依赖性蛋白激酶(PKA),通过[Ca2+]i(细胞内游离钙浓度)的下降、肌球蛋白轻链失活、钾通道开放三个途径,最终引起平滑肌松弛反应。
1.人气道中主要是β2受体。
它广泛分布于气道的不同效应细胞上,当激动β2受体时,气道平滑肌松弛、抑制肥大细胞与中性粒细胞释放炎症介质与过敏介质、增强气道纤毛无能运动、促进气道分泌、降低血管通透性、减轻气道粘膜下水肿等,均有利于缓解或消除喘息。
2.激动骨骼肌慢收缩纤维的β2受体,引起肌肉震颤。
(五)激动α受体和β2受体——可能致肝糖原分解。
(六)激动α2受体——抑制去甲肾上腺素能神经末梢释放去甲肾上腺素。
α2受体——位于去甲肾上腺素能神经末梢突触前膜上,在介导交感神经系统反应中起重要作用,包括中枢与外周。
β3肾上腺素能受体应用的研究进展安慧玲;杨君;陈枚洁【摘要】β3肾上腺素能受体(β3-AR)是继β1-AR、β2-AR后发现的又一β肾上腺素受体.β3-AR广泛分布于脂肪组织、心脏、血管、消化系统、泌尿生殖系统和脑组织等.β3-AR属G蛋白偶联家族,可通过结合Gi和Gs发挥生理、病理作用.在脂肪组织中,β3-AR介导脂肪分解、促进能量代谢及产热效应;而在心血管系统中,β3-AR可介导心肌负性变力效应及血管平滑肌舒张作用.目前,对于β3-AR在人体不同组织器官的生理病理过程开展了广泛的研究,但仍有许多问题尚未解决.【期刊名称】《医学综述》【年(卷),期】2013(019)019【总页数】5页(P3470-3474)【关键词】β3肾上腺素能受体;信号转导;一氧化氮合酶;脂肪组织;心力衰竭【作者】安慧玲;杨君;陈枚洁【作者单位】首都医科大学附属北京朝阳医院综合科,北京,100020;首都医科大学附属北京朝阳医院综合科,北京,100020;首都医科大学附属北京朝阳医院第三临床医学院基地班,北京,100020【正文语种】中文【中图分类】R59自主神经系统包括交感神经和副交感神经,分布至内脏、心血管和腺体,并调节这些器官的功能。
副交感神经通过去甲肾上腺素(norepinephrine,NE)与α、β肾上腺素受体结合发挥作用。
β3肾上腺素能受体(β3-adrenoceptor,β3-AR)是继β1-AR、β2-AR 后发现的又一β肾上腺素受体。
1989年,Emorine等[1]最先在人类脂肪细胞中克隆出β3-AR基因,并于豚鼠和猫心脏中发现β3-AR。
1996年,Gauthier等[2]通过反转录-聚合酶链反应(reverse transcription polymerase chain reaction,RT-PCR)对心脏移植者心内膜活检,首次在人体心脏组织内发现了β3-AR的mRNA。
迄今,研究者对β3-AR的分子结构、信号转导途径等方面进行了研究,对β3-AR在人体各组织器官病理生理状态下发挥的功能作用也进行了深入的探讨。
前言:学习医学的学生们经常弄混这些问题,所以我给大家提够一个详细的资料,希望大家自己以后注意点!1. M受体的分布:主要分布于胆碱能神经节后纤维所支配的效应器,如心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌和各种腺体。
M受体家族可分为5种亚型,较为公认的是M1、M2、M3三种亚型。
2.N受体的分布:N受体根据分布不同,分为NM(nicotinic muscle, 或称N2受体)受体和NN(nicotinic neur, 或称N1受体)受体。
NM受体分布于神经肌肉接头(骨骼肌细胞膜),NN受体分布于神经节。
N受体位于神经节与神经肌肉接头的胆碱受体对烟碱较为敏感,故将之称为烟碱受体或者N 受体。
N受体胆碱亚型根据其分布部位不同可分为:神经肌肉接头N受体,即NM受体(nicotinic muscle)受体(又称N2受体)及神经节N受体(又称N1受体)。
神经N受体与中枢N受体又称NN受体(nicotinic neuronal)受体M受体是毒蕈碱型受体(muscarinicreceptor)的简称,广泛存在于副交感神经节后纤维支配的效应器细胞上。
当乙酰胆碱与这类受体结合后,可产生一系列副交感神经末梢兴奋地效应,包括心脏活动的抑制 (血压下降、心率下降) ,支气管平滑肌、胃肠道平滑肌、膀胱逼尿肌和瞳孔括约肌的收缩,以及消化腺分泌增加等。
这类受体也能与毒覃碱结合,产生类似的效应。
近年发现M 受体有五种亚型,M1受体主要分布于交感节后神经和胃壁细胞,受体激动引起兴奋和胃酸分泌;M2受体主要分布于心肌、平滑肌,激动引起心脏收缩力和心率降低;M3受体主要分布于腺体和血管平滑肌,引起平滑肌松弛和腺体分泌。
M4 和M5尚未找到与之相对应的药理学分型。
M1、M2、M3这三种受体均有各自的选择性激动剂和拮抗剂,阿托品对这三种M受体均可阻断。
α受体又称“α型肾上腺素能受体”。
能与交感神经节后纤维释放的递质、去甲肾上腺素和肾上腺素结合的受体之一。
前言:学习医学的学生们经常弄混这些问题,所以我给大家提够一个详细的资料,希望大家自己以后注意点!1. M受体的分布:主要分布于胆碱能神经节后纤维所支配的效应器,如心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌和各种腺体。
M受体家族可分为5种亚型,较为公认的是M1、M2、M3三种亚型。
2.N受体的分布:N受体根据分布不同,分为NM(nicotinic muscle, 或称N2受体)受体和NN(nicotinic neur, 或称N1受体)受体。
NM受体分布于神经肌肉接头(骨骼肌细胞膜),NN受体分布于神经节。
N受体位于神经节与神经肌肉接头的胆碱受体对烟碱较为敏感,故将之称为烟碱受体或者N 受体。
N受体胆碱亚型根据其分布部位不同可分为:神经肌肉接头N受体,即NM受体(nicotinic muscle)受体(又称N2受体)及神经节N受体(又称N1受体)。
神经N受体与中枢N受体又称NN受体(nicotinic neuronal)受体M受体是毒蕈碱型受体(muscarinicreceptor)的简称,广泛存在于副交感神经节后纤维支配的效应器细胞上。
当乙酰胆碱与这类受体结合后,可产生一系列副交感神经末梢兴奋地效应,包括心脏活动的抑制 (血压下降、心率下降) ,支气管平滑肌、胃肠道平滑肌、膀胱逼尿肌和瞳孔括约肌的收缩,以及消化腺分泌增加等。
这类受体也能与毒覃碱结合,产生类似的效应。
近年发现M 受体有五种亚型,M1受体主要分布于交感节后神经和胃壁细胞,受体激动引起兴奋和胃酸分泌;M2受体主要分布于心肌、平滑肌,激动引起心脏收缩力和心率降低;M3受体主要分布于腺体和血管平滑肌,引起平滑肌松弛和腺体分泌。
M4 和M5尚未找到与之相对应的药理学分型。
M1、M2、M3这三种受体均有各自的选择性激动剂和拮抗剂,阿托品对这三种M受体均可阻断。
α受体又称“α型肾上腺素能受体”。
能与交感神经节后纤维释放的递质、去甲肾上腺素和肾上腺素结合的受体之一。
胆碱能受体和肾上腺素能受体传出神经系统包括自主神经系统和运动神经系统。
植物神经又分为交感神经(sympathetic nerve)和副交感神经(parasympathetic nerve)。
自主神经自中枢神经系统发出后,都要进入神经节,更换神经元,然后到达所支配的效应器,因此自主神经有节前纤维和节后纤维之分。
运动神经自中枢发出后,中途不更换神经元,直接到达效应器。
一、传出神经系统的递质1.乙酰胆碱(ACh)胆碱能神经末梢存在的胆碱和乙酰辅酶A,在胆碱乙酰化酶的催化作用下合成乙酰胆碱。
2.去甲肾上腺素(NE, NA)去甲肾上腺素的生物合成主要在去甲肾上腺素能神经末梢进行。
酪氨酸是合成去甲肾上腺素的基本原料,在酪氨酸羟化酶的催化作用下合成多巴(dopa),再经多巴脱羧酶作用合成多巴胺(dopamine,DA),后者进入囊泡中,由多巴胺β-羟化酶催化进一步合成去甲肾上腺素,并与A TP和嗜铬颗粒蛋白结合,贮存于囊泡中。
二、传出神经递质的合成、贮存、释放、灭活1、乙酰胆碱(ACh)乙酰胆碱其合成部位主要在胆碱能神经末梢,合成原料为胆碱(choline)和乙酰辅酶A(acetyl coenzyme A,AcCoA),参与合成的酶为胆碱乙酰转移酶(choline acetyltransferase)。
此酶在细胞体形成,并随轴浆转运至末梢。
乙酰辅酶A在末梢线粒体内形成,但它不能穿透线粒体膜,需在线粒体内先与草酰乙酸缩合成枸橼酸盐,才能穿过线粒体膜进入胞质液,在枸橼酸裂解酶催化下重新形成乙酰辅酶A。
胆碱和乙酰辅酶A在胆碱乙酰转移酶催化下,合成ACh。
ACh合成后,即转运进入囊泡内与A TP和囊泡蛋白共存。
在上述合成过程中,胆碱可从细胞外由钠依赖性载体主动摄入胞质液中,此摄取过程为ACh 合成的限速因素,这一转运过程可被密胆碱(hemicholinium)所抑制。
当神经冲动到达神经末梢时,以胞裂外排方式释放到突触间隙,与突触后膜的胆碱受体结合并产生效应。
β受体β受体分布广泛,介导一系列重要的生理和生化效应。
一方面与其激动剂结合产生信息传递物质,引起生物效应,另一方面受体本身又受激动剂体内自身活性物质生理及病理因素的调节。
其功能异常与许多疾病如心衰、动脉硬化、高血压等密切相关,其中偶联及脱敏机制近年来已成为研究疾病病因的热点。
本文就近年来这方面的研究进展作简要综述。
关键词:β肾上腺素受体;分型;偶联;脱敏中图文章编号:1008-9926(2000)04-0203-03β肾上腺素受体(β-AR)分布广泛,介导着许多重要的生理生化效应。
它受配基、体内活性物质、生理及病理等因素的调节。
β受体的功能变化与一些疾病直接相关,受到医学界的普遍重视。
已经成为研究人体生理功能的调节和药物作用的主要机制的基础。
本文对β受体的分型、偶联及脱敏机制以及β受体相关疾病加以介绍。
1β受体的分型Lands在4种组织上比较了15种儿茶酚胺的作用强度,发现脂肪分解和加快心率基本相同;而支气管舒张和血管扩张也相似,两者之间无交叉相关性,因而将前者称为β1,后者称为β2亚型。
这种经典分型方法目前仍被普遍接受。
后来发现β受体激动剂介导的啮齿动物白色脂肪组织(WAT)和棕色脂肪组织(BAT)脂解作用不被传统的β受体拮抗剂所阻断,从而提出了非典型β受体的概念。
Arch 等发现新合成的β受体激动剂BRL28410、BRL35113、BRL37344刺激棕色脂肪组织的脂解作用和能量消耗作用较强,但对β1或β2介导的作用却很小,进一步提出存在非典型β受体。
Emorine等首先克隆到的人β3受体的药理特性与组织非典型β受体基本相同,因而β3受体通常指非典型β受体。
因为β3受体激动剂能够选择性显著增加能量消耗,这类化合物有可能成为减肥和抗糖尿病药物而受到广泛重视[1]。
最新的特异性β受体亚型结合药物有SR59230A(β3受体选择性拮抗剂)[2]、CGP-20712A(β1受体选择性拮抗剂)[3],ICI-118551(β2受体选择性拮抗剂)[3],使得研究β受体功能更加方便、准确。
α2肾上腺素能受体激动剂在疼痛治疗中的使用从1970年开始,α2肾上腺素能受体激动剂在临床上被用来治疗高血压和药物及乙醇的戒断症状。
这类药物能产生抗焦虑、镇静、抗交感及镇痛等多种作用,因此可以用于手术期间以满足不同的需要。
目前在西方国家中有3种α2肾上腺素能受体激动剂在临床中使用,它们分是可乐定、右美托咪啶和替扎尼定,但在中国右美托咪啶尚未上市。
因此还是有必要就这类药物向中国的疼痛学专家作个简要介绍。
α2肾上腺素能受体在体内分布广泛,当α2肾上腺素能受体激动剂与其结合后就能产生临床效应。
α2肾上腺素能受体有3种亚型,分别是α2a, α2b andα2c,α2肾上腺素能受体激动剂结合每种不同的亚型都能产生独特的效应,例如α2a受体能产生麻醉、镇痛及抗交感作用(低血压和心动过缓),α2b受体有间接升高血压的作用(血管收缩),α2c受体与感觉与运动门控欠缺有关,如精神分裂症, 注意力缺乏及过动症,创伤后功能障碍和停药反应(调节多巴胺的活性)。
在中枢神经系统中α2受体亚型有不均匀的分布,3种受体中α2a受体最普遍且到处存在,α2b 受体仅存在于少数部位。
所有的α2肾上腺素能受体激动剂都是不同程度地作用于各受体亚型,所有的受体亚型都是通过结合G蛋白而产生细胞效应,尤其是对百日咳-毒素易感的G蛋白:Go和G1。
因为没有选择性亚型受体激动剂可供使用,所以想只产生单一所需要的α2肾上腺素能效应可能是不行的,如只是产生镇痛作用,而不会产生其他不利作用如低血压等。
激活α2肾上腺素能受体可抑制腺苷酸环化酶,导致cAMP生成减少,cAMP是许多细胞作用的重要调节剂,它能通过cAMP 依赖的蛋白激酶而控制调节蛋白的磷酸化状态。
另外α2肾上腺素能受体兴奋导致了神经递质释放受到抑制,这是通过在电压门控钙离子通道中钙离子的减少而介导的,这个过程需要结合一个Go蛋白。
激活α2肾上腺素能受体还可加速Na+-H+的交换,引起血小板内部碱化,刺激磷脂酶A2活性的增加,最终导致血栓素A2的生成增多。
前言:学习医学的学生们经常弄混这些问题,所以我给大家提够一个详细的资料,希望大家自己以后注意点!1. M受体的分布:主要分布于胆碱能神经节后纤维所支配的效应器,如心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌和各种腺体。
M受体家族可分为5种亚型,较为公认的是M1、M2、M3三种亚型。
2.N受体的分布:N受体根据分布不同,分为NM(nicotinic muscle, 或称N2受体)受体和NN(nicotinic neur, 或称N1受体)受体。
NM受体分布于神经肌肉接头(骨骼肌细胞膜),NN受体分布于神经节。
N受体位于神经节与神经肌肉接头的胆碱受体对烟碱较为敏感,故将之称为烟碱受体或者N 受体。
N受体胆碱亚型根据其分布部位不同可分为:神经肌肉接头N受体,即NM受体(nicotinic muscle)受体(又称N2受体)及神经节N受体(又称N1受体)。
神经N受体与中枢N受体又称NN受体(nicotinic neuronal)受体M受体是毒蕈碱型受体(muscarinicreceptor)的简称,广泛存在于副交感神经节后纤维支配的效应器细胞上。
当乙酰胆碱与这类受体结合后,可产生一系列副交感神经末梢兴奋地效应,包括心脏活动的抑制 (血压下降、心率下降) ,支气管平滑肌、胃肠道平滑肌、膀胱逼尿肌和瞳孔括约肌的收缩,以及消化腺分泌增加等。
这类受体也能与毒覃碱结合,产生类似的效应。
近年发现M 受体有五种亚型,M1受体主要分布于交感节后神经和胃壁细胞,受体激动引起兴奋和胃酸分泌;M2受体主要分布于心肌、平滑肌,激动引起心脏收缩力和心率降低;M3受体主要分布于腺体和血管平滑肌,引起平滑肌松弛和腺体分泌。
M4 和M5尚未找到与之相对应的药理学分型。
M1、M2、M3这三种受体均有各自的选择性激动剂和拮抗剂,阿托品对这三种M受体均可阻断。
α受体又称“α型肾上腺素能受体”。
能与交感神经节后纤维释放的递质、去甲肾上腺素和肾上腺素结合的受体之一。
前言:学习医学的学生们经常弄混这些问题,所以我给大家提够一个详细的资料,希望大家自己以后注意点!1. M受体的分布:主要分布于胆碱能神经节后纤维所支配的效应器,如心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌和各种腺体。
M受体家族可分为5种亚型,较为公认的是M1、M2、M3三种亚型。
2.N受体的分布:N受体根据分布不同,分为NM(nicotinic muscle, 或称N2受体)受体和NN(nicotinic neur, 或称N1受体)受体。
NM受体分布于神经肌肉接头(骨骼肌细胞膜),NN受体分布于神经节。
N受体位于神经节与神经肌肉接头的胆碱受体对烟碱较为敏感,故将之称为烟碱受体或者N 受体。
N受体胆碱亚型根据其分布部位不同可分为:神经肌肉接头N受体,即NM受体(nicotinic muscle)受体(又称N2受体)及神经节N受体(又称N1受体)。
神经N受体与中枢N受体又称NN受体(nicotinic neuronal)受体M受体是毒蕈碱型受体(muscarinicreceptor)的简称,广泛存在于副交感神经节后纤维支配的效应器细胞上。
当乙酰胆碱与这类受体结合后,可产生一系列副交感神经末梢兴奋地效应,包括心脏活动的抑制 (血压下降、心率下降) ,支气管平滑肌、胃肠道平滑肌、膀胱逼尿肌和瞳孔括约肌的收缩,以及消化腺分泌增加等。
这类受体也能与毒覃碱结合,产生类似的效应。
近年发现M 受体有五种亚型,M1受体主要分布于交感节后神经和胃壁细胞,受体激动引起兴奋和胃酸分泌;M2受体主要分布于心肌、平滑肌,激动引起心脏收缩力和心率降低;M3受体主要分布于腺体和血管平滑肌,引起平滑肌松弛和腺体分泌。
M4 和M5尚未找到与之相对应的药理学分型。
M1、M2、M3这三种受体均有各自的选择性激动剂和拮抗剂,阿托品对这三种M受体均可阻断。
α受体又称“α型肾上腺素能受体”。
能与交感神经节后纤维释放的递质、去甲肾上腺素和肾上腺素结合的受体之一。