含参数的一元二次不等式的解法
- 格式:doc
- 大小:342.50 KB
- 文档页数:5
2含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种: 一、按X 2项的系数a 的符号分类,即a 0,a 0,a 0;例1解不等式:ax 2系数进行分类讨论。
例2解不等式ax 2 5ax 6a 0 a 0分析因为a 0 , 0, 所以我们只要讨论二次项系数的正负。
解 a(x 2 5x 6)a x 2 x 3 0当a时,解集为 x | x 2或x 3 ; 当a0时,解集为x | 2 x 3变式:解关于 x 的不等式1、(x 2)(ax 2) 0 ;32、ax -(a + 1)x + 1<0(a € R)二、按判别式的符号分类,即0,0, 0;例3解不等式x 2 ax 4 0分析 本题中由于x 2的系数大于0,故只需考虑 与根的情况。
解:T a 2 16当a 4即厶=0时,解集为 xx R 且x —分析:本题二次项系数含有参数,2a 2 4a a 24 0,故只需对二次项解:4aa 2解得方程 ax 2a 2 a 22a4 —,X 2 2a 2 a 42a 0时,不等式为 2x 10时,解集为 x|「— 或 x2aa 2 a 242a2..a 24x2a 2 2a、a 2 4 •••当 a 4,4 即0时,解集为R ;< 23 m 2m 21当m ...3或m 3,即 0时,解集为R变式:解关于x 的不等式:ax 2 x 1三、按方程ax bx c 0的根x 1, x 2的大小来分类,即 x 1 x 2 ,x 1 x 2, x 1 x 2 ;例5解不等式x 2 (a 1)x 1 0 (a 0)a1分析:此不等式可以分解为: x a (x ) 0,故对应的方程必有两解。
本题a只需讨论两根的大小即可。
11 解:原不等式可化为: x a (x ) 0,令a,可得:a 1aa11•••当a 1或0 a 1时,a,故原不等式的解集为x | a xaa1当a 1或a 1时,a -,可得其解集为a当1 a 0或a1时, a 1,解集为a.1x | x a 。
一元二次不等式是指形如$ax^2 + bx + c > 0$ 或$ax^2 + bx + c < 0$ 的不等式,其中$a,b,c$ 是常数。
解决这种不等式的方法与解决一元二次方程的方法类似,需要先求出方程$ax^2 + bx + c = 0$ 的根。
首先,将不等式中的常数移到右边,得到$ax^2 + bx = -c$。
然后,将左边因式分解,得到$a(x - r_1)(x - r_2) = -c$,其中$r_1$ 和$r_2$ 是方程$ax^2 + bx + c = 0$ 的两个根。
根据分解因式的性质,可以得到以下三种情况:
当$a > 0$ 时,不等式$ax^2 + bx + c > 0$ 的解为$r_1 < x < r_2$,而不等式$ax^2 + bx + c < 0$ 的解为$x < r_1$ 或$x > r_2$。
当$a < 0$ 时,不等式$ax^2 + bx + c > 0$ 的解为$x < r_1$ 或$x > r_2$,而不等式$ax^2 + bx + c < 0$ 的解为$r_1 < x < r_2$。
注意,当$a = 0$ 时,不等式变成一元一次不等式,应使用相应的解法。
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧->21|x x当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22练习1 解不等式()00652≠>+-a a ax ax二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例2 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a xR x x 且; 当4>a 或4-<a 即>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或练习2 解不等式()()R m x x m∈≥+-+014122三、按方程2=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;例3 解不等式)0( 01)1(2≠<++-a x aa x分析:此不等式可以分解为:()0)1(<--ax a x ,故对应的方程必有两解。
含参数的一元二次不等式的求解方法解析冯婷含参数的一元二次不等式是一元二次不等式求解问题的一个难点,本文总结了含参数的一元二次不等式的几种常见题型及其常见解法。
含参数的一元二次不等式由于其系数中出现了参数,因此往往需要对参数不同取值进行分类讨论从而加以求解。
一般情况下,含参数的一元二次不等式的分类和讨论步骤如下:(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零的讨论,当特别当二次项系数为零时需转化为一元一次不等式问题来求解;(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分0,0,0∆>∆=∆<三种情况加以讨论;(3)若含参数的一元二次不等式可以转化成用其根12,x x 表示的形如12()()a x x x x --的形式时,往往需要对其根分121212,,x x x x x x >=<三种情况进行讨论,或用韦达定理帮助求解。
一、对根的情况及判别式分类讨论例1 解关于x 的不等式220x kx k +-≤。
解:28(8)k k k k ∆=+=+① 当0∆>即08k k ><-或时,方程220x kx k +-=有两个不相等的实数根,则该不等式的解集为x x ⎧⎪≤≤⎨⎪⎪⎩⎭。
② 当0∆=即08k k ==-或时,方程220x kx k +-=有两个相等的实数根,则该不等式的解集为{}|0,2x x x ==或。
③ 当0∆<即80k -<<时,方程220x kx k +-=无实数根,则该不等式的解集为∅。
注:本题由于方程220x kx k +-=根的情况不确定,则需要对其判别式进行分类讨论。
例2 解关于x 的不等式022)3(2>-+++m mx x m 。
解:① 当03=+m 即3-=m 时,上述不等式可化简为650x -->,此时不等式的解集为5|6x x ⎧⎫<-⎨⎬⎩⎭。
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a Θ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且;当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。
例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。
解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。
当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。
当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。
所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。
例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。
解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。
含参数的一元二次不等式的解法基础知识:1.一元二次不等式的形式:02>++c bx ax 与02<++c bx ax (a≠0)2. 只考虑0>a 的情形。
当a <0时,将不等式两边乘-1就化成 了“a>0”。
3.一元二次不等式、一元二次方程和二次函数的联系:从函数的观点来考虑。
设二次函数y=ax 2+bx+c (a≠0)的图象是抛物线L ,则不等式ax 2+bx+c >0,ax 2+bx+c <0的解集分别是抛物线L 在x 轴上方,在x 轴下方的点的横坐标x 的集合;二次方程ax 2+bx+c=0的根就是抛物线L 与x 轴4.二次不等式、二次方程和二次函数的联系,通常称为“三个二次问题”,我们要深刻理解、牢牢掌握,并灵活地应用它。
它是函数与方程思想的应用范例。
应用这“三个二次”的关系,不但能直接得到“二次不等式的解集表”,而且还能解决“二次问题”的难题。
5.一元二次不等式的解法步骤。
1)化为一般式ax 2+bx+c >0 (a >0)或ax 2+bx+c <0 (a >0)。
这步可简记为“使a >0”。
2).计算△=b 2-4ac ,判别与求根:解对应的二次方程ax 2+bx+c=0,判别根的三种情况,△≥0时求出根。
3).写出解集:用区间或用大括号表示解集。
注意:1.解题策略:使a 值为正,求得两根,“>”则两根之外;“<”则两根之内。
2.不要死记书上的解集表,要抓住对应的二次方程的“根”来活记活用。
二次不等式的解集求法可用数轴标根。
知识应用 :一.不含参数的一元二次不等式的解法二、关于含参数(单参)的一元二次不等式的解法 (一).二次项系数为常数1.解关于x 的不等式:x 2-(m +2)x +2m <0。
解:(x -2)(x -m)<0(1) m <2时,x ∈(m ,2)21x(2) m >2时,x ∈(2,m) (3) m =2时,x ∈∅反思:(1) 引起讨论的原因是什么?——m 与2大小的不确定性 (2) 如何进行讨论?——比较大小 2.解关于x 的不等式:.0)2(2>+-+a x a x解:0)2(2>+-+a x a x )(*(1)当()224044a a a a ∆=-->⇔<->+, 两根为1x=2x=.)(*解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a );(2)当44a a =-=+0=∆,)(*解集为(,1-∞)⋃(+∞-,13); (3)当324324+<<-a 时,0<∆,)(*解集为R ;(二).二次项系数含参数3. 解关于x 的不等式:mx 2-(m +1)x +1<0。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按X 2项的系数a 的符号分类,即a 〉0,a=0,a<0; 例1解不等式: ax 2a 2x 1 0分析:本题二次项系数含有参数, A=(a +2f_ 4a = a 2+4》0,故只需对二次项系数进行分类讨论。
解:•, A = (a +2 2 —4a = a 2+4》0 解得方程 ax 2 +(a +2 X +1=0 两根为=—'—2;;京*4, X2 = -'-2*带 八心 臣”兀 —a -2 +而2 +4 y _a -2 - da 2 +4 .•当 a 》0时,解集为』x | x > ----------------------- 或x < ---------------------2a 2a当a =0时,不等式为2x+1》0,解集为』x|x 〉;?— a —2+y a 2+4_a_2_Ja 2+4当a<0时,解集为Jx|一 <x <一 .2例2解不等式ax —5ax + 6a 》0(a 孝0 )分析 因为a #0 , A >0,所以我们只要讨论二次项系数的正负。
解a(x 2 -5x 6) = a x - 2 x -3 )〉0,二当a a 0时,解集为<x | x < 2或x a 3"当a < 0时,解集为 k | 2 <x < 3}2、(1 — ax )2<1.【解】 由(1 - ax)2<1 得 a 2x 2 - 2ax+ 1<1.即 ax(ax —2)<0. (1)当a=0时,不等式转化为0<0,故原不 等式无解.(2)当a<0时,不等式转化为 x(ax 一2)>0,2即 x(x — )<0.a2<0 , 不等式的解集为 {x|2aa<x<0}.变式:解关于x 的不等式1、(x —2)(ax —2) A0 ; ⑴当a :::0时,{x|2:::x<2} a(2) 当 a =0 时,{x|x =:: 2)2 (3) 当0 <a C 1 时,{ x| x <2,或xA —)a (4) 当a =1 时,{x | x =2) 2工(5) 当a A 1 时,{x | x 〈一,或x A2)a(3)当a>0时,不等式转化为 x(ax — 2)<0 ,一 2 又>0, a2...不等式的解集为{x|0<x<a }.综上所述:当a= 0时,不等式解集为 空集;2 当a<0时,不等式解集为{x|2<x<0}; a2当a>0时,不等式解集为{x|0<x< }.a二、按判别式 △的符号分类,即 A A 0,A=0,A<0; 例3解不等式x 2 +ax +4>0分析 本题中由于x 2的系数大于0,故只需考虑△与根的情况。
3.4:含参数一元二次不等式的解法【知识点1】一元二次不等式的解集、二次方程的根与二次函数的图象之间的关系见下表:含参数一元二次不等式的解法【知识点2:含参数的一元二次不等式的解法1】解答含参数的不等式时,一般需对参数进行讨论,常见的有以下几种情况:(1)二次项系数含参数时,根据二次不等式化标准形式需要化二次项系数为正,所以要对参数符号进行讨论.(2)解“∆”的过程中,若“∆”表达式含有参数且参数的取值影响“∆”符号,这时根据“∆”符号确定的需要,要对参数进行讨论.(3)方程的两根表达式中如果有参数,必须对参数讨论才能确定根的大小,这时要对参数进行讨论.总之,参数讨论有三个方面:①二次项系数;②“∆”;③根.但未必在这三个地方都进行讨论,是否讨论要根据需要而定.例题:解关于x 的不等式22560.x ax a +-<12(7)(8)0(7)(8)078x a x a a a x a x a x x +-<+-==-=解析:原不等式化为,方程的两根为,,0{|}7800{|}87a aa x x a a aa x x ∴>-<<=∅<<<-时,解集为;时,解集为;时,解集为.【知识点3:含参数一元二次不等式的解法2.分式不等式的解法】 (1)分式不等式分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式___ (2)等价转化法解分式不等式解分式不等式的基本方法是将其转化为与之同解的__整式__不等式(组).具体情况见下表:例题:解下列不等式: 42(1)023x -≤+;1(2)3.2x x+≥- (4)(23)0443(1)00|4.23023232x x x x x x x x x x -+≥⎧--⎧⎫≤⇔≥⇔⇔≥<-⎨⎨⎬+≠++⎩⎭⎩解析:或3{|4}2x x x ∴<-≥原不等式的解集为或.114545(2)330002222x x x x x x x x ++--≥⇔-≥⇔≥⇔≤----,(45)(2)05|2.204x x x x x --≤⎧⎧⎫⇔⇔≤<⎨⎨⎬-≠⎩⎭⎩,5{|2}4x x ∴≤<原不等式的解集为.【知识点4:含参数一元二次不等式的解法3.简单的高次不等式的解法】 (1)高次不等式不等式最高次项的次数高于2,这样的不等式称为__高次不等式_ (2)穿根法解高次不等式的步骤 ①将()f x 最高次项系数化为正数;②将()f x 分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);④观察曲线显现出的()f x 的值的符号变化规律,写出不等式的解集.例题:解不等式:(2)(1)(1)(2)0.x x x x ++--≤(2)(1)(1)(2)y x x x x =++--解析:设,021,1,2y =--则的根分别是,,将其分别标在数轴上,并画出如图所示的示意图:{|2112}x x x -≤≤-≤≤所以原不等式的解集是,或.点评: (1)大于0的不等式的解,对应着曲线在x 轴上方部分的实数x 的取值集合;反之,对应着x 轴下方部分的实数x 的取值集合.注意端点处值是否取到.(2)穿根法可形象地称为“穿根引线法”,这样的“线”可看成是函数的图象草图,只不过不画y 轴而已.变式1:解关于x 的不等式:22(21)0.x m x m m -+++<22(21)0m m x m x m m -+++= 分析:在上述不等式中含有参数,因此需要先判断参数对方程的解的影响,然后求解.2212(21)01x m x m m x m x m -+++===+ 解析:解法一:方程的解为,,1.m m <+且知 22(21)y x m x m m x ∴=-+++二次函数的图象开口向上,且与轴有两个交点.{|1}x m x m ∴<<+不等式的解集为.2(1)(1)21m m m m m m m -=+++=+解法二:注意到,及,()(1)0x m x m ---<可先因式分解,化为,1 1.m m m x m <+∴<<+ ,{|1}x m x m ∴<<+不等式的解集为. 点评:含参数的不等式的解题步骤为 (1)将二次项系数转化为正数;(2)判断相应方程是否有根(如果可以直接分解因式,可省去此步);(3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根的大小). 另外,当二次项含有参数时,应先讨论二次项系数是否为0,这决定不等式是否为二次不等式.变式2:当0a >时,解关于x 的不等式2(1)10.ax a x -++<2(1)10(1)(1)0ax a x ax x -++<--<解析:不等式可化为,10(1)(1)0()(1)0a ax x x x a >∴--<--< ,不等式,可化为,1a =当时,不等式无解; 1011a x a <<<<当时,; 11 1.a x a><<当时,101{|1}111{|1}.a x x a aa x x a<<<<=><<综上可知,当时,原不等式的解集为;当时,原不等式的解集为空集;当时,原不等式的解集为变式3: (1)不等式12x x-≥的解集为( A ) A .[1,0)-B .[1)-+∞,C .(1]-∞-,D .(1](0)-∞-+∞ ,, (2)不等式21134x x ->-的解集为_23|34x x ⎧⎫<<⎨⎬⎩⎭__. ()()0(0)()()f x f xg x g x >< 分析:此类不等式求解,要先移项通分化为的形式再化为或整式不等式.转化必须保持等价.11(1)200x x x x----≥∴≥解析:,,(1)010.0x x x x +≤⎧∴∴-≤<⎨≠⎩,64(2)043x x -<-原不等式化为:,23(64)(43)034x x x ∴--<∴<<,,23|.34x x ⎧⎫∴<<⎨⎬⎩⎭原不等式的解集为变式4:不等式3112x x-≥-的解集是( C ) A .3|24x x ⎧⎫≤≤⎨⎬⎩⎭ B .3|24x x x ⎧⎫≤>⎨⎬⎩⎭或C .3|24x x ⎧⎫≤<⎨⎬⎩⎭D .{}|2x x <31431022x x x x--≥≥--解析:不等式,化为,32.4x ∴≤<变式5:不等式(2)03x x x +<-的解集为( ) A .{}|203x x x <-<<,或 B .{}|223x x x -<<>,或 C .{}|20x x x <->,或 D .{}|03x x x <<,或分析:原不等式左端是分式,右端为0,属于0AB<型,可等价转化为0AB <,即(2)(3)0x x x +-<,依次令12302030023x x x x x x =+=-===-=,,得,,,数轴按此三数对应点分成四段,令=(2)(3)y x x x +-列出x 与y 的对应值如表:(2)(3)0(2)(0,3)x x x +-<-∞- 故不等式的解集为,.(2)(3)0.x x x +-<解析:原不等式等价于()结合数轴穿根法如图可知:20 3.x x <-<<或变式6:解不等式:23(1)(1)(2)0.x x x x -+-> (1)(2)010x x x x +->⎧⎨-≠⎩解析:原不等式可化为10210 2.1x x x x x -<<>⎧⇔⇔-<<>⎨≠⎩,或,或{|102}.x x x ∴-<<>原不等式的解集为,或变式7:关于x 的不等式22(1)1m x mx m x x R +++<+∈对成立,求实数m 的取值范围. 分析:首先考虑二次项系数是否为零,化简后,需要对m 对进行讨论.0m ≠时,可利用三个“二次”之间的关系求解.210mx mx m x R ++-<∈解析:原不等式等价于对恒成立,200010m x x x R =⋅+⋅-<∈当时,对恒成立. 0m ≠当时,由题意,得22004(1)0340m m m m m m m <<⎧⎧⇔⎨⎨∆=--<->⎩⎩ 00.403m m m m <⎧⎪⇔⇔<⎨<>⎪⎩,或0.m m ≤综上,的取值范围为点评:一元二次不等式恒成立时满足条件22220(1)0()00(2)0()00(3)0()00(4)0().0a ax bx c R a ax bx c R a ax bx c R a ax bx c R >⎧++>⎨∆<⎩>⎧++≥⎨∆≤⎩<⎧++<⎨∆<⎩<⎧++≤⎨∆≤⎩恒成立或解集为时,满足;恒成立或解集为时,满足;恒成立或解集为时,满足;恒成立或解集为时,满足变式8:已知不等式2(1)10ax a x a +-+-<对于所有的实数x 都成立,求a 的取值范围. 010a x =--<解析:若,则原不等式为,10.x a >-≠即,不合题意.故2()(1)1f x ax a x a =+-+-令,x R ∈ 原不等式对任意都成立.()f x x ∴二次函数的图象在轴的下方.20(1)4(1)0.a a a a ∴<∆=---<且(1)(31)0a a a <⎧⎨-+>⎩即,1.3a ∴<-1()3a -∞-故的取值范围为,.变式9:若函数y R ,则k 的取值范围是_01k ≤≤__. 01k <≤错解:26(8)0kx kx k -++≥由题意知恒成立,201364(8)0k k k k k >⎧∴∴<≤⎨∆=-+≤⎩,, 0 1.k k <≤即的取值范围是206(8)0k kx kx k =-++≥辨析:错解忽视时,也成立,考虑问题不全面导致错误.01k ≤≤正解:26(8)0kx kx k -++≥由题意恒成立.200364(8)0k k k k k >⎧=≠⎨=-+≤⎩当时满足,当时,△010 1.k k ∴≤≤≤<,综上得。
46
含参数的一元二次不等式的解法
题型1:二次项系数为常数(能因式分解) (x-a )(x-2)>0 (x+a )(x-2)<0
例1.解关于x 的不等式 01)1
(2<++-x a
a x (a>1)
练习.解关于x 的不等式 01)1
(2<++-x a
a x (a>0)
.
题型2:二次项系数为常数(不能因式分解)
例2.解关于x 的不等式 .02>++a ax x 练习:解关于x 的不等式.02
>-+-a x x
题型3:二次项系数含参数(能因式分解) 例3.解关于x 的不等式 .01)1(2
<++-x a ax
练习:解关于x 的不等式 0)2)(2(>--ax x
题型4:二次项系数含参数(不能因式分解) 例4解关于x 的不等式:.012
<-+ax ax
课堂练习:解关于x 的不等式:
1. )(11R a a x x
∈-<- 2.
)23(0)3)(2(-≠≠<-+-a a x x a x ,且
3. (1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.
(2)设全集R U =,集合}3|12||{},01
|{<+=≥+-=x x B x a
x x A ,
若R B A = ,求实数a 的取值范围.
4.解关于x 的不等式(1)03)3(2
<---a x a x (2) .0122
<-+ax ax。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x变式:解关于x 的不等式1、0)2)(2(>--ax x ;2、(1-ax )2<1.}2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当【解】由(1-ax )2<1得a 2x 2-2ax +1<1.即ax (ax -2)<0.(1)当a =0时,不等式转化为0<0,故原不等式无解.(2)当a <0时,不等式转化为x (ax -2)>0,即x (x -2a )<0.∵2a <0,∴不等式的解集为{x |2a<x <0}.}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x ax a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当3、ax 2-(a +1)x +1<0(a ∈R)二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
(3)当a >0时,不等式转化为x (ax -2)<0,又2a >0, ∴不等式的解集为{x |0<x <2a }. 综上所述:当a =0时,不等式解集为空集; 当a <0时,不等式解集为{x |2a <x <0};当a >0时,不等式解集为{x |0<x <2a}.变式:解关于x 的不等式:012<++x ax Φ≥-+-<<---<<-<=--->-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a aax a a x x a三、按方程02=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;例5 解不等式)0( 01)1(2≠<++-a x aa x 分析:此不等式可以分解为:()0)1(<--ax a x ,故对应的方程必有两解。
本题只需讨论两根的大小即可。
解:原不等式可化为:()0)1(<--a x a x ,令aa 1=,可得:1±=a ∴当1-<a 或10<<a 时,a a 1<,故原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|; 当1=a 或1-=a 时,aa 1=,可得其解集为φ; 当01<<-a 或1>a 时, a a 1>,解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|。
例6 解不等式06522>+-a ax x ,0≠a分析 此不等式()0245222>=--=∆a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小.解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为 a x a x 3,221==,当0a时,即23a a ,解集为{}a x a x x 23|<>或;当0<a 时,即23aa ,解集为{}|23x x a x a ><或变式:1、223()0xaa x a 2、0222<--a ax x解:∵x 2-(a+a 2)x+a 3=(x -a )(x -a 2) ∴当a>1,或a<0时,不等式的解为a<x<a 2 当0<a<1时,不等式的解为a 2<x<a 当a =0,或a =1时,不等式解为φ 098.0222222≥=+=∆=--a a a a ax x 的判别式方程.,221a x a x -==得方程的两根为ax a a 2,0)1(<<->则若Φ<=此时解为则原不等式为若,0,0)2(2x a课后练习:1、)23(0)3)(2(-≠≠<-+-a a x x ax ,且(分3;32;2><<--<a a a 讨论)}3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当 2、不等式11<-x ax的解集为}21|{><x x x ,或,求a 的值. (21=a ) 3、已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A , ①若AB ,求实数a 的取值范围.;(2>a )②若A B ⊆,求实数a 的取值范围.;(21≤≤a )③若B A 为仅含有一个元素的集合,求a 的值.(1≤a ) 解:A={x |1≤x ≤2},B={x |(x-1)(x-a)≤0} (1)若AB(图甲),应有a >2. (2)若BA(图乙),必有1≤a ≤2.(3)若A ∩B 为仅含一个元素的集合(图丙),必有a ≤1.4、已知}031|{≤--=x x x A ,B B A a x a x x B =≤++-= 且},0)1(|{2,求实数a 的取值范围. (31<≤a ) 5、设全集R U =,集合}3|12||{},01|{<+=≥+-=x x B x ax x A ,若R B A = ,求实数a 的取值范围. (12≤≤-a ) 6、已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A ,若C B A ⊆)( ,求实数a 的取值范围.( 21≤≤a )7、若关于x 的不等式(2x -1)2<ax 2的解集中的整数恰有3个,求实数a 的取值范围。
(]1649925<<a 【解析】 不等式可化为(4-a )x 2-4x +1<0 ①,由于原不等式的解集中的整数恰有3个,所以⎩⎨⎧>--=∆>-0)4(41604a a ,解得0<a <4,故由①得a x a -<<+2121,又212141<+<a ,所以解集中的3个整数必为1,2,3,所以3<a21≤4,解得925<a ≤1649。