保守力与非保守力
- 格式:docx
- 大小:49.63 KB
- 文档页数:5
非保守力:凡作功与路径有关的力称为非保守力。
常见的摩擦力,物体间相互作非弹性碰撞时的冲击力都属于非保守力。
非保守力具有沿任意闭合路径作功不等于零的特点。
非保守力包括耗散力和非耗散力两类。
在力学范围内接触的非保守力大多数是耗散力,所以长期以来耗散力就成了非保守力的同义词。
严格说来两者是有区别的,一个系统的总机械能减少,并转变为系统的热能或内能。
通常人们把这个过程叫耗散过程,而把导致耗散的力成为耗散力。
摩擦力是耗散力,但非保守力(如爆炸力)不一定都是耗散力。
⑴定义:做功多少只由始末位置所决定,而跟路径无关的力叫做保守力。
做功多少和物体运动路径有关的力叫耗散力。
⑵说明①保守力对物体做功的多少取决于物体始末位置,如果在该力作用下,物体的运动沿闭合路线绕行一周回到了起始位置,则所做功为零。
重力、弹力等属于保守力。
耗散力做功就不能由物体的始末位置决定,而和物体的运动路径有关,在其他条件相同的情况下,物体运动路径越长,所做的功也越多。
摩擦力、粘滞力等属于耗散力②保守力和耗散力所做功的情况不同,是和这两种力的本身的特点有关。
物体系确定后保守力和物体的运动状况无关,其大小由相互作用物体的相对位置所确定,它的方向总在两个相互作用物体的连线上。
例如,物体确定后,重力的大小决定于它离开地面的高度,方向竖直向下,而和物体以什么样的速度运动无关,和物体运动速度的大小和方向如何变化无关。
耗散力的大小和方向都随着物体运动速度的大小、方向的改变而发生变化。
例如,空气对运动物体的阻力,其方向随着物体运动的方向改变而变化,它的大小随物体运动速度增大而增加。
③保守力和物体系的势能有着极为密切的联系。
保守力做正功,则物体系的势能减少;反之,则物体系的势能增加。
而且相对两个位置之间,功量一定,能量差一定。
所以物体间存在保守力是物体系具有势能的条件。
系统的各物体在只受保守力作用的情况下其机械能守恒。
耗散力不象保守力,对于两个位置之间,力对物体做功没有确定的值,从而相应的两个位置之间没有一定的能量差。
一、 万有引力、重力、弹性力作功的特点1 万有引力作功如上图所示,有两个质量为m m ' 和的质点,其中质点m ' 固定不动。
取m ' 的位置为坐标原点,A 、B 两点对m ' 的距离分别为m r r B A , 和经任一路径由点A 运动到点B ,万有引力作的功为)11(A B r r m m G W -'= (3-10)上式表明,当质点的质量m m ' 和均给定时,万有引力作的功只取决于质点m 的起始和终了的位置,而与所经过的路径无关。
这是万有引力作功的一个重要特点。
扩充内容:计算万有引力作的功设在某一时刻质点m 距质点m '的距离为r ,其位矢为r ,这时质点m 受到质点m '的万有引力为r 2e F r m m G '-=r e 为沿位矢r 的单位矢量,当m 沿路径移动位移元r d 时,万有引力作的功为r e r F d d d r 2⋅'-=⋅=r m m G W从图可以看出r d cos d cos d d r r ===⋅θθr r e r e于是,上式为r r m m G W d d 2'-=所以,质点m 从点A 沿任一路径到达点B 的过程中,万有引力作的功为⎰⎰'-==B A r r B A r r m m G W W 2d 1d即2 重力作功如右图所示,一个质量为m 的质点,在重力作用下从点A 沿ACB 路径至点B ,点A 和点B 距地面的高度分别为21 y y 和,计算重力作功为()12mgy mgy W --= (3-11)上式表明,重力作功只与质点的起始和终了位置有关,而与所经过的路径无关,这是重力作功的一个重要特点。
扩充内容: 计算重力作的功因为质点运动的路径为一曲线,所以重力和质点运动方向之间的夹角是不断变化的。
我们把路径ACB 分成许多位移元,在位移元r d 中,重力P 所作的功为r P d d ⋅=W若质点在平面内运动,按图所选坐标,并取地面上某一点为坐标原点O ,有j i r y x d d d +=且j P mg -=。
保守力和非保守力关系的简答题保守力和非保守力是物体受到的两类力,它们在物理过程中起着重要的作用。
保守力是指在物体的位移过程中所做的功与路径无关,只与起点和终点的位置有关的力。
具体而言,在一个闭合环路中,如果一个力沿着任意一条路径绕回起点所做的功为零,则这个力是保守力。
反之,非保守力则是指在物体的位移过程中,所做功与路径有关的力。
保守力与非保守力的主要区别在于所做的功是否与路径有关。
对于保守力,物体在环路中的位移过程中,不论物体沿着怎样的路径运动,当回到起点时所做的功都是相同的。
换句话说,保守力是沿闭合环路的势能之梯度施加的,其中势能是由于位置而产生的。
例如,重力和弹簧力是典型的保守力。
在这些情况下,物体在环路中的总机械能始终保持不变。
非保守力与保守力不同,所做的功与路径有关。
不同的路径导致了所做的功的差异。
典型的非保守力包括摩擦力、阻力和涡旋力等。
摩擦力在物体相对于另一个表面移动时产生热量,所以它不是沿着闭合环路所做的,因此不是保守力。
涡旋力是一种旋转的非保守力,例如涡旋状流体中的湿气漩涡。
阻力是运动物体所受到的空气或流体的阻碍力,它同样也是非保守力。
保守力和非保守力之间存在一定的关系。
首先,任何一个非保守力可以被视为多个保守力的总和。
这是因为非保守力是路径相关的,可以通过微分位移的积分来计算相对于起点的总工作量。
而在每个微分位移中,可以将非保守力分解为垂直于位移方向的保守力和与位移方向平行的非保守力的两个分量。
这样,通过对各个微分位移的作用力进行积分,可以得到总的作用力,即非保守力。
另外,保守力和非保守力都可以通过势能来描述。
保守力是由势能施加的力,而非保守力没有明确定义的势能。
对于保守力,势能可以通过对力的势能函数进行积分得到。
当力是非保守力时,由于无法定义势能,因此无法使用势能来描述非保守力。
总的来说,保守力和非保守力是两种不同类型的力,它们在物体的位移过程中起着不同的作用。
保守力与物体的机械能有关,而非保守力则会改变物体的机械能。
非保守力判定条件非保守力是物理学中的基本概念之一,它是指作用在物体上的力不是仅仅沿着物体的运动方向而同向的力。
简单来说,非保守力是指摩擦力、阻力等不能被完全恢复的力。
在物理学中,非保守力和保守力是两个非常重要的概念。
保守力是指沿着物体运动方向而同向的力,它所做的功可以通过路径和初始位置以及最终位置来确定。
而非保守力则恰好相反,它所做的功不能通过路径和初始位置以及最终位置来唯一确定。
因此,我们需要特定的判定条件来鉴定一个力是否是非保守力。
下面,我们将介绍一些常见的非保守力判定条件:1. 路径导致能量损失。
当力沿着物体的运动方向施加时,物体在相应方向上获得了能量,但当力沿着不同于物体运动方向的方向施加时,会导致物体的能量损失。
2. 动能和势能不守恒。
对于保守力,动能和势能的总和是守恒的。
但对于非保守力,由于能量被耗散,势能和动能不再守恒。
3. 动能和功无法相等。
对于保守力,动能和所做的功是相等的。
但对于非保守力,由于能量被耗散,动能和所做的功不再相等。
4. 功与路径有关。
由于非保守力的性质,它所做的功取决于物体的运动路径。
当路径改变时,功的大小也会随之改变。
在实际应用中,我们需要特定的判定条件来识别一个力是否是非保守力。
了解非保守力的特征和判定条件对物理学的深入理解至关重要。
总而言之,非保守力是物理学中的基本概念之一,它与保守力是相对应的,两者具有不同的特征和属性。
通过上述介绍的非保守力判定条件,我们可以更好的认识和理解非保守力的本质特征,丰富我们物理学知识的储备,为我们掌握科学知识提供了很好的启示。
保守⼒与⾮保守⼒⼀、万有引⼒、重⼒、弹性⼒作功的特点1 万有引⼒作功如上图所⽰,有两个质量为m m ' 和的质点,其中质点m ' 固定不动。
取m ' 的位置为坐标原点,A 、B 两点对m ' 的距离分别为m r r B A , 和经任⼀路径由点A 运动到点B ,万有引⼒作的功为)11(A B r r m m G W -'= (3-10)上式表明,当质点的质量m m ' 和均给定时,万有引⼒作的功只取决于质点m 的起始和终了的位置,⽽与所经过的路径⽆关。
这是万有引⼒作功的⼀个重要特点。
扩充内容:计算万有引⼒作的功设在某⼀时刻质点m 距质点m '的距离为r ,其位⽮为r ,这时质点m 受到质点m '的万有引⼒为r 2e F r m m G '-=r e 为沿位⽮r 的单位⽮量,当m 沿路径移动位移元r d 时,万有引⼒作的功为r e r F d d d r 2?'-=?=r m m G W从图可以看出r d cos d cos d d r r ===?θθr r e r e于是,上式为r r m m G W d d 2'-=所以,质点m 从点A 沿任⼀路径到达点B 的过程中,万有引⼒作的功为'-==B A r r B A r r m m G W W 2d 1d即2 重⼒作功如右图所⽰,⼀个质量为m 的质点,在重⼒作⽤下从点A 沿ACB 路径⾄点B ,点A 和点B 距地⾯的⾼度分别为21 y y 和,计算重⼒作功为()12mgy mgy W --= (3-11)上式表明,重⼒作功只与质点的起始和终了位置有关,⽽与所经过的路径⽆关,这是重⼒作功的⼀个重要特点。
扩充内容:计算重⼒作的功因为质点运动的路径为⼀曲线,所以重⼒和质点运动⽅向之间的夹⾓是不断变化的。
我们把路径ACB 分成许多位移元,在位移元r d 中,重⼒P 所作的功为r P d d ?=W若质点在平⾯内运动,按图所选坐标,并取地⾯上某⼀点为坐标原点O ,有j i r y x d d d +=且j P mg -=。
一、万有引力、重力、弹性力作功的特点1 万有引力作功如上图所示,有两个质量为m m ' 和的质点,其中质点m ' 固定不动。
取m ' 的位置为坐标原点,A 、B 两点对m ' 的距离分别为m r r B A , 和经任一路径由点A 运动到点B ,万有引力作的功为)11(A B r r m m G W -'= (3-10)上式表明,当质点的质量m m ' 和均给定时,万有引力作的功只取决于质点m 的起始和终了的位置,而与所经过的路径无关。
这是万有引力作功的一个重要特点。
扩充内容:计算万有引力作的功设在某一时刻质点m 距质点m '的距离为r ,其位矢为r ,这时质点m 受到质点m '的万有引力为r 2e F r m m G '-=r e 为沿位矢r 的单位矢量,当m 沿路径移动位移元r d 时,万有引力作的功为r e r F d d d r 2⋅'-=⋅=rm m G W从图可以看出rd cos d cos d d r r ===⋅θθr re r e 于是,上式为r r m m G W d d 2'-= 所以,质点m 从点A 沿任一路径到达点B 的过程中,万有引力作的功为⎰⎰'-==B A r r B A r r m m G W W 2d 1d 即2 重力作功如右图所示,一个质量为m 的质点,在重力作用下从点A 沿ACB 路径至点B ,点A 和点B 距地面的高度分别为21 y y 和,计算重力作功为()12mgy mgy W --= (3-11)上式表明,重力作功只与质点的起始和终了位置有关,而与所经过的路径无关,这是重力作功的一个重要特点。
扩充内容: 计算重力作的功因为质点运动的路径为一曲线,所以重力和质点运动方向之间的夹角是不断变化的。
我们把路径ACB 分成许多位移元,在位移元r d 中,重力P 所作的功为rP d d ⋅=W若质点在平面内运动,按图所选坐标,并取地面上某一点为坐标原点O ,有ji r y x d d d += 且j P mg -=。
保守力与非保守力
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
非保守力:凡作功与路径有关的力称为非保守力。
常见的摩擦力,物体间相互作非弹性碰撞时的冲击力都属于非保守力。
非保守力具有沿任意闭合路径作功不等于零的特点。
非保守力包括耗散力和非耗散力两类。
在力学范围内接触的非保守力大多数是耗散力,所以长期以来耗散力就成了非保守力的同义词。
严格说来两者是有区别的,一个系统的总机械能减少,并转变为系统的热能或内能。
通常人们把这个过程叫耗散过程,而把导致耗散的力成为耗散力。
摩擦力是耗散力,但非保守力(如爆炸力)不一定都是耗散力。
⑴定义:
做功多少只由始末位置所决定,而跟路径无关的力叫做保守力。
做功多少和物体运动路径有关的力叫耗散力。
⑵说明
①保守力对物体做功的多少取决于物体始末位置,如果在该力作用下,物体的运动沿闭合路线绕行一周回到了起始位置,则所做功为零。
重力、弹力等属于保守力。
耗散力做功就不能由物体的始末位置决定,而和物体的运动路径有关,在其他条件相同的情况下,物体运动路径越长,所做的功也越多。
摩擦力、粘滞力等属于耗散力
②保守力和耗散力所做功的情况不同,是和这两种力的本身的特点有关。
物体系确定后保守力和物体的运动状况无关,其大小由相互作用物体的相对位置所确定,它的方向总在两个相互作用物体的连线上。
例如,物体确定后,重力的大小决定于它离开地面的高度,方向竖直向下,而和物体以什么样的速度运动无关,和物体运动速度的大小和方向如何变化无关。
耗散力的大小和方向都随着物体运动速度的大小、方向的改变而发生变化。
例如,空气对运动物体的阻力,其方向随着物体运动的方向改变而变化,它的大小随物体运动速度增大而增加。
③保守力和物体系的势能有着极为密切的联系。
保守力做正功,则物体系的势能减少;反之,则物体系的势能增加。
而且相对两个位置之
间,功量一定,能量差一定。
所以物体间存在保守力是物体系具有势能的条件。
系统的各物体在只受保守力作用的情况下其机械能守恒。
耗散力不象保守力,对于两个位置之间,力对物体做功没有确定的值,从而相应的两个位置之间没有一定的能量差。
所以耗散力和物体系的势能没有联系。
但是它涉及另一种形式的能量,如果系统的各物体只受保守力和耗散力作用,那么系统的包括相应的这种形式的能量和机械能在内的总能量还是守恒的。
常见的,物体间相互作非时的冲击力都属于非保守力。
非保守力具有沿任意闭合路径作功不等于零的特点。
非保守力包括和两类。
在力学范围内接触的非保守力大多数是耗散力,所以长期以来耗散力就成了非保守力的同义词。
严格说来两者是有区别的,一个系统的总机械能减少,并转变为系统的热能或内能。
通常人们把这个过程叫,而把导致耗散的力成为耗散力。
功
一、在F-l图象中求功
我们也可以用图象来描述力对物体做功的大小.以Fcosα为纵坐标,以l为横坐标.当恒力F对物体做功时,由Fcosα和l为邻边构成的矩形面积即表示功的大小,如图(a)所示.
如果外力不是恒力,外力做功就不能用矩形表示.不过可以将位移划分为等距的小段,在每个小段中外力可近似看成恒力,所做功的大小即为该小段对应的小矩形的面积值,整个过程外力做功的大小就等于全体小矩形面积之和,如图(b)所示.
二、变力的功
如果作用力F是恒定的,即力的大小和方向都不变,且受力物体向着确定的方向做直线运动,这时作用力和位移的夹角α也是恒定的,已知物体在力F的作用下运动的位移s,就可以根据公式W=Fscosα算出恒力
所做的功.如果作用力是变力,即力的大小和(或)方向是变化的,或者物体做曲线运动,这时力F的大小随时间而变化,力和位移的夹角α也随时间而变化,便不能直接由上述公式计算功,这种情形要怎样计算功呢?
如图表示一个物体在变力作用下做曲线运动,由O点运动到O′点.现在我们把曲线分成很多小段,如图中的AB小段、CD小段等,每小段都足够小,可认为是直线;物体通过每小段的时间足够短,在这样短的时间里,力的变化很小,可以认为是恒定的.这样,对每小段来说,就可以用公式W=Fscosα计算功.把物体通过各个小段所做的功加在一起,就等于变力在整个过程中所做的功.
三、保守力与耗散力
1.保守力大小和方向完全由物体间相对位置确定的,且做功多少只由始末位置所决定,而跟路径无关的力叫做“保守力”.保守力对物体做功的多少取决于物体始末位置,如果在该力作用下,物体的运动沿闭合路线绕行一周回到了起始位置,则所做的功为零.万有引力(包括重力)、弹力等属于保守力.物体系确定后,保守力和物体的运动状况无关,其大小和方向由相互作用物体的相对位置所确定.例如,物体确定后,重力的大小决定于它离开地面的高度,方向竖直向下,而和物体以什么样的速度运动无关,和物体运动速度的大小和方向如何变化无关.
保守力和物体系的势能有着极为密切的联系.保守力做正功,则物体系的势能减少;反之,则物体系的势能增加.而且相对两个位置之间,势能差一定.所以物体间存在保守力是物体系具有势能的条件.系统的各物体在只受保守力作用的情况下,其机械能守恒.保守力的功和势能的变化的关系为W保=Ep1-Ep2.这里的Ep2和Ep1表示终点和起点的势能.当W 保>0时,保守力做正功,Ep1-Ep2>0,物体系统的势能要减少;当W保<0时,保守力做负功,Ep1-Ep2<0,物体系统的势能就要增加.保守力的功决定于物体系势能的变化量,在实际问题涉及的只有两个状态的势能差,而不是某一状态势能的绝对值.
2.非保守力亦称“耗散力”.做功多少和物体运动路径有关的力叫
非保守力.非保守力做功就不能由物体的始末位置决定,而和物体的运动路径有关.例如,人推车是克服摩擦力做功,摩擦力是非保守力,人推车对车做的功并不与车向哪个方向运动有关.又如,空气对运动物体的阻力,其方向随着物体运动方向的改变而改变,它的大小随物体运动速度的增大而增加.
非保守力不像保守力,对于两个位置之间,力对物体做功没有确定的值,从而相应的两个位置之间没有一定的能量差.所以非保守力和物体系的势能没有关系.物体在有非保守力作用时,其动能与势能之和(机械能)不再守恒.质点运动时做负功的非保守力也称为耗散力.除空气阻力外,爆炸力,内燃机气缸中气体对活塞的推力都是耗散力.耗散力之所以命名为“耗散”,是由于这种力所做的功一般跟机械运动转化为非机械运动(如热运动)紧密联系在一起.。