材料的磁性能
- 格式:ppt
- 大小:21.43 MB
- 文档页数:96
超导材料的磁性能研究引言超导材料是一类在低温下电阻消失的材料,具有杰出的磁性能。
超导技术因其广泛的应用领域和巨大的发展潜力而备受关注。
本文将着重探讨超导材料的磁性能研究,介绍其背后的原理和实验方法。
超导材料的基本概念超导材料是指在一定温度下能够表现出零电阻状态的材料。
在超导材料中,电子可以无阻碍地通过,形成电子对,称为库珀对。
这些库珀对可以通过与材料中的晶格中的振动相互作用来传递能量。
在超导材料中,库珀对的运动受到磁场的束缚,导致磁场在材料中的失真。
超导材料的磁性能超导材料的磁性能是指当磁场穿过超导材料时,磁场如何对材料的超导性产生影响。
在超导材料遭遇磁场时,磁场会通过材料中的库珀对引起能级的劈裂,从而破坏库珀对。
这个现象被称为磁场响应。
磁场响应可以标志材料的超导性质和转变温度。
磁场效应对超导性的影响在外加磁场的作用下,超导电性会逐渐减弱,最终完全消失。
这个现象称为穿透深度效应。
穿透深度是指透磁场的深度,当其等于超导体样品的尺寸时,超导性会完全消失。
此外,磁场还会影响超导体的临界电流密度,即超导体能够承受的最大电流密度。
磁场的大小和方向以及超导材料的性质都会对磁性能产生影响。
实验方法和技术为了研究超导材料的磁性能,科学家们采用了一系列的实验方法和技术。
其中最重要的是超导量子干涉仪(SQUID)。
SQUID通过测量材料中的微小磁场变化来研究超导材料的磁性能,其中包括临界电流、磁化率、磁滞和穿透深度等参数的测量。
应用领域和前景超导材料的磁性能研究对于实现高温超导和大规模装置的开发具有巨大价值。
高温超导材料的发现和磁性能的改进大大促进了超导技术的应用,如超导磁体、MRI和电力传输。
未来,超导材料的进一步研究将有望实现更高温度的超导性,推动科学技术的进步。
结论超导材料的磁性能研究是推动超导技术发展的重要领域。
通过研究超导材料在外加磁场下的反应,科学家们可以更好地了解超导材料的性质和行为。
这对于超导技术的进一步应用和发展具有重要意义。
永磁材料基本性能解析1、什么是永磁材料的磁性能,它包括哪些指标?永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。
我们通常所说的永磁材料的磁性能,指的就是这四项。
永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。
除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。
此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。
2、什么叫磁场强度(H)?1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。
实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。
定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×10³) A/m。
磁场强度通常用H表示。
3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别?现代磁学研究表明:一切磁现象都起源于电流。
磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。
这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。
因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。
定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。
软磁材料交流磁性能计算公式
软磁材料的交流磁性能可以通过以下公式进行计算:
1. 饱和磁通密度(Bs)的计算公式为:
Bs = Bs0 / (1 + jωτ)
其中,Bs0为直流饱和磁通密度,ω为交流磁场的角频率,τ为材料的磁阻时间常数。
2. 相对磁导率(μr)的计算公式为:
μr = μr0 / (1 + jωτ)
其中,μr0为直流相对磁导率,ω为交流磁场的角频率,τ为材料的磁阻时间常数。
3. 磁滞损耗(Ph)的计算公式为:
Ph = Bm^2 / (2πfη)
其中,Bm为最大磁感应强度,f为交流磁场的频率,η为材料的饱和磁导率。
4. 塞贝克损耗(Pc)的计算公式为:
Pc = αBm^2f^2
其中,α为材料的常数,Bm为最大磁感应强度,f为交流磁场的频率。
这些公式可以用于计算软磁材料在交流磁场下的性能表现,帮助评估材料的适用性和优化设计。
磁性材料的磁性能1、高导磁性磁性材料的磁导率通常都很高,即m r 1 ( 如坡莫合金,其m r 可达2 ′10 5 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性能。
磁性物质的高导磁性被广泛地应用于电工设备中,如电机、变压器及各种铁磁元件的线圈中都放有铁心。
在这种具有铁心的线圈中通入不太大的励磁电流,便可以产生较大的磁通和磁感应强度。
2、磁饱和性磁性物质由于磁化所产生的磁化磁场不会随着外磁场的增强而无限的增强。
当外磁场增大到一定程度时,磁性物质的全部磁畴的磁场方向都转向与外部磁场方向一致,磁化磁场的磁感应强度将趋向某一定值。
如图B - H 磁化曲线的特征:O a 段:B 与H 几乎成正比地增加;ab 段:B 的增加缓慢下来;b 点以后:B 增加很少,达到饱和。
有磁性物质存在时,B 与H 不成正比,磁性物质的磁导率m 不是常数,随H 而变。
有磁性物质存在时,F 与I 不成正比。
磁性物质的磁化曲线在磁路计算上极为重要,其为非线性曲线,实际中通过实验得出。
3、磁滞性磁滞性:磁性材料中磁感应强度 B 的变化总是滞后于外磁场变化的性质。
磁性材料在交变磁场中反复磁化,其B - H 关系曲线是一条回形闭合曲线,称为磁滞回线。
剩磁感应强度B r ( 剩磁) :当线圈中电流减小到零( H =0) 时,铁心中的磁感应强度。
矫顽磁力H c :使B = 0 所需的H 值。
磁性物质不同,其磁滞回线和磁化曲线也不同。
按磁性物质的磁性能,磁性材料分为三种类型:(1) 软磁材料具有较小的矫顽磁力,磁滞回线较窄。
一般用来制造电机、电器及变压器等的铁心。
常用的有铸铁、硅钢、坡莫合金即铁氧体等。
(2) 永磁材料具有较大的矫顽磁力,磁滞回线较宽。
一般用来制造永久磁铁。
常用的有碳钢及铁镍铝钴合金等。
(3) 矩磁材料具有较小的矫顽磁力和较大的剩磁,磁滞回线接近矩形,稳定性良好。
在计算机和控制系统中用作记忆元件、开关元件和逻辑元件。
常用的有镁锰铁氧体等。
磁性能对照表
牌号
工厂的生产能力多为N30~N48牌号之间,牌号越高,吸力越强
目前世界上最高牌号的磁力是N50,但产出很小,目前国内只有少数
几个厂可以做到,尚未能做到批量生产。
N48特点
1.罕见的超强吸力,如果两片超强磁铁吸在一起时,一个壮男是
无法垂直用指力把它分开。
2.要始终十分小心,因为磁铁会自己吸附到一起,可能会夹伤手指。
磁铁相互吸附时也有可能会因碰撞而损坏磁铁本身(碰掉边角
或撞出裂纹)。
N50特点
1.材料:N-50(稀少的材料),N50材料磁铁顶峰材料磁性级强。
2.高斯:8500
3.表面处理:电镀镍
4.使用温度:< 80度
磁性能对照表牌号越高磁性能越高,M,H,SH,UH分别代表着不同工作温度的牌号。
磁性材料专有名词解释
内禀矫顽力(Hcj)---------------- 单位为奥斯特(Oe)或安/米(A/m)
使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。
在磁体使用中,磁体矫顽力越高,温度稳定性越好。
材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。
磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。
本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。
磁性材料是指在外加磁场下会产生磁化现象的材料。
根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。
铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。
铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。
铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。
软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。
磁性材料在电子、通信、医疗等领域具有广泛的应用。
在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。
在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。
在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。
总之,磁性材料的磁学性能对于材料的应用具有重要的意义。
通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。
希望本文能够对读者有所帮助,谢谢阅读。
铁磁材料的磁性能铁磁材料是重要的电磁材料,它对于电子、电气和电机领域有着重要的应用。
铁磁材料的主要特征是其拥有很强的磁性能。
因此,对铁磁材料的磁性能的研究与利用,有助于深入认识铁磁材料的结构特性,为进一步开发高效利用铁磁材料提供了理论依据。
铁磁材料的磁性能取决于它的化学结构和物理结构。
它的物理结构包括晶格结构和局部结构,其中,晶格结构中的磁矩具有自发性,局部结构中的磁矩可以由外界的磁场而产生。
此外,铁磁材料的磁性能还受化学因素的影响,包括原子排列、原子间距离、剩余换热熵及电子自旋等。
铁磁材料的磁性能是由它的结构决定的。
它由晶格层次及其交叉层次之间的磁矩而构成,在晶体结构中,磁矩呈现出一种空间构型,即铁磁性的晶格极化,从而表现出磁性能的空间分布特征。
磁性能的特征,包括晶体的可饱和磁通密度、空间分布的磁场强度、晶体的磁滞回线、单位面积磁矩及铁磁吸收率等特性。
铁磁材料拥有硬磁性和软磁性两种磁性类型。
硬磁性材料具有超强的磁矩稳定性,其磁性能受原子层次构型的影响,稳定性也很高。
软磁性材料虽有较弱的磁矩稳定性,但其磁性能也受原子层次构型的影响,可以轻易在外界磁场的作用下改变其磁性能。
研究表明,铁磁材料的磁性能大多受晶格结构的影响,包括晶格参数如晶格常数、自旋结构参数,以及铁磁晶粒的大小等。
晶格参数的变化会直接影响铁磁材料的磁性能。
比如,当晶格常数变小时,铁磁材料的磁性能将得到增强;当自旋结构参数发生改变时,铁磁材料将由热磁变为冷磁。
同时,铁磁材料的晶粒尺寸大小也会影响它的磁性能,当晶粒尺寸变大时,铁磁材料的磁性能也会增强。
另外,铁磁材料的磁性能也受到外界条件的影响,包括温度、压力、电子自旋等。
当温度升高时,铁磁材料的磁性能会被抑制;当压力增大时,铁磁材料的磁性能也会被抑制;当电子自旋发生变化时,铁磁材料也会发生变化,从而影响其磁性能。
综上所述,铁磁材料是重要的电磁材料,它的磁性能取决于其化学结构和物理结构,将其中的晶格参数、自旋结构参数和晶粒尺寸进行改变,可以改变铁磁材料的磁性能,同时,外界条件的变化也会影响铁磁材料的磁性能,因此,在开发利用铁磁材料的过程中,需要注意外界条件的影响。
磁性材料的磁饱和度与磁导率磁性材料是一类具有特定磁性能的材料,研究其磁性能对于理解材料的特性和应用具有重要意义。
磁饱和度和磁导率是磁性材料的两个关键性能参数,它们在材料的磁性行为和应用中起着重要的作用。
一、磁饱和度磁饱和度是指磁性材料在外加磁场作用下,当其磁化强度达到一定值时,无法再增加磁化强度的能力。
磁饱和度可以用来衡量材料的磁性饱和程度和磁化能力。
磁饱和度的定义可以通过材料的磁化曲线来解释。
当一个磁性材料受到外加磁场的作用时,其磁化强度会随着外加磁场的增加而增加。
然而,当磁化强度达到一定值时,材料的磁化强度将不再增加,而是趋于饱和。
这个磁化强度的临界值即为磁饱和度。
磁饱和度不仅与材料本身的性质有关,同时也受到外界条件的限制。
例如,温度的升高会降低磁饱和度,外加磁场的强度也会对磁饱和度产生影响。
因此,在实际应用中,需要考虑到这些因素对磁饱和度的影响。
二、磁导率磁导率是描述磁性材料对外磁场响应能力的参数,它表示材料相对于真空的磁场导磁能力。
磁导率可以用来衡量材料的磁化能力和磁性行为。
在磁场作用下,磁性材料中的磁化强度与磁场强度之间存在一定的关系。
磁导率是磁化强度与磁场强度之比的比例系数,用来描述这种关系。
磁导率的数值越大,说明材料对外磁场的响应能力越强。
与磁饱和度类似,磁导率也受到多种因素的影响。
例如,外界温度和频率对磁导率都有一定的影响,不同的磁性材料也具有不同的磁导率范围。
三、磁饱和度与磁导率的关系磁饱和度和磁导率是磁性材料磁性能的两个重要参数,它们之间存在一定的关系。
在某些情况下,磁饱和度和磁导率可以看作是相关的。
一般来说,当磁导率较大时,材料的磁饱和度也会相应增大。
这是因为磁导率的增大意味着材料对外磁场的响应能力增强,磁化强度可以更好地随外磁场的增加而增加,从而延迟了磁饱和的发生。
然而,并非所有情况下磁饱和度和磁导率之间存在直接的关联。
一些材料可能具有高磁导率但相对较低的磁饱和度,而另一些材料可能具有相对较低的磁导率但较高的磁饱和度。
钕铁硼磁性材料知识钕铁硼(NdFeB)是一种由钕(Nd)、铁(Fe)和硼(B)组成的磁性材料。
它具有极高的磁能积和矫顽力,是目前世界上最强的永磁材料之一1.强大的磁性能:钕铁硼磁性材料具有极高的矫顽力和剩磁,可以达到很高的磁能积。
其磁性能远超过铝镍钴磁铁和硬铁材料,是目前最强的永磁材料之一2.高温稳定性:钕铁硼磁性材料具有较高的工作温度范围,一般可在150℃之下长期工作。
对于一些特殊的等级和组合,其工作温度还可以高达200℃以上。
3.良好的抗腐蚀性:钕铁硼磁性材料通常都经过镀层处理,可以提高其抗腐蚀性能。
但是在一些特殊环境下,如酸性或碱性环境,仍然需要进行特殊的防腐蚀处理。
4.均匀的磁性能:钕铁硼磁性材料具有良好的磁性可控性,可以通过多种方法进行磁化,实现不同方向的磁性分布。
这样可以满足各种不同应用场景的需求。
5.易加工:钕铁硼磁性材料具有较好的可加工性,可以通过磁化、切割、铣削、钻孔等方式进行形状切割和加工。
在加工过程中,需要注意防止磁性材料氧化、烧损等问题。
1.电子产品:钕铁硼磁性材料广泛应用于电子产品中,如硬盘驱动器、音响喇叭、电机等。
由于其强大的磁性能,能够提供更高的输出功率和更好的音质效果。
2.交通运输:钕铁硼磁性材料可以用于电动汽车和混合动力汽车的电机中,提供更高的输出功率和更好的动力性能。
此外,它还可以用于列车制动系统、汽车传感器等。
3.绿色能源:钕铁硼磁性材料可以用于风力发电机、水力发电机、太阳能电池等绿色能源设备中,提高能源转化效率和发电效率。
4.医疗器械:钕铁硼磁性材料可以用于医疗器械中,如磁共振成像(MRI)设备、磁治疗设备等。
其强大的磁性能可以提供更高的信号响应和更好的影像分辨率。
5.机械设备:钕铁硼磁性材料可以用于磁力制动器、磁力离合器、磁力储能器、磁力密封器等机械设备中。
由于其高矫顽力和高剩磁性能,可以实现更高的转矩、更好的传动效率和更好的密封性能。
总之,钕铁硼磁性材料是一种强大的磁性材料,具有很高的磁能积和矫顽力。
一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,m 磁芯(S,l):f~F 器件(N):U~I,LI ~H: H = IN/l 磁势F =ò Hdl=Hl Nf = ò UdtL~m:L=AL N2 =4N2m SK /D′10-9 U ~B:U = Ndf/dt = kfNBS ′10-6二、常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
磁性材料的磁性能与结构相关性研究磁性材料广泛应用于许多领域,如电子设备、医学、能源等,其磁性能直接影响着其在实际应用中的效果。
因此,研究磁性材料的磁性能与结构的相关性具有重要意义。
本文将从多个方面探讨磁性材料的磁性能与结构的关系。
首先,磁性材料的晶体结构对其磁性能具有重要影响。
晶体结构中包含着原子的排列方式、晶格常数等因素。
以铁磁性材料为例,其具有排列有序的晶格结构,原子间的相互作用力会使得磁性材料出现磁矩,从而产生磁性。
当晶体结构中的原子排列发生变化时,原子间的相互作用力也会随之改变,从而导致磁性材料的磁性能发生变化。
因此,通过改变晶体结构,可以调控磁性材料的磁性能。
其次,磁性材料的微观结构与磁性能之间存在着密切联系。
磁性材料的微观结构包括晶格缺陷、晶界、位错等。
这些微观结构会对磁性材料的磁性能产生影响。
例如,晶格缺陷会影响磁性材料的磁畴壁的形成和移动,从而影响材料的矫顽力和磁滞回线。
晶界是晶格结构发生突变的区域,其存在可能导致磁性材料的磁畴壁的滞后,从而影响磁性材料的磁滞回线的形状。
位错是晶格中的一种缺陷,其存在也会对磁性材料的磁性能产生影响。
因此,研究磁性材料的微观结构对于了解其磁性能具有重要意义。
与此同时,磁性材料中的磁性粒子也会对其磁性能产生影响。
磁性粒子的大小、形状和组成等因素都会影响材料的磁性能。
例如,当磁性粒子的大小减小到纳米尺度时,其表面自由能会增加,磁畴壁的数量也会增加,导致材料的矫顽力和磁滞回线发生变化。
此外,磁性粒子的形状对磁性材料的磁性能也有影响。
例如,磁性粒子的形状不规则时,会导致材料的剩余磁矩发生变化。
另外,不同组成的磁性粒子也会影响磁性材料的磁性能。
例如,通过改变磁性粒子的元素组成,可以调节材料的矫顽力、饱和磁化强度等磁性能参数。
最后,外界条件(如温度、压力等)也会影响磁性材料的磁性能。
随着温度的升高,磁性材料的磁性通常会减弱。
这是因为温度的升高会增加热激发和热涨落,从而使得磁性材料的磁性粒子发生热翻转或短路。