统计单元测试题
- 格式:doc
- 大小:176.00 KB
- 文档页数:2
统计单元测试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是描述性统计的组成部分?A. 均值B. 中位数C. 众数D. 相关性答案:D2. 标准差是衡量数据的:A. 中心趋势B. 离散程度C. 偏态D. 峰态答案:B3. 以下哪个不是概率分布的类型?A. 正态分布B. 二项分布C. 泊松分布D. 均值分布答案:D4. 抽样误差是指:A. 样本与总体之间的差异B. 抽样过程中的随机误差C. 抽样过程中的系统误差D. 样本量的大小答案:B5. 以下哪个是统计推断的步骤?A. 收集数据B. 描述数据C. 建立假设D. 以上都是答案:C二、填空题(每题2分,共20分)6. 统计学中的总体是指________。
答案:所有可能被研究的对象的集合7. 样本容量是指________。
答案:样本中包含的个体数量8. 相关系数的取值范围是________。
答案:-1到1之间9. 一个变量的方差是衡量该变量________的指标。
答案:离散程度10. 假设检验中的零假设通常表示________。
答案:研究者想要拒绝的假设三、简答题(每题10分,共30分)11. 描述统计和推断统计的区别是什么?答案:描述统计主要关注数据的收集、组织、描述和总结,它不涉及对总体的推断。
而推断统计则是基于样本数据来推断总体特征,包括参数估计和假设检验。
12. 什么是正态分布?它有哪些特点?答案:正态分布是一种连续概率分布,它的形状呈对称的钟形曲线。
其特点是均值、中位数和众数相等,且数据分布具有对称性,大多数数据集中在均值附近。
13. 什么是抽样分布?它在统计推断中的作用是什么?答案:抽样分布是指在多次抽样的情况下,样本统计量(如样本均值)的分布。
它在统计推断中的作用是提供了一种方法来估计总体参数,并用于假设检验和置信区间的计算。
四、计算题(每题15分,共30分)14. 给定一组数据:2, 3, 4, 5, 6, 7, 8, 9, 10。
一、选择题1.甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试.为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为①;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为.②完成这两项调查宜采用的抽样方法依次是( ) A .分层抽样法、系统抽样法 B .分层抽样法、简单随机抽样法 C .系统抽样法、分层抽样法D .简单随机抽样法、分层抽样法2.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组,得到频率分布直方图(如图).设成绩小于16秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.56,35B .0.56,45C .0.44,35D .0.44,453.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .4.下图是两组各7名同学体重(单位: kg )数据的茎叶图.设1, 2两组数据的平均数依次为1x 和 2x ,标准差依次为1s 和 2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++- x 为12,,,n x x x 的平均数)A .12x x >, 12s s <B .12x x >, 12s s <C .12x x <, 12s s <D .12x x <, 12s s <5.某个产品有若干零部件构成,加工时需要经过7道工序,分别记为,,,,,,A B C D E F G .其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序Y 必须要在工序X 完成后才能开工,则称X 为Y 的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下: 工序A BCD E FG加工时间 3 4 2 2 2 1 5紧前工序无C 无C,A BD,A B现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( ) (假定每道工序只能安排在一台机器上,且不能间断.) A .11个小时B .10个小时C .9个小时D .8个小时6.某班所有学生某次数学考试的得分均在区间[90, 140]内,其频率分布直方图如右图所示,若前4 组的频率依次成等差数列,则实数a =A .0.02B .0.024C .0.028D .0.037.甲、乙、丙、丁四名同学在某次军训射击测试中,各射击10次.四人测试成绩对应的条形图如下,以下关于四名同学射击成绩的数字特征判断不正确...的是( )A.平均数相同B.中位数相同C.众数不完全相同D.甲的方差最小8.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了“是”,由此估计本小区对物业服务满意的百分比大约为()A.85% B.75% C.63.5% D.67.5%9.如图是民航部门统计的2018年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A.变化幅度从高到低居于后两位的城市为北京,深圳B.天津的变化幅度最大,北京的平均价格最高C.北京的平均价格同去年相比有所上升,深圳的平均价格同去年相比有所下降D.厦门的平均价格最低,且相比去年同期降解最大10.某市教育局卫生健康所对全市高三年级的学生身高进行抽样调查,随机抽取了100名A B C D E五个层次,根据抽样结果得到如下统计图表,则从图学生,他们身高都处于,,,,表中不能得出的信息是()A .样本中男生人数少于女生人数B .样本中B 层次身高人数最多C .样本中D 层次身高的男生多于女生 D .样本中E 层次身高的女生有3人11.统计某校n 名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n 的值是( )A .800B .900C .1200D .100012.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从第1行的第5列和第6列数字开始由左往右依次选取两个数字,则选出来的第5个个体的编号为( )A .01B .02C .14D .1913.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地总体均值为3,中位数为4 B .乙地总体均值为2,总体方差大于0 C .丙地中位数为3,众数为3D .丁地总体均值为2,总体方差为3二、解答题14.某校为了增强学生的爱国情怀,举办爱国教育知识竞赛,从参加竞赛的学生中抽出60人,将其成绩分为六段[)40,50,[)50,60,⋯,[]90,100后画出如图频率分布直方图.观察图形,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的及格率(60分及以上为及格).15.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[20,40),9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100].例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值,同一组中的数据用该组区间的中点值代表;(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替同一组中的数据用该组区间的中点值代表,已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数结果保留到整数. 参考数据:若()2~,T Nμσ,则①()0.6827P T μσμσ-<≤≤=;②(22)0.9545P T μσμσ-<≤+=;③(33)0.9973P T μσμσ-<≤+=. 16.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.17.《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019年4月24日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成(0,10),[10,20),[20,30),[30,40),[40,50),[50,60),[60,70]七组,得到如图所示的频率分布直方图.(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数; (2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金a 元,中奖2次则奖励现金10a +元,中奖三次则奖励现金3a 元,其中8a ≥且a N ∈,已知观众每次中奖的概率均为15. ①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则a 最高可定为多少;②据某时段内的统计,当8a =时该电影院有600名观众选择参加抽奖活动,并且a 每增加1元,则参加抽奖活动的观众增加100人.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为Z ,求Z 的最大值.18.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L (单位:M )的数据,其频率分布直方图如图.(1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M 的概率;(2)据了解,某网络运营商推出两款流量套餐,详情如下:流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M 的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?19.进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关; (2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.参考公式:K 2=()()()()2()n ad bc a b c d a c b d -++++20.南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:分组[0,30)[30,60)[60,90)[90,120)[120,150)[150,180]男生人数216191853女生人数32010211若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.①求男生和女生各抽取了多少人;②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率. 21.为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:(1)求第四组的频率,并补全这个频率分布直方图;(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)22.为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:表1:男、女生上网时间与频数分布表上网时间(分[30,40)[40,50)[50,60)[60,70)[70,80]钟)男生人数525302515女生人数1020402010(Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?上网时间少于60分钟上网时间不少于60分钟合计男生女生 合计附:公式22()()()()()n ad bc k a b c d a c b d -=++++,其中20()P k k ≥ 0.500.400.250.150.100.05 0.025 0.010 0.005 0.0010k0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.8323.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表日用水量 [)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数132 49 26 5日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310 16 5(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)24.某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[10,20),[20,30),…,[50,60],并整理得到如下频率分布直方图:(Ⅰ)求a的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.25.有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.(1)列出样本的频率分布表.(2)画出频率分布直方图.(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?26.为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分层抽样和简单随机抽样的定义进行判断即可. 【详解】①,四所学校,学生有差异,故①使用分层抽样, ②在同一所学校,且人数较少,使用的是简单随机抽样,故选B . 【点睛】本题主要考查简单抽样的应用,根据分层抽样的定义是解决本题的关键.2.A解析:A 【分析】通过频率分布直方图可以得到满足要求的频率,然后计算 【详解】由频率分布直方图可得小于16秒的学生人数占全班总人数的百分比为:0.360.180.020.56++=成绩大于等于15秒且小于17秒的学生人数为:()500.360.3435⨯+= 故选A 【点睛】本题考查了频率分布直方图的运用,只需按照条件计算其频率即可得到结果,较为简单3.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
北师大版六年级上册《第5章统计》单元测试卷一、填空.(16分)1. 常用的统计图有:________、________、________.2. 如果只表示各种数量的多少,可以选用________统计图表示;如果想要表示出数量增减变化的情况,可以选用________统计图表示;如果要清楚地了解各部分数量同总数之间的关系,可以用________统计图表示。
3. 要统计淘气家一年饮食、水电、服装、文化教育等各项支出分别是多少元,可以用________统计图;要统计他家一年中各月份的支出变化情况,可以用________统计图;要统计他家各项支出占总支出的百分比,可以用________统计图。
4. 要反映某地2008年来的降水变化情况,应绘制________统计图。
5. 在一个条形统计图中,如果用1厘米长的直条表示30人,那么应该用________厘米长的直条表示120人。
6. 六年级有学生160人,学生参加各兴趣小组的人数占总人数的百分比如图所示,根据右图算出:美术组有________人,歌咏组有________人,书法组有________人。
二、判断题.(对的打“√”,错误的打“×”)(10分)扇形统计图可分为单式扇形统计图和复式扇形统计图。
________.(判断对错)用统计图表示有关数量之间的关系,比统计表更加形象具体。
________.(判断对错)绘制统计图时,要清楚的表示数量增减变化情况,应该选用折线统计图。
________.(判断对错)折线统计图分为单式折线统计图和复式折线统计图。
…________.为了清楚地展示彩电全年的变化趋势,用折线统计图更合适。
…________.(判断对错)三、选一选.(10分)小明的爸爸要统计他每次数学测试成绩,看看他是否进步,应选择()A.条形统计图B.折线统计图C.扇形统计图医院要反映出一个病人一天的体温变化情况,最好用()A.条形统计图B.折线统计图C.扇形统计图为了清楚表示出男、女生占全校学生人数的比例,应绘制()A.条形统计图B.折线统计图C.扇形统计图果园工人选用()来表示梨、苹果、桔子的产量占总产量的百分比。
小学三年级数学下统计单元测试题
一.填空题姓名_____________
1.小明15岁,红红17岁,两人的平均年龄是()岁。
2.小李走了5步,一共走了340厘米,小李平均每步走()厘米。
3.有两箱苹果,甲箱重10千克,乙箱重8千克,从甲中拿()千克
放到乙箱中,两箱的苹果一样重,这样两箱都是()千克。
二、选一选
1、植树节少先队员种树,第一天种了180棵、第二天、第三天共种了315棵,
平均每天种多少棵?()
A、(180+315)÷2
B、(180+315)÷3
三、判一判
(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池
肯定安全。
()
(2)城南小学全体同学向希望工程捐款,平均每人捐款3元。
那么,全校每个
同学一定都捐了3元。
()
(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身
高不可能是155厘米。
()
四、解决问题
1.小明,小华,小丽三人平均体重是43千克,小丽和小华体重相等,小华重40
千克。
小明的体重多少千克?
2.
1.折线格表示()个,之后每一格
表示()个。
2.算一算他们1分钟平均每人踢毽子
几个?
3.你还发现了什么信息?。
第一章统计单元基础测试题一、单选题1.某小区12户居民5月份的用电量(单位:千瓦时)如茎叶图所示,则这组数据的中位数为( )A .40B .41C .42D .452.若回归直线的方程为ˆ2 1.5yx =-,则变量x 增加一个单位时 ( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位3.清源学校高一、高二、高三年级学生的人数之比为5:4:3,为了了解学校学生对数学学科的喜爱程度,现用分层抽样的方法从该校高中三个年级中抽取一个容量为120的样本,则应该从高三年级中抽取()名学生. A .30B .40C .50D .604.如图记录了某校高一年级6月第一周星期一至星期五参加乒乓球训练的学生人数.通过图中的数据计算这五天参加乒乓球训练的学生的平均数和中位数后,教练发现图中星期五的数据有误,实际有21人参加训练.则实际的平均数和中位数与由图中数据星期得到的平均数和中位数相比,下列描述正确的是( )A .平均数增加1,中位数没有变化B .平均数增加1,中位数有变化C .平均数增加5,中位数没有变化D .平均数增加5,中位数有变化5.某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是( ) A .8B .10C .12D .156.某科研型企业,每年都对应聘入围的大学生进行体检,其中一项重要指标就是身高与体重比,其中每年入围大学生体重y (单位:kg )与身高x (单位:cm )基本都具有线性相关关系,根据今年的一组样本数据()()1,,2,,50i i x y i =,用最小二乘法建立的回归方程为ˆ0.8385.71yx =-,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(),x yC .若某应聘大学生身高增加1cm ,则其体重约增加0.83kgD .若某应聘大学生身高为170cm ,则可断定其体重必为55.39kg7.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( ) A .10B .11C .12D .168.有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下: 甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8则下列判断正确的是( ) A .甲射击的平均成绩比乙好 B .乙射击的平均成绩比甲好C .甲射击的成绩的众数小于乙射击的成绩的众数D .甲射击的成绩的极差大于乙射击的成绩的极差9.从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为( )(注:表为随机数表的第1行与第2行)A 24B 36C 46D 4710.某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么:M N 为( ) A .40:41B .41:40C .2:1D .1:111.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ⋅⋅⋅,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .12,,,n x x x ⋅⋅⋅的平均数B .12,,,n x x x ⋅⋅⋅标准差C .12,,,n x x x ⋅⋅⋅的最大值D .12,,,n x x x ⋅⋅⋅的中位数12.我国2015年以来,第x 年(2015年为第一年)的国内生产总值y (万亿元),数据如下:由散点图分析可知y 与x 线性相关,若由表中数据得到y 关于x 的线性回归方程是7.7y x a =+,则实数a 的值为( )A .61.3B .60.5C .59.9D .59.6二、填空题13.若样本数据128,,,x x x ⋅⋅⋅的标准差为1,则数据121x -,221x -,⋅⋅⋅,821x -的标准差为_______.14.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n 人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,那么n =_____________.15.下表是x ,y 之间的一组数据:且y 关于x 的回归方程为 3.2 3.6y x =+,则表中的c =______.16.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.三、解答题17.在2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩: 甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8; 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;(2)分别计算两个样本的平均数x 和标准差s ,并根据计算结果估计哪位运动员的成绩比较稳定.18.(本小题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差19.某高级中学共有学生3000名,各年段男、女学生人数如下表高一年高二年高三年女生523 x Y男生487 490 z已知在全校学生中随机抽取1名,抽到高二女生的概率为0.17,(1)问高二年段女生有多少名?(2)现对各年段采用分层抽样的方法,在全校抽取300名学生,问应在高三年段抽取多少名学生20.(本小题满分13分)从万州二中高二年级文科学生中随机抽取60名学生,将其月考的政治成绩(均为整数)分成六段:,,…,后得到如下频率分布直方图.(Ⅰ)求分数在内的频率;(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.21.我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.(Ⅰ)完成样本的频率分布表;画出频率分布直方图.(Ⅱ)估计成绩在85分以下的学生比例;(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+ (3)试预测加工10个零件需要多少小时?参考答案1.B 【分析】根据茎叶图计算中位数即可. 【详解】 由图知:中位数为4240412+=. 故选:B 【点睛】本题主要考查根据茎叶图求数据的中位数,属于简单题. 2.C 【分析】根据回归直线方程 1.52ˆyx =-+的斜率为负,可得出正确选项. 【详解】由于回归直线方程为 1.52ˆyx =-+,其斜率为 1.5-,故变量x 增加一个单位时,y 平均减少1.5个单位.故选C. 【点睛】本小题主要考查对回归直线方程系数的理解,考查直线的斜率,属于基础题. 3.A 【分析】根据分层抽样的抽取比例相同,可得答案. 【详解】312030543⨯=++,故选:A. 【点睛】本题考查抽样方法,属于基础题. 4.B 【分析】先求出平均数应增加1,再求出中位数有变化,即得解. 【详解】实际星期五的数据为21人,比原来星期五的数据多了21165-=人,平均数应增加51 5 =.原来从星期一至星期五的数据分别为20,26,16,22,16.按从小到大的顺序排列后,原来的中位数是20,实际从星期一至星期五的数据分别为20,26,16,22,21.按从小到大的顺序排列后,实际的中位数是21.所以中位数有变化.故选:B.【点睛】本题主要考查平均数和中位数的计算,意在考查学生对这些知识的理解掌握水平.5.B【解析】试题分析:因为50名学生中有女生20名,按男女比例用分层抽样的方法,抽到的女生有4名,所以本次调查抽取的人数是4501020⨯=,故选B.考点:分层抽样的应用.6.D【分析】根据线性回归方程分析,x的系数为正则正相关;线性回归方程必过样本中心点;利用线性回归方程分析数据时只是估计值,与真实值存在误差.【详解】由于线性回归方程中x的系数为0.83,因此y与x具有正的线性相关关系,故A正确;线性回归方程必过样本中心点(),x y,故B正确;由线性回归方程中系数的意义知,x每增加1cm,其体重约增加0.83kg,故C正确;当某大学生的身高为170cm时,其体重估计值是55.39kg,而不是具体值,故D不正确.故选:D【点睛】本题考查两变量间的相关关系、线性回归方程,属于基础题.7.D由题计算出抽样的间距为13,由此得解.【详解】由题可得,系统抽样的间距为13,则31316+=在样本中.故选D【点睛】本题主要考查了系统抽样知识,属于基础题.8.D【解析】由题意得,甲射击的平均成绩为7+8+10+9+8+8+6==87x甲,众数为8,极差为4;乙射击的平均成绩为9+10+7+8+7+7+8==87x乙,众数为7,极差为3,故甲射击的平均成绩等于乙射击的平均成绩,甲射击的成绩的众数大于乙射击的成绩的众数,甲射击的成绩的极差大于乙射击的成绩的极差,故选D.9.A【分析】按要求两个数字为一个号,不大于50且前面未出现的数,依次写出即可【详解】由题知,从随机数表的笫1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.故选A【点睛】本题考查随机数表法,属于简单题10.D【分析】根据平均值的概念即可求出.【详解】根据题意可知,原来的40个分数总和为40M,因此4041M MN M+==.【点睛】本题主要考查平均值的概念的理解和应用,属于基础题. 11.B 【分析】利用平均数、标准差、最大值、中位数的定义和意义直接解题. 【详解】标准差能反映一组数据的稳定程序.故选B. 平均数能反映一组数据的平均水平;中位数是把一组数据从小到大或从大到小排列, 若该组数据的个数为奇数,则取中间的数据,若该组数据的个数为偶数,则取中间两个数据的平均数. 平均数和中位数都能反映一组数据的集中趋势, 标准差和方差都能反映一组数据的稳定程度. 故选:B. 【点睛】本题考查数据稳定程度的判断,要认真审题,注意平均数、标准差、中位数的意义合理应用,属于基础题. 12.B 【分析】先求解,x y ,结合线性回归直线一定经过点(),x y 可求实数a 的值. 【详解】 由表可知()11234535x =++++=,()1697583929983.65y =++++=, 因为7.7y x a =+经过点()3,83.6,所以83.67.73a =⨯+,解得60.5a =. 故选:B. 【点睛】本题主要考查回归直线的性质,利用线性回归直线必过中心点(),x y 可求解此题,侧重考查数学运算的核心素养.13.2 【分析】若一组数据1x ,2x ,3x ,,n x 的方差为2s ,则数据1ax b +,2ax b +,3ax b +,,n ax b +的方差为22a s .【详解】若样本数据128,,,x x x ⋅⋅⋅的标准差为1,则其方差也为1,所以数据121x -,221x -,⋅⋅⋅,821x -的方差为4,标准差为2.故答案为:2. 14.1000 【分析】由分层抽样的性质列出方程,能求出结果. 【详解】解:采用分层抽样的方法从高一1000人、高二1200人、高三n 人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,分层抽样是按比例抽样, 则由分层抽样的性质得:1200803010001200n⨯=++,解得:1000n =. 故答案为:1000. 【点睛】本题考查分层抽样的应用,解题时要认真审题,注意分层抽样的性质的合理运用. 15.11 【分析】根据回归直线经过样本中心点(),x y 求解. 【详解】∵回归直线经过样本中心点(),x y ,0123425x ++++==,∴ 3.22 3.610y =⨯+=,∴57819105c ++++=,解得11c =. 故答案为:C 【点睛】本题主要考查回归方程的概念与性质,属于基础题. 16.24S 【分析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=, 故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 17.(1)见解析;(2)见解析 【解析】试题分析:(1)由已知中的数据,我们可将其整数部分表示茎,小数部分表示叶,易绘制出所求的茎叶图,并根据茎叶图中数据的形状,分析出甲乙两名运动员的成绩稳定性; (2)根据已知中两名射击运动员甲、乙在比赛中打出的成绩,代入数据的平均数公式及标准差公式,比较两组数据的方差,根据标方差小的运动员的成绩比较稳定,即可得到答案. 试题解析:(1)如图所示,茎表示成绩的整数环数,叶表示小数点后的数字.由上图知,甲中位数是9.05,乙中位数是9.15,乙的成绩大致对称,可以看出乙发挥稳定性好,甲波动性大. (2)解:(3)x 甲=110×(9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8)=9.11 S 甲=()()()22219.49.118.79.11...10.89.1110⎡⎤-+-++-⎣⎦=1.3 x 乙=110×(9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)=9.14 S 乙=()()()22219.19.148.79.14...9.19.1410⎡⎤-+-++-⎣⎦=0.9 由S 甲>S 乙,这说明了甲运动员的波动大于乙运动员的波动,所以我们估计,乙运动员比较稳定.18.乙班平均身高高于甲班 57 【解析】(1)由茎叶图可知,在160~179之间的身高数据显示乙班平均身高应高于甲班,而其余数据可直接看出身高的均值是相等的,因此乙班平均身高应高于甲班. (2)由题意知甲班样本的均值为x ==170,故甲班样本的方差为[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2. 19.(1)510人;(2)99人. 【分析】(1)根据公式求解;(2)根据抽样比求解. 【详解】 (1)即高二年段有510名女生.(2),抽样比:故高三年级应该抽取人.【点睛】这个题目考查了抽样比的概念以及分层抽样的概念的应用,属于基础题.20.(Ⅰ)0.3 (Ⅱ)【解析】试题分析:(Ⅰ)根据每个小矩形的面积表示该范围的频率且各频率和为1,可求得所求频率.(Ⅱ)根据频数等于总数乘以频率分别求和分数段的人数.由分层抽样先确定各组应抽取的人数.根据古典概型概率公式可求得所求概率.试题解析:解析:(Ⅰ)分数在内的频率为:5分(Ⅱ)由题意,分数段的人数为:人分数段的人数为:人;6分∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,∴分数段抽取5人,分数段抽取1人,因为从样本中任取2人,其中恰有1人的分数不低于90分,则另一人的分数一定是在分数段,所以只需在分数段抽取的5人中确定1人.设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件,.13分考点:1频率分布直方图;2排列组合;3古典概型概率.21.(Ⅰ)频率分布表分组频数频率[40,50) 2 0.04[50,60) 3 0.06[60,70) 10 0.2 [70,80) 15 0.3 [80,90) 12 0.24 [90,100] 8 0.16 合计50 1频率分布直方图(Ⅱ)成绩在85分以下的学生比例:72%(Ⅲ)众数为75、中位数约为76.67、平均数为76.2【分析】(1)根据“每小组的频率等于每小组频数除以样本容量”这个公式,求出每小组的频率.计算出每小组的“频率除以组距”的值,然后画出每小组的矩形.(2)求成绩在85分以下的学生比例,我们可以先求出成绩不低于85分学生的比例,然后100%减去这个比例,即可求出.(3)在频率分布直方图中,最高矩形的中点就是众数的估计值;利用中位数左边和右边的直方图的面积相等,可以求出中位数的估计值;利用频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,可以求出平均数的估计值.【详解】(1)因为每小组的频率等于每小组频数除以样本容量,所以每小组的频率计算如下:以[40,50)这一小组为例:频率=20.04;同理可以求出其他小组的频率,如下表:画频率分布直方图关键是求每小组频率除以组距这个数值,然后画出矩形,以第一小组[40,50)为例,频率除以组距等于0.004,画出小矩形,以此类推,完整的频率分布直方图如下图:(2)成绩不低于85分学生的分布在[80,90)和[90,100],这两段,85正好是[80,90)这个小组的平均数,所以成绩不低于85分学生的频数为0.12+0.16=0.28,也就是成绩不低于85分学生的比例为28%,所以成绩在85分以下的学生比例为100%-28%=72%;(3)在频率分布直方图中,最高矩形的中点就是众数的估计值,显然小组[70,80),矩形最高,这个小组的矩形底边中点是75,因此众数为75;因为所有小矩形的面积之和为1,我们找中位数就要找把面积一分为二的那条线.[40,50)这个小组的小矩形面积为0.04;[50,60) 这个小组的小矩形面积为0.06;[60,70) 这个小组的小矩形面积为0.2,所以[40,70)这个组的小矩形面积之和为0.3,而[70,80) 这个小组的小矩形面积为0.3,显然中位数落在这个小组内,面积还差0.2而这段矩形的高为0.03,设底边长x,则有202 0.030.2633 x x=⇒==,中位数的估计值为70+6.67=76.67;平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,即平均数估计值=450.04550.06+650.2+750.3+850.24+950.16=76.2⨯+⨯⨯⨯⨯⨯.所以众数为75、中位数约为76.67、平均数为76.2.22.(1)(2)(3)8.05【解析】试题分析:(1)由题意描点作出散点图;(2)由表中数据求得b=0.7,a=3.5﹣0.7×3.5=1.05,从而解得;(3)将x=10代入回归直线方程,y=0.7×6+1.05=5.25(小时).试题解析:解:(1)散点图如图.(2)由表中数据得:4i ii1x y=∑=52.5,¯=3.5,¯=3.5,42ii1x=∑=54,∴ˆb=0.7,∴ˆa=1.05,∴ˆy=0.7x+1.05,回归直线如图所示.(3)将x=10代入回归直线方程,得ˆy=0.7×10+1.05=8.05,∴预测加工10个零件需要8.05小时.。
第三单元统计2021-2022学年数学三年级下册沪教版一、选择题。
1. 小明和小英一起上学。
小明觉得要迟到了,就跑步上学,跑累了,便走着到学校;小英开始走着,后来也跑了起来,到校门口赶上了小明。
下列四幅图中,()描述了小英的行为。
A. B.C. D.2. 下图表示的是甲班和乙班男、女生人数的情况。
如果每个班都是36人,那么甲班的男生比乙班多()人。
A. 4B. 11C. 18D. 433. 如图,()可以表示下面哪种情况的统计。
A. 4个学生期末数学考试成绩B. 四年级喜欢各项运动的男女生人数C. 小明1——8岁的身高D. 蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况4. 某日,淘气家的室内气温如下图所示,以下说法错误的是( )。
A. 14时起,室温开始逐渐走低B. 相邻的两个室温数据的取得间隔5小时C. 当天室内平均气温在7℃与21℃之间5. 红红调查同学们最喜欢吃的水果,结果如下:水果苹果香蕉桃子草莓西瓜人数(人)8125710从统计图汇总可以看出,红红调查了()名同学。
A. 40B. 41C. 426. ()城市18——25岁女青年平均身高.A. 上海B. 武汉C. 成都7. 小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑5分钟到家,下面哪一个图能大致描述他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系()。
A. B.C. D.二、填空题。
8. 下图是超市里最近几天大米销售情况的统计图.(单位:千克)(1)________天卖得最多_______天卖得最少.(2)5天一共卖了________千克.(3)平均每天卖了________千克.9. 从条形统计图可以清晰的看出不同数量的().10. 如图所示,条形图是去年某地10月的天气情况统计.(1)晴天天数比阴天和雨天天数的总和还要多____天.(2)晴天天数比雨天的____倍多____天.11. 一根钢筋,如果把它锯成3段,要锯8分钟;如果把它锯成9段,要锯()分钟。
第八单元测试卷一、填空题(共8题,共17分)1 (1分) 学校举行向灾区小朋友捐书活动,小明捐8本,小亮捐6本,王晓捐9本,马丽捐8本,小东捐14本,这5位同学平均每人捐了________本书.2 (2分) 下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生________人,平均每人拥有课外读物________本.3 (1分) 某商场第一季度销售电视机399台,第二季度销售电视机207台,上半年平均每月销售电视机________台.4 (1分) 一筐萝卜需要2只小白兔一起抬.4只小兔要把这筐萝卜送到离家400米的地方去,平均每只小兔要抬________米.5 (1分) 五个连续偶数中最大数是248,那么这五个数的平均数是________.6 (1分) 已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是________.7 (5分) 如图是花园小学三、四年级师生向希望小学捐书情况统计图,根据统计结果填空.(1)捐故事书最多的是________年级,________类图书捐的最多. (2)________年级比________年级捐的书多,多捐书________本.8 (5分) 某学校开展了主题为“垃圾分类、绿色生活新时尚”的宣传活动.李老师为了解五年级学生对于垃圾分类知识的掌握情况,组织五年级两个班的全体学生进行了垃圾分类知识竞赛,将他们的成绩进行统计,绘制了下面的统计图.数量/本种类工具书科技书童话书故事书0四年级三年级6038353245454540102030405060性别 人数 平均每人拥有课外读物/本 男生 16 25 女生 2430(1)五年级两个班的学生人数相等,五年级一共有学生________人. (2)请把统计图补充完整.(3)在这次垃圾分类知识竞赛中,五年级有________人成绩优秀,有________人成绩不合格.二、判断题(每小题1分,共5题,共5分)9 余彬4次跳绳的总成绩是500下,付峰3次跳绳的总成绩是390下,余彬的跳绳成绩好.( )10 小高的身高是1.56m ,他趟过平均水深1.2m 的小河,不会有任何危险.( ) 11 复式条形统计图可以竖着画,也可以横着画.( )12 小青5次跳远的总成绩是10m ,她其中一次的成绩肯定是2m .( ) 13 张珊三次射击成绩分别是7,8,9环,平均成绩是8环.( )三、选择题(每小题2分,共6题,共12分)14 育才中学篮球队队员的平均身高是176.5cm .王明是其中一员,他的身高( )是185cm . A.一定 B.不可能 C.可能15 六年级一班第1小组同学最高的是1.70米,最矮的是1.52米.下面的数据中,可能是这组同学的平均身高的是( ) A.1.50米 B.1.52米 C.1.65米 D.1.70米 16 一本书有170页,已看了80页,余下的要3天看完,平均每天要看( )页. A.28 B.30 C.33 D.3517 小虎、小明、小力和小军4名同学进行投沙包比赛,每人投3次,结果如图所示.这四名同学中,投沙包的平均成绩大约为9米的是( )A.小力B.小明C.小军D.小虎 18 春游时,旅游汽车以每小时100千米的速度从盐城到荷兰花海风景区,又以每小时60千米的速度返回,这辆汽车的往返平均速度是每小时( )千米. A.80 B.75 C.70 D.9019 一次数学考试,5名同学的成绩从低到高依次排列是76分、82分、a 分、88分、92分,他们的平均分可能是( ) A.75B.85C.90四、计算题(共2题,共28分)20 (10分) 竖式计算.(打*要验算)(1)16 6.7-= (2)12.09 5.91+= (3)*141.248.98-= (4)*3.97 1.03+=21 (18分) 简便计算.(1)14615525445+++ (2)112773127-- (3)4325⨯⨯(4)142594259⨯-⨯ (5)()870872÷⨯(6)64125⨯五、解答题(共7题,共38分)22 (4分) 某果园栽了12行桃树,共288棵;栽了18行梨树,共540棵.平均每行梨树比每行桃树多多少棵?23 (4分) 笑笑在期中测试中数学和语文的平均分是95分,英语成绩出来后,三科平均分增加1分,笑笑的英语是多少分?24 (4分) 阳阳和爸爸妈妈去爬山,阳阳15分钟走了630米山路. (1)阳阳平均每分钟走多少米山路?(2)照这样的速度,剩下的294米山路.阳阳还需要走多少分钟?25 (6分) 小刚和小强分别制作了一艘轮船模型进行比赛.下面是这两艘轮船前4次的试航情况的统计图.(1)前4次试航,谁的轮船平均每次航行的距离远一些?(2)第5次试航,小刚的轮船航行距离是20米,小强的轮船航行距离是16米.请你在图中表示出来.(3)请你选一选,第5次试航后,小刚的轮船航行距离的平均数会________,小强的轮船航行距离的平均数会________. A .增加 B .不变 C .减少26 (4分) 下面是某地区2012-2015年空气质量统计表: 天数年份 空气质量 2012年 2013年 2014年 2015年 合格 185195200 213 污染181 170165152(1)根据上面的统计表,完成下面统计图.(2)哪年空气质量为污染的天数最多?哪年空气质量为合格的天数最多?你认为这个地区的空气质量是在好转还是在恶化?次数某地区 2012 ——2015 年空气质量统计图27 (8分) 下面是实验小学五(1)班语文能力考核合格人数统计图.(1)男、女生水平相差最大的项目是________;水平相当的项目是_________和_________. (2)全班合格人数最多的项目是_________,有________人.(3)女生需要在________项目上加强训练,以缩小和男生的差距. (4)五(1)班最少有多少名学生?28 (8分) 一辆汽车从甲地经过乙地到达丙地,然后原路返回.去时平均每小时行驶48千米,这辆车往返的平均速度是每小时多少千米?女生数量人()课外积累写作基础知识阅读302010时间/时4512。
一、选择题1.给出下列结论:(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.(3)若两个变量的线性相关性越强,则相关系数r的值越接近于1.(4)对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是()A.3B.2C.1D.02.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A.623 B.328 C.253 D.007,,,件,为3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200400300100检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取()件.A.24 B.18 C.12 D.6”模式指考生总成绩由语文、数学、外语3个科目成绩和高中学业水平考试4.高考“333个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物6个科目中自主选择.某中学为了解本校学生的选择情况,随机调查了100位学生的选择意向,其中选择物理或化学的学生共有40位,选择化学的学生共有30位,选择物理也选择化学的学生共有10位,则该校选择物理的学生人数与该校学生总人数比值的估计值为()A.0.1B.0.2C.0.3D.0.45.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.10006.对于一组数据x i(i=1,2,3,…,n),如果将它们改变为x i+C(i=1,2,3,…,n),其中C≠0,则下列结论正确的是()A.平均数与方差均不变B.平均数变,方差保持不变C.平均数不变,方差变D.平均数与方差均发生变化7.某公司引进先进管理经验,在保持原有员工人数的基础上,注重产品研发及员工待遇,提高产品质量和员工积极性,效益显著提高.同时该公司的各项成本也随着收入的变化发生了相应变化.下图给出了该公司2018年和2019年的运营成本及利润占当年总收入的比例,已知2019年和2018年的材料设备费用相同,则下列说法不正确的是()A.该公司2019年利润是2018年的3倍B.该公司2019年的员工平均工资是2018年的2倍C.该公司2019年的总收入是2018年的2倍D.该公司2019年的研发费用等于2018年的研发和工资费用之和8.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为()A.21250元B.28000元C.29750元D.85000元9.2018年,某地认真贯彻落实中央十九大精神和各项宏观调控政策,经济运行平稳增长,民生保障持续加强,惠民富民成效显著,城镇居民收入稳步增长,收入结构稳中趋优.据当地统计局公布的数据,现将8月份至12月份当地的人均月收入增长率与人均月收入分别绘制成折线图(如图一)与不完整的条形统计图(如图二).请从图中提取相关的信息:①10月份人均月收入增长率为20.9%左右;②11月份人均月收入为2047元;③从上图可知该地9月份至12月份人均月收入比8月份人均月收入均得到提高.其中正确的信息个数为()A .0B .1C .2D .310.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120B .40C .30D .2011.如图所示是小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A x 和B x ,方差分别为2A s 和2B s ,则( )A .AB x x <,22A B s s > B .A B x x <,22A B s s < C .>A B x x ,22A B s s > D .>A B x x ,22A B s s <12.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛13.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数和招聘人数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张二、解答题14.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.15.汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对2CO 排放量超过130g/km 的1M 型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类1M 型品牌抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ):经测算发现,乙品牌车2CO 排放量的平均值为120/x g cm =乙.(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆2CO 排放量超标的概率是多少? (Ⅱ)若乙类品牌的车比甲类品牌的2CO 的排放量的稳定性要好,求x 的范围. 16.某单位共有10名员工,他们某年的收入如下表:(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆybx a =+中系数计算公式分别为:()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-,其中x、y 为样本均值. 17.南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表: 若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”. (1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少? (2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动. ①求男生和女生各抽取了多少人;②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率. 18.对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)25n[20,25)m p[25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.19.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.对服务好评对服务不满意合计对商品好评8040120对商品不满意701080合计15050200(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.()2P K k>0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)20.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.(1)计算这10名学生的成绩的均值和方差;(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.21.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.22.为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、乙两单位中各随机抽取了5名职工的成绩,如下表所示:甲单位职工的成绩(分)8788919193乙单位职工的成绩(分)8589919293根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定?23.某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[10,20),[20,30),…,[50,60],并整理得到如下频率分布直方图:(Ⅰ)求a 的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄. 24.有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4. (1)列出样本的频率分布表. (2)画出频率分布直方图.(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?25.为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下: 0154 3287 6595 4287 5346 7953 2586 5741 3369 8324 4597 7386 5244 3578 624126.语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下:(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. (附参考公式)若2(,)XN μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】运用抽样、方差、线性相关等知识来判定结论是否正确 【详解】(1)中相邻的两个编号为053,098, 则样本组距为985345-=∴样本容量为9002045= 则对应号码数为()53452n +-当20n =时,最大编号为534518863+⨯=,不是862,故(1)错误 (2)甲组数据的方差为5,乙组数据为5、6、9、10、5, 则56910575x ++++==乙乙组数据的方差为()()()()()22222157679710757 4.455⎡⎤-+-+-+-+-=<⎣⎦ 那么这两组数据中较稳定的是乙,故(2)错误(3)若两个变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故错误(4)按3:1:2的比例进行分层抽样调查,若抽取的A 种个体有15个,则样本容量为31530312÷=++,故正确综上,故正确的个数为1故选C 【点睛】本题主要考查了系统抽样、分层抽样、线性相关、方差相关知识,熟练运用各知识来进行判定,较为基础2.A解析:A【解析】分析:从第五行第六列开始向右读,依次读取,将其中不符合要求的也就是超范围的数据去掉,再将重复的去掉,最后找到满足条件的数据.详解:从第5行第6列开始向又读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个是623,故选A.点睛:这是一道有关随机数表的题目,明确随机数的含义是关键,在读取数据的过程中,需要把超范围的数据和重复的数据都去掉,接着往下读就行了.3.B解析:B【分析】根据分层抽样列比例式,解得结果.【详解】根据分层抽样得应从丙种型号的产品中抽取30060=18200+400+300+100⨯,选B.【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N. 4.B解析:B【分析】计算选择物理的学生人数为20,再计算比值得到答案.【详解】选择物理的学生人数为40301020-+=,即该校选择物理的学生人数与该校学生总人数比值的估计值为200.2 100=.故选:B【点睛】本题考查了根据样本估计总体,意在考查学生的应用能力.5.C解析:C【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题.6.B解析:B 【解析】由平均数的定义,可知每个个体增加C ,则平均数也增加C ,方差不变.故选B.7.B解析:B 【分析】设2018年全年收入为x ,则2019年全年收入为y ,由2019年和2018年的材料设备费用相同得:1:2x y =,再根据题意依次讨论即可得答案. 【详解】解:2018年全年收入为x ,则2019年全年收入为y ,因为2019年和2018年的材料设备费用相同,所以0.40.2x y =,即:2y x =,故C 选项正确;对于A 选项,2018年的利润为:0.2x ,2019年的利润为:0.30.320.630.2y x x x =⨯==⨯,故正确;对于B 选项,2019年的平均工资为:0.250.5y x =, 2018年的平均工资为:0.2x ,故B 选项不正确;对于D 选项,2019年的研发费用为:0.150.3y x =,2018年的研发和工资费用之和为:0.10.20.3x x x +=,故正确. 故选:B . 【点睛】本题考查根据折线图分析相关的统计数据,考查数据分析能力与运算能力,是中档题.8.C解析:C 【分析】由题意首先求得2017年的就医花费,然后由2018年的就医花费结合条形图可得2018年的旅行费用. 【详解】由题意可知,2017年的就医花费为8000010%8000⨯=元,则2017年的就医花费为8000475012750+=元, 2018年的旅行费用为12750352975015⨯=元. 故选C . 【点睛】本题主要考查统计图表的识别与应用,属于中等题.9.C解析:C 【分析】由图逐个分析,①设10月份人均月收入增长率为%x ,列式解得20.9x ≈; ②,11月份人均月收入为()1780125%2225⨯+=元,③由图明显正确. 【详解】对于①,设10月份人均月收入增长率为%x ,则()14721%1780x ⨯+=,解得20.9x ≈,故①正确;对于②,11月份人均月收入为()1780125%2225⨯+=元,故②错误;对于③,从图中易知8月人均月收入最低,所以该地9月份至12月份人均月收入均得到提高,故③正确. 综上,正确的选项有2个. 故选C. 【点睛】本题考查统计问题以及图表分析能力,属于一般题.10.B解析:B 【分析】根据分层抽样的定义即可得到结论. 【详解】假设抽取一年级学生人数为n . ∵一年级学生400人∴抽取一个容量为200的样本,用分层抽样法抽取的一年级学生人数为4002000200n= ∴40n =,即一年级学生人数应为40人, 故选B . 【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即::i i n N n N =.11.C解析:C【分析】根据图形分析数据的整体水平和分散程度. 【详解】观察题图可知,实线中的数据都大于或等于虚线中的数据,所以小王成绩的平均数大于小张成绩的平均数,即>AB x x ;显然实线中的数据波动都大于或等于虚线中的数据波动,所以小王成绩的方差大于小张成绩的方差,即22A B s s >.故选:C. 【点睛】此题考查根据数据特征辨析平均数和方差,关键在于准确分析图形反映的数据特征而并非计算.12.D解析:D 【解析】 试题分析:727879858692826x +++++==甲,788688889193876x +++++=≈乙,所以x x <甲乙.()2110016991610041.676S =+++++≈甲,()2181111163622.676S =+++++≈乙,因为22S S 乙甲<,所以乙成绩比甲成绩稳定,应该选乙参加比赛.考点:1.茎叶图;2.平均数和方差 13.B解析:B 【解析】试题分析:就业形势的好坏,主要看招聘人数与应聘人数的比值,比值越大,就业形势越好,故选B .考点:本题主要考查不等式的概念、不等式的性质.点评:解答此类题目,首先要审清题意,明确就业形势的好坏,主要看招聘人数与应聘人数的比值.二、解答题14.(1)中位数是121.67;平均数是123;(2)35. 【分析】(1)利用中位数左边矩形面积之和为0.5可求出中位数,将每个矩形底边中点值乘以相应矩形的面积,再相加可得出这100名学生语文成绩的平均数;(2)计算出数学成绩在[]130,150、[]140,150的学生人数,列举出所有的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)0.050.40.30.750.5++=>,0.750.50.25-=,∴这100名学生语文成绩的中位数是0.2513010121.670.3-⨯=.这100名学生语文成绩的平均数是:1050.051150.41250.31350.21450.05123⨯+⨯+⨯+⨯+⨯=;(2)数学成绩在[)100,140之内的人数为4130.050.40.30.210097310⎛⎫⨯++⨯+⨯⨯=⎪⎝⎭, ∴数学成绩在[]140,150的人数为100973-=人,设为1a 、2a 、3a ,而数学成绩在[)130140,的人数为10.2100210⨯⨯=人,设为1b 、2b , 从数学成绩在[]130,150的学生中随机选取2人基本事件为:()12,a a 、()13,a a 、()11,a b 、()12,a b 、()23,a a 、()21,a b 、()22,a b 、()31,a b 、()32,a b 、()12,b b ,共10个,选出的2人中恰好有1人数学成绩在[]140,150的基本事件为:()11,a b 、()12,a b 、()21,a b 、()22,a b 、()31,a b 、()32,a b ,共6个,∴选出的2人中恰好有1人数学成绩在[]140,150的概率是35.【点睛】本题考查利用频率分布直方图计算平均数与中位数,同时也考查了利用古典概型的概率公式计算事件的概率,考查计算能力,属于中等题. 15.(Ⅰ)()0.7P A =;(Ⅱ)()90,130. 【分析】(Ⅰ)由题意逐个列出从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果及事件A 包含的结果,利用古典概型事件的概率公式即可求得;(Ⅱ)由题意算出甲乙的平均值,并算出方差,利用乙类品牌的车2CO 的排放量稳定性比甲类品牌的车2CO 的排放量的稳定性好,建立方程求解. 【详解】解:(Ⅰ)从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果:()80,110,()80,120,()80,140,()80,150,()110,120,()110,140,()110,150,()120,140,()120,150,()120,150,()140,150设“至少一辆不符合2CO 排放量”为事件A ,则A 包含以下7种结果:()80,140,()80,150,()110,140,()110,150,()120,140,()120,150,()140,150所以()70.710P A ==. (Ⅱ)因为801201101401501205x ++++==甲,所以120x x ==甲乙,220x y +=.()()()()()2222225801201101201201201401201501203000S =-+-+-+-+-=甲()()()()()()222222225100120120120120120(160120)2000120120S x y x y =-+-+-+-+-=+-+-乙 因为220x y +=,所以()()22252000120100S x x =+-+-乙由乙类品牌的车2CO 的排放量稳定性比甲类品牌的车稳定性要好,得2255S S <乙甲即()()2220001201003000x x +-+-<,所以2220117000x x -+<,解得90130x <<所以x 的取值范围为()90,130 【点睛】本题考查了古典概型的事件的概率,还考查了方差的意义及利用方差意义建立方程,还考查了一元二次方程的求解,属于中档题.16.(1)平均值为11万元,中位数为7万元(2)预测该员工年后的年薪收入为10.9万元 【分析】(1)直接利用平均数和中位数的定义计算得到答案.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,利用公式直接计算得到回归方程 1.4 2.5y x =+,代入数据计算得到答案. 【详解】 (1)平均值为4+4.5+6+5+6.5+7.5+8+8.5+9+511110= 万元,中位数为7万元.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,则 2.5x =,6y =,()4212.250.250.25 2.255i x x -=+++=∑()()411.5(2)(0.5)(0.5)0.50 1.52.57iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑()()()127ˆ 1.45niii i x x y y bx x =--===-∑,ˆˆ6 1.4 2.5 2.5ay bx =-=-⨯=由线性回归方程: 1.4 2.5y x =+,6x =时,10.9y = 可预测该员工年后的年薪收入为10.9万元. 【点睛】本题考查了线性回归方程的应用,意在考查学生的计算能力和应用能力. 17.(1)700人;(2) ①男生抽取4人,女生抽取1人.② 25【分析】(1)100名学生中“锻炼达人”的人数为10人,由此能求出7000名学生中“锻炼达人”的人数.(2)①100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.从10人中按性别分层抽取5人参加体育活动,能求出男生,女生各抽取多少人.②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,5人中随机抽取2人,利用列举法能求出抽取的2人中男生和女生各1人的概率. 【详解】(1)由表可知,100名学生中“锻炼达人”的人数为10人,将频率视为概率,我校7000名学生中“锻炼达人”的人数为107000700100⨯=(人) (2)①由(1)知100名学生中的“锻炼达人”有10人,其中男生8人,女生2人. 从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人. ②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,则5人中随机抽取2人的所有结果有:男1男2,男1男3,男1 男4,男1女,男2男3,男2男4,男2女,男3男4,男3女,男4女.共有10种结果,且每种结果发生的可能性相等.记“抽取的2人中男生和女生各1人”为事件A ,则事件A 包含的结果有男1女,男2女,男3女,男4女,共4个,故42()105P A ==. 【点睛】本题考查频数、概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是基础题.18.(1)0.125;(2)5;(3)710【分析】 (1)由频率=频数总数,能求出表中M 、p 及图中a 的值.(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数.(3)在样本中,处于[20,25)内的人数为3,可分别记为A ,B ,C ,处于[25,30]内的人数为2,可分别记为a ,b ,由此利用列举法能求出至少1人参加社区服务次数在区间[20,25)内的概率. 【详解】(1)由分组[10,15)内的频数是10,频率是0.25知,,所以M=40.因为频数之和为40,所以.因为a是对应分组[15,20)的频率与组距的商,所以.(2)因为该校高三学生有360人,分组[15,20)内的频率是0.625,所以估计该校高三学生参加社区服务的次数在此区间内的人数为360×0.625=225人.(3)这个样本参加社区服务的次数不少于20次的学生共有3+2=5人设在区间[20,25)内的人为{a1,a2,a3},在区间[25,30)内的人为{b1,b2}.则任选2人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10种情况,(9分)而两人都在[20,25)内共有(a1,a2),(a1,a3),(a2,a3)3种情况,至多一人参加社区服务次数在区间[20,25)内的概率为.【点睛】本题考查频率分布表和频率分布直方图的应用,考查概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用.19.(1)有;(2) 3 5 .【分析】()1根据列联表计算2K,对照观测值表即可得到结论()2利用分层抽样法抽取5次交易,计算好评的交易次数和不满意次数,用列举法计算对应的概率值即可【详解】(1)由上表可得()222008010407011.11110.8281505012080K⨯⨯-⨯=≈>⨯⨯⨯,所以有99.9%的把握认为商品好评与服务好评有关(2) 由表格可知对商品的好评率为35,若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 则好评的交易次数为3次, 不满意的次数为2次, 令好评的交易为,,A B C, 不满意的交易,a b, 从5次交易中, 取出2次的所有取法为()()()(),,,,,,,A B A C A a A b,()()(),,,,,,B C B a B b(),C a, (),C b, (),a b, 共计10种情况, 其中只有一次好评的情况是(),A a,(),A b,(),B a,(),B b,(),C a,(),C b, 共计6种情况.因此, 只有一次好评的概率为63 105=.【点睛】本题主要考查了古典概型概率计算公式,利用列举法计算基本事件数及事件发生的概率,属于基础题.20.(1)49(2)0.8185【解析】分析:(1)根据茎叶图所给数据,求出总和,求得平均值;利用方差计算公式可得方差值。
新人教版六年级上册《第6章 统计》单元测试卷一、填空题.1. 某公司去年1∼12月生产产值统计后,制成________统计图,能比较清楚地反映各月产值的多少;如果要反映各月产值增减变化的情况,可以制成________统计图。
2. 请你把下面的统计表填写完整。
某机床厂4、5月份生产机床情况统计表:3. 把下面的统计表补充完整。
某连锁店2009年第四季度营业额统计表4. 三(1)班民主选举班委,有8位同学参加竞选(以编号代替姓名),全班48位同学参加了投票选举。
得票如下:(1)得票最多的是________号同学。
(2)得票数超过半数的同学能当选为本届班委。
那么,这次民主选举________位同学竞选成功,光荣地当选为本届班委,当选率为________%.5. 看图填空。
(1)两个城市在________月温差最小,在________月温差最大。
(2)________市________月的平均气温与前一个相比下降最快。
(3)这两个城市的月平均气温变化趋势是什么?二、选择题.在我们学过的统计知识中,最能表现出数量增减变化情况的是()A.平均值B.统计表C.折线统计图D.条形统计图要统计某一地区气温变化情况,应选用()统计图。
A.条形B.折线C.扇形疾控中心统计近期甲型H1N1流感疫情,既要知道每天患病人数的多少,又要能反映疫情变化的情况和趋势,最好选用()A.条形统计图B.折线统计图C.扇形统计图D.统计表下面的信息资料中,适合用折线统计图表示的是()A.学校各年级的人数B.四年级各班做好事的件数C.6月份气温变化情况D.学校教师的人数下面(如图)哪个图是小明测到六月份北京室外温度变化情况()A. B. C.三、综合应用下表是育才小学五年级学生人数统计表,请将该表补充完整,然后回答下列问题:①五(1)班的人数占全年级总人数的百分之几?②五年级人数最多的班比人数最少的班的人数多百分之几?六年级一班的一次数学测验,全班都达到及格线以上,具体统计如图:(1)请在纵轴括号内标出每个刻度表示的数。
统计案例单元测试题1.对于两个变量之间的相关系数,下列说法中正确的是( )A.||r 越大,相关程度越大B.||r ∈()0,+∞,||r 越大,相关程度越小,||r 越小,相关程度越大C.||r ≤1且||r 越接近于1,相关程度越大;||r 越接近于0,相关程度越小D .以上说法都不对2.设两个变量x 和y 之间具有线性相关关系,它们的相关系数为r ,y 关于x 的回归直线方程为y ^=kx +b ,则( )A .b 与r 的符号相同B .k 与r 的符号相同C .b 与r 的符号相反D .k 与r 的符号相反3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98B .模型2的相关指数R 2为0.80C .模型3的相关指数R 2为0.50D .模型4的相关指数R 2为0.254.通过残差图我们发现在采集样本点过程中,第____个样本点数据不准确()A .第四个B .第五个C .第六个D .第八个5.独立性检验中的“小概率事件”是指某事件发生的概率 ( )A .小于4%B .小于5%C .小于6%D .小于8%6.关于x 与y ,有如下数据有如下的两个模型:(1)y ^=6.5x +17.5,(2)y =7x +17.通过残差分析发现第(1)个线性模型比第(2)个拟合效果好.则R 21________R 22,Q 1______Q 2.(用大于,小于号填空,R ,Q 分别是相关指数和残差平方和)7.如果发现散点图中所有的样本点都在一条直线上,则残差平方和等于_________.解释变量和预报变量之间的相关系数等于__________.班级 姓名 座号 得分8.以下是某地区不同身高的未成年男性的体重平均值表分别是:R21=0.9311,R22=0.998.试问哪个回归方程拟合效果最好?(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高、体重分别为175 cm,78 kg,他的体重是否正常?( 3.447531.42e≈)9.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人,六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.(1)根据以上数据建立一个2×2的列联表;(2)判断人的饮食习惯是否与年龄有关.附:1.22(),()()()()n ad bcK n a b c da b a c b c b d-==+++ ++++参考答案1.C 2.B 3.A 4.C 5.B 6.> <7.0 18.解析:(1)∵R 22>R 21,∴选择第二个方程拟合效果最好.(2)把x =175代入y =2.004e 0.0197x ,得y =62.97. 由于78/62.97=1.24>1.2因此这名男生体型偏胖.9.解析:(1)2×(2) 0K 2=124(27×21-43×33)270×54×64×60≈6.201, 当统计假设H 0成立时,K 2≥5.024的概率约为2.5%,即有97.5%的把握认为“人的饮食习惯与年龄有关”.。
0.10.3 5.25.15.04.94.84.74.64.54.4视力4.3频率组距o y x 《统计》单元测试题
一选择题:
1.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在 某 一天各自课外
阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每
人的课外阅读时间为( )
A .0.6小时
B .0.9小时
C .1.0小时
D .1.5小时
2.某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体 状况的某项指标,
需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是( )
A.6,12,18
B.7,11,19 C .6,13,17 D.7,12,17
3.将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数一次为( )A .26, 16, 8, B .25,17,8 C .25,16,9 D .24,17,9
4.样本中共有五个个体,其值分别为a ,0,1,2,3。
若该样本的平均值为1,则样本方差为( )
A .56 B.5
6 C.2 D.2
5.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是( )
A .②、③都不能为系统抽样
B .②、④都不能为分层抽样
C .①、④都可能为系统抽样
D .①、③都可能为分层抽样
6.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得
散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),
得散点图2. 由这两个散点图可以判断。
( )
A.变量x 与y 正相关,u 与v 正相关
B.变量x 与y 正相关,u 与v 负相关
C.变量x 与y 负相关,u 与v 正相关
D.变量x 与y 负相关,u 与v 负相关
7.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的
频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,
102),[102, 104),[104,106],已知 样本中产品净重小于100克的个数是36,则样本中净重大
于或等于98克并且小于104克的产品的个数是 ( )A.90 B.75 C.60 D.45
8.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立的做10次和15V 次试验,
并且利用线性回归方法,求得回归直线分布为1l 和2l ,已知在两人的试验中发现对变量x 的观察数据的平均值恰好相等都为s ,对变量y 的观察数据的平均值恰好相等都为t,那么下列说法正确的是( )
A .直线1l 和2l 有交点(s,t )
B .直线1l 和2l 相交,但是交点未必是(s,t )
C . 直线1l 和2l 平行
D . 直线1l 和2l 必定重合
二、填空题:
9将容量为n 的样本中的数据分成6组. 绘制频率分步直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频率之和等于27,则n 等于 .
10.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别为60,0.25,则n 的值是 .
11.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本, 用系统抽样法,
将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196
-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。
若用分层抽样方法,
则40岁以下年龄段应抽取 人.
12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6
组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a, b 的值分别为 .
三、解答题: 13.写出下列各题的抽样过程
(1)请从拥有500个分数的总体中用简单随机抽样方法抽取一个容量为30的样本.
(2)某车间有189名职工,现在要按1:21的比例选派质量检查员,采用系统抽样的方式进行.
(3)一个电视台在因特网上就观众对某一节目喜爱的测得进行得出,车间得出的总人数为12000人,其中持各种态度的人数如下:打算从中抽取60人进行详细调查,如何抽取?
很喜爱 喜爱 一般 不喜爱
2435 4567 3926 1072
14.根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间]50,0[,
]100,50(,]150,100(,]200,150(,]250,200(,]300,250(进行分组,得到频率
分布直方图如图5.
(1)求直方图中x 的值;
(2)计算一年中空气质量分别为良和轻微污染的天数; (结果用分数表示.已知++36521825318257 9125
1239125818253=++,573365⨯=)
15.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如
图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差
16.某良种培育基地正在培育一种小麦新品种A ,将其与原有的一个优良品种B 进行对照
试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:
品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,
445,445,451,454
品种B :363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,
415,416,422,430
(Ⅰ)完成所附的茎叶图(Ⅱ)用茎叶图处理现有的数据,有什么优点?
(Ⅲ)通过观察茎叶图,对品种A 与B 的亩产量及其稳定性进行比较,写出统计结论。
17.下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x (吨)与相应的
生产能耗y x 3 4 5 6
y
2.5 3 4 4.5
(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =a x b
ˆˆ+ (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)。