2017幂函数知识总结
- 格式:doc
- 大小:163.50 KB
- 文档页数:5
2017年高考数学知识点:幂函数的性质形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a 为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q 是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;排除了为0这种可能,即对于x;0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
幂函数知识点总结幂函数是数学中常见的一类函数,主要应用于数据分析和物理学中。
它有着独特的数学性质,并且能够解释一系列规律性的现象,因此在各个领域中都有着广泛的应用。
本文将综合介绍幂函数的基本性质、作用机制和表达方式,以及其在实际应用中的各种特性。
一、基本性质幂函数(Power Function)是一类函数,通常定义为 y=x^n,其中x为变量,n为常数。
它同样也是一种一元函数,因为它只有一个变量X,表示函数值由变量X决定。
二、作用机制幂函数的作用机制主要体现在它的图象与数轴上。
因为x的增大会使得y的值也会加大,所以函数的图象通常是一条上凸的曲线。
这条曲线在原点处发散无限,而且具有明显的拐点,即抛物线的最高点。
此外,幂函数的作用机制还表现出了其“加速增长”的性质。
从图象上看,在抛物线最高点处,x增大时,y值会比较稳定,但是在x值增大之后,y值会变化得越来越快,这也是函数的最显著特征。
三、表达方式幂函数的表达方式很简单,一般情况下,以n来表示其幂的值,并且幂的值可以是整数、实数或负数,但必须保证x的值不等于0,这里说明由于x不等于0才有意义,因为若x等于0时,n为任意值,y都等于0.例如:y=x^2,即平方函数,n=2;y=x^3,即立方函数,n=3;y=x^2,即倒数平方函数,n=2.四、实际应用1、数据分析:幂函数在数据分析中应用十分广泛,其特有的“加速增长”性质,让数据分析者能够以规律的路径追求特定的结果。
例如,可以利用幂函数进行回归分析,以拟合给定数据;此外,可以利用幂函数构建概率模型,更好地研究联系型数据间的关系;2、物理学:幂函数在物理学中也有着广泛应用,可以用来模拟夸克的衰变过程,更好地理解物质的衰变规律;另外,也可以利用幂函数,研究物体受力的加速度变化,以及质量变化对物体运动的影响等。
综上所述,幂函数是一类重要的函数,它的基本性质、作用机制和表达方式构成了幂函数的基本框架,而在实际应用中,幂函数又有着广泛的用途,能够用于数据分析和物理学等领域,从而帮助人们更好地理解客观事物的变化规律。
幂函数的性质知识点总结幂函数是一种常见的函数形式,其形式为$f(x)=x^a$,其中$a$为实数,$x$为正实数。
在初等数学中,我们常常使用幂函数来描述各种各样的问题。
因此,本文将全面总结幂函数的性质,包括定义域、值域、单调性、奇偶性、最值等等。
一、定义域对于幂函数$f(x)=x^a$,其定义域为$x>0$。
这是因为,对于$x\leq 0$的情况,幂函数的值可能会在实数范围内无限制地扩大或缩小,从而变成无意义的虚数或复数。
因此,为了确保$f(x)$在实数范围内有意义,必须限定$x>0$。
二、值域当$a>0$时,$f(x)$的值域为$[0,+\infty)$。
这是因为,对于$x=0$时,$f(x)=0$;而对于$x>0$时,$f(x)$的值随着$x$的增大而增大,趋近于无穷大。
因此,$f(x)$的值域为$[0,+\infty)$。
当$a<0$时,$f(x)$的值域为$(0,+\infty)$。
这是因为,对于$x\neq 0$时,$f(x)>0$;而对于$x=0$时,$f(x)=0$。
因此,$f(x)$的值域为$(0,+\infty)$。
三、单调性当$a>0$时,$f(x)$在定义域内单调递增。
这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。
由于$x_2>x_1$且$a>0$,因此$x_2^a>x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。
因此,$f(x)$在定义域内单调递增。
当$a<0$时,$f(x)$在定义域内单调递减。
这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。
由于$x_2>x_1$且$a<0$,因此$x_2^a<x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。
指对幂函数知识点总结幂函数是数学中一类重要的函数,它的形式为y=x^n,其中n为常数。
在数学和实际问题中,幂函数有着广泛的应用。
下面将对幂函数的定义、性质及应用进行总结。
一、定义与性质1. 幂函数的定义:幂数为常数的函数称为幂函数。
幂数n可以是整数、分数或实数。
2. 幂函数的特点:a) 当n为正整数时,幂函数的定义域为实数集,且在定义域上为递增函数或递减函数。
b) 当n为负整数时,幂函数的定义域为(0,+∞),且在此定义域上为递减函数。
c) 当n为零时,幂函数的定义域为(0,+∞),且在此定义域上为常数函数。
d) 当n为分数时,幂函数的定义域为0、正实数或正实数与0的并集,且在此定义域上有特定的变化趋势。
3. 幂函数的图像特点:a) 当n为正数时,随着x的增大,函数图像在y轴的正半轴上逐渐上升。
b) 当n为负数时,随着x的增大,函数图像在y轴的正半轴上逐渐下降。
c) 当n为奇数时,函数图像经过原点,且在第一象限和第三象限上对称。
d) 当n为偶数时,函数图像在y轴正半轴上单调递增,且在第一象限上有特定的变化趋势。
二、应用领域1. 自然科学领域:a) 物理学:幂函数常用于描述机械运动、电磁波传播等现象。
b) 化学:幂函数可用于描述化学反应的速率与温度、浓度等因素的关系。
2. 经济学领域:a) 收入与消费关系:幂函数可用于描述收入与消费之间的关系,如马太效应。
b) 产出与投入关系:幂函数可用于描述生产要素投入与产出之间的关系。
3. 工程学领域:a) 建筑设计:幂函数可用于描述建筑物的荷载、尺寸与结构的关系。
b) 通信工程:幂函数可用于描述信号传输的功率与距离的关系。
4. 生物学领域:a) 生物传感器:幂函数可用于描述生物传感器的输入与输出之间的关系。
b) 增长模型:幂函数可用于描述生物体的生长模式,如人口增长模型等。
总结:幂函数作为一类重要的函数,在数学和实际问题中具有广泛的应用。
通过对幂函数的定义、性质以及应用领域的总结,有助于我们更好地理解和应用幂函数,为解决实际问题提供了有力的工具和方法。
幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。
其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。
1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。
当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。
1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。
1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。
二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。
图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。
2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。
图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。
2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。
当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。
2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。
幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。
幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。
下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。
1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。
其中,a称为幂函数的系数,b称为幂函数的指数。
幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。
当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。
2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。
首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。
其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。
除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。
3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。
对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。
具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。
此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。
4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。
对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。
指对幂函数知识点总结幂函数是指将一个变量的函数,其函数表达式类似于ax^b,其中x表示函数的自变量,a与b为实数,a可以为1,b可以为任意实数(包括0)。
2、幂函数的特点(1)该函数的图像一般具有一个模式,当b>0时,以原点为顶点,向右延伸的弧线;当b<0时,以原点为顶点,向左延伸的弧线;当b=0时,是一条水平线。
(2)幂函数是单调函数,当b>0时,其函数值由小到大;当b<0时,其函数值由大到小。
(3)幂函数具有对称性,当b为偶数时,其横轴对称;当b为奇数时,其纵轴对称。
(4)幂函数具有对称性,当b为偶数时,其横轴对称;当b为奇数时,其纵轴对称。
3、幂函数的基本性质(1)幂函数的导数当b=1时,函数的导数为ax;当b≠1时,函数的导数为abx^(b-1)。
(2)幂函数的极值当a>0且b>1时,函数的极大值为+∞,极小值为0;当a<0且b>1时,函数的极大值为-∞,极小值为0;当a>0且b<1时,函数的极大值为a,极小值为0;当a<0且b<1时,函数的极大值为0,极小值为-a。
(3)函数的增减性当b>1时,函数在[0, +∞)内递增;当b<1时,函数在[0, +∞)内递减;当b=1时,函数在x>0和x<0两段位置都是递增的。
4、幂函数的应用(1)实际问题的求解:幂函数主要用于解决一些实际问题,如财务计算中的时间价值计算。
(2)计算机科学:幂函数也被应用于计算机科学中,它用于表示某些算法的时间复杂度,用最好的、最坏的以及平均的情况来表示。
(3)物理学:幂函数在物理学中也有应用,可以用它来描述很多物理现象,如重力加速度的变化曲线、质点运动轨迹等等。
5、总结本文介绍了幂函数的基本概念,特点及其基本性质,同时介绍了它在实际问题、计算机科学以及物理学中的应用,以期让读者对幂函数有一个全面而深入的了解。
幂函数、指数函数知识点整理(1)幂函数的定义: 一般地,函数y=x a叫做幂函数,其中x 为自变量,a 是常数. (2)幂函数的图象 (3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,∞)都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当pqa =(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.一、根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:()n na a =;当n 为奇数时,n na a =;当n 为偶数时,(0)|| (0)nna a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m nm na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mm nn naa m n N aa-+==>∈且1)n >. 0的负分数指数幂没有意义。
幂函数知识点总结5篇在平时的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。
想要一份整理好的知识点吗?的我精心为您带来了5篇《幂函数知识点总结》,如果能帮助到亲,我们的一切努力都是值得的。
高一数学幂函数知识点总结篇一1、函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。
区间D称为y=f(x)的单调减区间。
注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(3)函数单调区间与单调性的判定方法(A)定义法:a.任取x1,x2D,且x1b.作差f(x1)-f(x2);c.变形(通常是因式分解和配方);d.定号(即判断差f(x1)-f(x2)的正负);e.下结论(指出函数f(x)在给定的区间D上的单调性)。
(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:"同增异减'注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。
8、函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。
(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数。
(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称。
利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
幂 函 数 复 习
一、幂函数定义:形如
)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
注意:幂函数与指数函数有何不同
【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置.
观察图:
归纳:幂函数图像在第一象限的分布情况如下:
二、幂函数的性质
归纳:幂函数在第一象限的性质:
0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。
0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。
探究:整数m,n 的奇偶与幂函数n
m x y =),,,(互质且n m Z n m ∈的定义域以及奇偶
性有什么关系 结果:形如n m x y =),,,(互质且n m Z n m ∈的幂函数的奇偶性
(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;
(2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称;
(3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内.
三、幂函数的图像画法:
关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹);
指数等于1,在第一象限为上升的射线;
指数大于0小于1,在第一象限为抛物线型(凸);
指数等于0,在第一象限为水平的射线;
指数小于0,在第一象限为双曲线型;
2、幂函数
),,,,(互质q p Z q p p q x y ∈==αα的图像:
3、比较幂形式的两个数的大小,一般的思路是:
(1)若能化为同指数,则用幂函数的单调性;
(2)若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.
.经典例题:
例1、已知函数2
23()()m m f x x m -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.
例2、若11(1)(32)m m --+<-,试求实数m 的取值范围.
例3、若33(1)(32)m m +<-,试求实数m 的取值范围.
例4、若44(1)(32)m m +<-,试求实数m 的取值范围.
例5、函数1
224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,求m 的取值范围。
练习1:已知函数2
221(1)m m y m m x --=--是幂函数,求此函数的解析式.
练习2:若函数29()(919)a f x a a x -=-+是幂函数,且图象不经过原点,求函数的
解析式.
题型二:幂函数性质
例2:下列命题中正确的是( )
A .当0α=时,函数y x α=的图象是一条直线
B .幂函数的图象都经过(0,0),(1,1)两点
C .幂函数的
y x α=图象不可能在第四象限内 D .若幂函数y x α
=为奇函数,则在定义域内是增函数 练习3:如图,曲线c1, c2分别是函数y =x m 和y =x n 在第一象限的图象,那么一定有( )
A .n<m<0
B .m<n<0
C .m>n>0
D .n>m>0
练习4:.(1)函数y =52
x 的单调递减区间为( ) A .(-∞,1) B .(-∞,0) C .[0,+∞) D .(-∞,+∞)
(2).函数y =x 43
-在区间上 是减函数.
(3).幂函数的图象过点(2,41
), 则它的单调递增区间是。