含参数的一元二次不等式的解法(专题)
- 格式:doc
- 大小:198.00 KB
- 文档页数:3
含参数的一元二次不等式的解法高中数学一元二次不等式是高中数学中重要的内容之一,它与一元二次方程不同,需要通过特定的方法来解决。
当一元二次不等式中出现参数时,解法也会有所不同。
本文将介绍含参数的一元二次不等式的解法。
首先,我们来看一个简单的例子,假设有不等式 f(x) =ax^2+bx+c > 0,其中a、b、c为实数且不为零。
我们的目标是确定x的取值范围使得不等式成立。
步骤一:将不等式化简为标准形式首先,我们需要将不等式化简为标准形式,即形如(ax^2+bx+c)>0的形式。
若不等式已经处于此形式,则可以直接进行下一步。
若不等式不满足此形式,则需要移项合并同类项,将不等式转化为标准形式。
步骤二:确定基本情况下的解法对于标准形式的一元二次不等式,我们可以利用图像法或代数法来解决。
对于a>0和a<0的两种情况,基本的解法如下:1. 当a>0时:- 如果a>0,二次函数的开口朝上,函数图像是一个开口朝上的抛物线。
此时的不等式解集为抛物线上方的实数集。
- 若抛物线与x轴有两个交点,我们可以通过求解对应的一元二次方程,求出两个交点x1和x2。
然后我们可以得到解集: x<x1 或x>x2- 若抛物线与x轴只有一个交点,我们可以求解的结果只有一个交点x0,此时解集为:x<x0 或 x>x0。
2. 当a<0时:- 如果a<0,二次函数的开口朝下,函数图像是一个开口朝下的抛物线。
此时的不等式解集为抛物线下方的实数集。
- 若抛物线与x轴有两个交点,我们可以通过求解对应的一元二次方程,求出两个交点x1和x2。
然后我们可以得到解集: x1<x<x2- 若抛物线与x轴没有交点,则解集为空集:ø步骤三:含参数时的解法当一元二次不等式中存在参数时,解法稍有不同。
我们以一个具体的例子来说明。
例题:对于不等式f(x) = (a+b)x^2+(b+c)x+c>0,其中a,b,c 为实数且不为零。
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且;当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
含参数的一元二次不等式的解法含参一元二次不等式经常使用的分类方式有三种: 一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,因此咱们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x变式:解关于x 的不等式1、0)2)(2(>--ax x ; 二、(1-ax )2<1.}2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当3、ax 2-(a +1)x +1<0(a ∈R)【解】由(1-ax )2<1得a 2x 2-2ax +1<1.即ax (ax -2)<0.(1)当a =0时,不等式转化为0<0,故原不等式无解.(2)当a <0时,不等式转化为x (ax -2)>0,即x (x -2a )<0.∵2a <0,∴不等式的解集为{x |2a<x <0}.(3)当a >0时,不等式转化为x (ax -2)<0,又2a>0,}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x ax a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情形。
含参数的一元二次不等式的解法
解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢对含参一元
二次不等式常用的分类方法有三种:
一、按2
x 项的系数a 的符号分类,即0,0,0<=>a a a ;
例1 解不等式:()0122
>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。
解:∵()044222
>+=-+=∆a a a 解得方程 ()0122
=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭
⎬⎫⎩⎨⎧
>21|x x 当0<a 时, 解集为⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22 例2 解不等式()00652
≠>+-a a ax ax 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2
>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x
二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;
例3 解不等式042>++ax x
分析 本题中由于2
x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a
∴当()4,4-∈a 即0<∆时,解集为R ;
当4±=a 即Δ=0时,解集为⎭
⎬⎫⎩⎨⎧
≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,2
1622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或 例4 解不等式()
()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(m
m -=+--=∆ 所以当3±=m ,即0=∆时,解集为⎭
⎬⎫⎩⎨⎧
=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩
⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>
-<m m 或,即0<∆时,解集为R 。
三、按方程02=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;
例5 解不等式)0( 01)1(2
≠<++-a x a
a x 分析:此不等式可以分解为:()0)1(<--a x a x ,故对应的方程必有两解。
本题 只需讨论两根的大小即可。
解:原不等式可化为:()0)1(<-
-a x a x ,令a a 1=,可得:1±=a ∴当1-<a 或10<<a 时,a a 1< ,故原不等式的解集为⎭⎬⎫⎩
⎨⎧<<a x a x 1|; 当1=a 或1-=a 时,a
a 1=,可得其解集为φ; 当01<<-a 或1>a 时, a a 1>,解集为⎭
⎬⎫⎩⎨⎧<<a x a x 1|。
例6 解不等式06522
>+-a ax x ,0≠a
分析 此不等式()0245222>=--=∆a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小.
解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为
a x a x 3,221==,当0a 时,即23a a ,解集为{}a x a x x 23|<>或;当0<a 时,即23a a ,解集为{}|23x x a x a ><或。