当前位置:文档之家› 2) 数值计算方法

2) 数值计算方法

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为00678.07 .20183.011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算方法复习题2

习题二 1. 已知,求的二次值多项式。 2. 令求的一次插值多项式,并估计插值误差。 解:;,介于x和0,1决定的区间;,当时。 3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。0.54667,0.000470;0.54714,0.000029 4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。 5. 已知,求及的值。1,0 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。, 7. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 向后插值公式 8. 下表为概率积分的数据表,试问:1)时,积分2)为何值时,积分?。

9. 利用在各点的数据(取五位有效数字),求方程在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 12. 在上给出的等距节点函数表,用分段线性插值求的近似值,要使截断误差不超过,问函数表的步长h应怎样选取? 13. 将区间分成n等分,求在上的分段三次埃尔米特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值

误差限,故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近 似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式,

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值计算方法第二章

第二章 非线性方程数值解法 在科学计算中常需要求解非线性方程 ()0f x = (2.1) 即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等. §2.1 二分法 一、实根的隔离 定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根. 非线性方程根的数值求解过程包含以下两步 (1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值; (2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求. 对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间. 当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下 设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n =L .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间. 一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可

数值分析第二章上机题之第二题

姓名:蒋元义、学号:、专业:测绘工程 一、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数2 1 ()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。 解: 当N=10时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,10); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=10的插值函数及原函数图形'); xlabel('x 轴'); ylabel('y ‘轴');

当N=20时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,20); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=20的插值函数及原函数图形'); xlabel('x轴'); ylabel('y轴');

数值分析简明教程课后习题答案(第二版)

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]内的近似根,要求误差不 超过10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]内有唯一个实根;使用 二分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根. 由二分法的误差估计式211*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k . 两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥ k ,因此取7=k ,即至少需二分

0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=- x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=- x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=- x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171.205 .0||222=<-= x x e r ε; %0184.0718 .20005 .0||333=<-= x x e r ε。 评 (1)经四舍五入得到的近似数,其所有数字均为有效数字; (2)近似数的所有数字并非都是有效数字. 2.(p.12,题9)设72.21=x ,71828.22=x ,0718.03=x 均为经过四舍五入得出的近似值,试指明它们的绝对误差(限)与相对误差(限)。 【解】 005.01=ε,31 1 11084.172 .2005 .0-?≈< = x r εε; 000005.02=ε,622 21084.171828 .2000005 .0-?≈< =x r εε; 00005.03=ε,43 3 31096.60718 .000005 .0-?≈< = x r εε; 评 经四舍五入得到的近似数,其绝对误差限为其末位数字所在位的半个单位.

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理

2.1、Gauss 消去法(次重点) Gauss 消去法基本思想:由消元和回代两个过程组成。 2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换) 定理 顺序Gauss 消去法的前n-1个主元素) (k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式 )1,,2,1(0)1()1(1 ) 1(1)1(11-=≠=n k a a a a D kk k k K ΛΛM M Λ 消元过程:对于 k=1,2,···,n-1 执行 (1)如果 ,0)(=a k kk 则算法失效,停止计算,否则转入(2) 。 (2)对于i=k+1,k+2,···n,计算 a a k kk k ik k i m )() (,= n k j i m a a a k kj ik k ij k ij ,,1,,) ()() 1(Λ+=-=+ n k i m b b b k k ik k i k i ,,1,) ()() 1(Λ+=-=+ 回代过程: a b x n nn n n n ) () (/= ) (1,,2,1/)() (1 )() (?--=- =∑+=n n k a x a b x k kk j n k j k kj k k k 2.1.2 列主元素Gauss 消去法(把) (n k k i a k kj ,,1,) (?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点) 定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。 消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使 )()(max k i n i k k k i k k a a ≤≤=。 (2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

数值计算方法(2)

数值计算(一) 主讲:张森 2011-7-9 一、矩阵的数值计算相关MATLAB函数提示: 二、插值法 1、插值有关的MATLAB函数:

2、拉格朗日和牛顿插值法 (1) 拉格朗日多项式和基函数的MATLAB 程序 求拉格朗日插值多项式和基函数的MATLAB 主程序 function [C, L,L1,l]=lagran1(X,Y) m=length(X); L=ones(m,m); for k=1: m V=1; for i=1:m if k~=i V=conv(V,poly(X(i)))/(X(k)-X(i)); end end L1(k,:)=V; l(k,:)=poly2sym (V) end C=Y*L1;L=Y*l 例1 给出节点数据03.17)15.2(=-f ,24.7)00.1(=-f ,05.1)01.0(=f , 03.2)02.1(=f , 06.17)03.2(=f ,05.23)25.3(=f ,作五次拉格朗日插值多项式和基函数,并写出估计其误差的公式. 解 在MATLAB 工作窗口输入程序 >> X=[-2.15 -1.00 0.01 1.02 2.03 3.25]; Y=[17.03 7.24 1.05 2.03 17.06 23.05]; [C, L ,L1,l]= lagran1(X,Y) 运行后输出五次拉格朗日插值多项式L 及其系数向量C ,基函数l 及其系数矩阵L 1如下 C = -0.2169 0.0648 2.1076 3.3960 -4.5745 1.0954 L = 1.0954-4.5745*x+3.3960*x^2+ 2.1076*x^3+0.0648*x^4-0.2169*x^5 L1 = -0.0056 0.0299 -0.0323 -0.0292 0.0382 -0.0004 0.0331 -0.1377 -0.0503 0.6305 -0.4852 0.0048 -0.0693 0.2184 0.3961 -1.2116 -0.3166 1.0033 0.0687 -0.1469 -0.5398 0.6528 0.9673 -0.0097 -0.0317 0.0358 0.2530 -0.0426 -0.2257 0.0023 0.0049 0.0004 -0.0266 0.0001 0.0220 -0.0002 l = [ -0.0056*x^5+0.0299*x^4-0.0323*x^3-0.0292*x^2+0.0382*x-0.0004] [ 0.0331*x^5-0.1377*x^4-0.0503*x^3+0.6305*x^2-0.4852*x+0.0048] [ -0.0693*x^5+0.2184*x^4+0.3961*x^3-1.2116*x^2-0.3166*x+1.0033] [ 0.0687*x^5-0.1469*x^4-0.5398*x^3+0.6528*x^2+0.9673*x-0.0097] [ -0.0317*x^5+0.0358*x^4+0.2530*x^3-0.0426*x^2-0.2257*x+0.0023] [ 0.0049*x^5+0.0004 *x^4-0.0266*x^3+0.0001*x^2+0.0220*x-0.0002] 估计其误差的公式为 )(5x R )25.3)(03.2)(02.1)(01.0()00.1)(15.2(! 6) () 6(----++= x x x x x x f ξ,)3.25,-2.15(∈ξ.

数值分析第二章 习题

第二章 习 题 1. 已知函数()f x 在3,1,4x =的值分别为4,2,5,求Lagrange 插值多项式的表达式. 2. 已知函数 ()f x 在3x =和 4的值分别为0.5和0.64,用线性插值求此函数在 3.8x =的函数值. 3. 证明:对于 ()f x 的以01x x <为节点的一次插值多项式1()p x ,有 2 101()()()8 x x f x p x M ??≤,01x x x ≤≤, 其中01 max ()x x x M f x ≤≤′′= . 4. 已知函数 ()f x 的函数值表: x 0.1 0.2 0.3 0.4 0.5 ()f x 0.70010 0.40160 0.10810 -0.17440 -0.43750 试利用这个函数表求函数()f x 在0.3和0.4之间的零点. 5. 设 01,,,n x x x ???为1n +个互异的节点,()k l x 为n 阶 Lagrange 插值基函数, 0()()n k k x x x ω==?∏.证明: (1) 0()1n k k l x =≡∑; (2) 0(),0,1,2,,k n j j k k x l x x j n =≡=???∑; (3) ()()0,0,1,2,,n j k k k x x l x j n =?≡=???∑; (4)() ()()() k k k x l x x x x ωω= ′?.

6. 若73()1f x x x =?+,求0172,2,,2f ???????和018 2,2,,2f ???????. 7. 设 53()1f x x x =++,求以1x =?,-0.8,0,0.5,1为插值节点的Newton 插值多 项式和插值余项. 8. 已知函数值表: x 0 1 4 3 6 ()f x -7 8 5 14 求Newton 插值多项式的表达式. 9. 分别在下列情况下计算 1n ?次多项式()p t 在指定点t 的的值,各需要多少次乘 法运 算? (a)多项式()p t 按照单项式基函数展开; (b)多项式()p t 按照Lagrange 基函数展开; (c)多项式()p t 按照Newton 基函数展开. 10. 在区间[]0,/2π上使用5个等距节点对函数sin t 进行插值,试计算最大误差. 在 []0,/2π上选取若干点,比较函数值和插值多项式的值,验证误差界. 如果希望最大误 差为10 10 ?,需要多少个插值节点? 11. 一直平面曲线()y f x =过点(0,1) ,(1,3),(2,4),试求一个三次多项式3()p x ,使其经过这3个点,并且满足3(1)1p ′=;然后给出余项3()()()R x f x p x =?的表达式. 12. 试求一个四次多项式4()p x ,使其满足44 44(0)(0)0(1)(1)1p p p p ′′====,,4(2)1p =. 13. 能否通过使用分段二次多项式进行插值,使插值函数是二次连续可微的?为什么? 14. 设[]4 (),f x C a b ∈. 求三次多项式()p x ,使之满足插值条件 11 ()(),0,1,2, ()(),i i p x f x i p x f x ==?? ′′=?

2018-2019-2 机械《数值计算方法》A卷标答

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 试题 2018 年~2019 年第 2 学期 课程名称: 《数值计算方法》 专业年级: 机械学院(本科) 考生学号: 考生姓名: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □ ……………………………………………………………………………………………………… 注意:本试卷共八道大题,共100分。 一、(15分)选择题(5小题,每小题3分,共3*5=15分) 1、圆周率 3.1415926π=....,近似数* 3.1415x =的有效数位为( B )。 (A)、3; (B)、4; (C)、5; (D)、以上都不是。 2、向量(0,4,1)T x =--,则∞范数为( D )。 (A)、0; (B)、1; (C)、-4; (D)、4。 3、设??? ? ??-=7.0109.0A , 则 1A =( B )。 (A)、1.7; (B)、1.9; (C)、1.4; (D)、1.5。 4、对于方程42()440f x x x =-+=的根* 2x =,用2124k k k k x x x x +-=- 迭代公式求解是( A )阶收敛的。 (A)、1; (B)2、; (C)、3; (D)、4。 5、下列说法正确的是( A )。 (A)、对于任何一种矩阵范数,都有谱半径()A A ρ≤;

注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考

注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考

数值计算方法matlab 第二章 求根

1 第二章作业 问题描述: 不同温度的两种流体进入混合器混合,流出时具有相同的温度。流体A 和B 的热容(单位:cal/(mol ·K))分别为: 2623.381 1.80410 4.30010pA c T T --=+?-? 1528.592 1.29010 4.07810pB c T T --=+?-? 焓变(单位:cal/mol )为2 1 T p T H c dT ?= ? 。 A 进入混合器的温度为400℃, B 进入混合器的温度为700℃,A 的量(mol )是B 的量(mol )的两倍,试确定流体离开混合器的温度。 问题分析: 初始情况下,气体A 的温度比气体B 的温度低,故在混合过程中,气体A 温度升高,气体B 温度降低。由于没有外界加热或者做功,混合气体整体的焓变应该为零。 设A 有2mol ,B 有1mol ,根据焓变公式计算得到: 2 1 -262400 -22632= 6.762+3.608108.60010)6.762 1.80410 2.867105407.712T T A pA T H c dT T T dT T T T --?=?-?=+?-?-??( 2 1 -152700 -1253=+1.29010 4.07810)0.64510 1.3591032958.030 T T B pB T H c dT T T dT T T T --?=?-?=+?-?-??(8.5928.592 而0A B H H ?+?=,故该问题最后变成求解方程 2263()15.3548.2541016.4571038365.742f T T T T --=+?-?- 的根的问题。接下来将采用二分法、试位法以及牛顿法进行改方程的求解。方程保存为f.m ,可在压缩文件中找到。 一、 二分法 二分法的基本思想为,确定有根区间,然后不断将区间二等分,通过判断f(x)的符号,逐步将区间缩小,直到有根区间足够小,便可满足精度要求的近似根。 本例中,可以清楚的得到有根区间为(400,700)。取容限误差为-3 0.510%?,可以保证5 位有效数字。程序编写存储于bisec.m 。 其中,bisec 函数定义为: function bisec(f_name,a,c,xmin,xmax,n_points) 调用时: >> bisec('f',400,700,400,700,1000) 相当于取了a=400;c=700;作图时横坐标取得是从400~700的范围,采样点为1000个。

数值分析第一章绪论习题答案

第一章绪论 1设x 0, x的相对误差为「.,求In x的误差。 * * e* x * _x 解:近似值x*的相对误差为:.=e* x* x* 1 而In x 的误差为e In x* =lnx*「lnx e* x* 进而有;(ln x*)::. 2?设x的相对误差为2%求x n的相对误差。 解:设f(x—,则函数的条件数为Cp^胡1 n A. x nx . 又7 f '(x)= nx n」C p |=n n 又;;r((x*) n) : C p ;,x*) 且e r (x*)为2 .;r((x*)n) 0.02 n 3 ?下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0. 解:x;=1.1021是五位有效数字; X2 =0.031是二位有效数字; X3 =385.6是四位有效数字; x4 = 56.430是五位有效数字; x5 -7 1.0.是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4. * * * * 其中X1,X2,X3,x4均为第3题所给的数。

解:

* 1 4 ;(x-| ) 10 2 * 1 3 ;(x 2) 10 2 * 1 1 ;(x 3) 10 * 1 3 ;(x 4) 10 2 * 1 1 ;(x 5) 10 2 (1);(为 X 2 X 4) =;(为)亠:(x 2)亠:(x 4) =1 10 4 1 10 J 丄 10^ 2 2 2 = 1.05 10” * * * (2)(X 1X 2X 3) * * * ** * ** * X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2) 1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10 (3) XX 2/X 4) X 4 0.031 1 10” 56.430 丄 10’ 2 2 56.430 56.430 =10° 5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 4 3 解:球体体积为V R 3 则何种函数的条件数为 =1.1021汉 0.031 汉 * 汉 10」+ 0.215

数值计算方法第三版课后习题答案

习 题 一 解 答 1.取3.14,3.15,227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016()0.51103.14 r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085()0.27103.15 r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22() 3.14159265 3.1428571430.0012644930.00137 e x π=-=-=-≈-L L 相对误差: 3()0.0013()0.4110227 r e x e x x --==≈-? 有效数字: 因为π=3.14159265...=0.314159265 (10) 22 3.1428571430.3142857143107 ==?,m=1。 而22 3.14159265 3.1428571430.0012644937 π-=-=-L L

常州大学数值分析课后习题答案第二章第三章第四章节

数值分析作业 第二章 1、用Gauss消元法求解下列方程组: 2x 1-x 2 +3x 3 =1, (1) 4x 1+2x 2 +5x 3 =4, x 1+2x 2 =7; (2) 解: A=[2 -1 3 1;4 2 5 4;1 2 0 7] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 2 -1 3 1 4 2 5 4 1 2 0 7

x = 9 -1 -6 11x1-3x2-2x3=3, (2)-23x 1+11x 2 +1x 3 =0, x 1+2x 2 +2x 3 =-1; (2) 解: A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 11 -3 -2 3 -23 11 1 0 1 2 2 -1 x = 0.2124 0.5492 -1.1554 4、用Cholesky分解法解方程组 3 2 3 x1 5 2 2 0 x2 3 3 0 12 x3 7

相关主题
文本预览
相关文档 最新文档