波谱分析及应用复习
- 格式:ppt
- 大小:35.00 KB
- 文档页数:9
《波谱分析》期末复习资料·《波谱分析》期末复习资料⼀、名词解释:1、摩尔吸光系数;根据⽐尔定律,吸光度A与吸光物质的浓度c和吸收池光程长b 的乘积成正⽐。
当c的单位为g/L,b的单位为cm时,则A = abc,⽐例系数a称为吸收系数,单位为L/g.cm;当c的单位为mol/L,b的单位为cm时,则A = εbc,⽐例系数ε称为摩尔吸收系数,单位为L/mol.cm,数值上ε等于a与吸光物质的摩尔质量的乘积。
它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以⼀定波长的光通过时,所引起的吸光度值A。
ε值取决于⼊射光的波长和吸光物质的吸光特性,亦受溶剂和温度的影响。
显然,显⾊反应产物的ε值愈⼤,基于该显⾊反应的光度测定法的灵敏度就愈⾼。
2、⾮红外活性振动;物质分⼦吸收红外光发⽣振动和转动能级跃迁,必须满⾜两个条件:1. 红外辐射光量⼦具有的能量等于分⼦振动能级能量差△E2. 分⼦振动时必须伴随偶极矩的变化,具有偶极矩的变化的分⼦振动是红外活性振动,否则是⾮红外活性振动。
3、弛豫;⼈们把向平衡状态恢复的过程称为弛豫过程。
原⼦核从激化的状态回复到平衡排列状态的过程叫弛豫过程。
这个过程遵循指数变化规律,其时间常数称为弛豫时间。
弛豫过程所需的时间叫弛豫时间。
即达到热动平衡所需的时间。
热动平衡即因热量⽽导致的动态平衡。
4、碳谱的γ-效应;5、麦⽒重排是MCLATTERTY对质谱分析中离⼦的重排反应提出的经验规则。
具有不饱和官能团C=X(X为O、S、N、C等)及其γ-H原⼦结构的化合物,γ-H原⼦可以通过六元环空间排列的过渡态,向缺电⼦(C=X+ )的部位转移,发⽣γ-H的断裂,同时伴随C=X 的β键断裂(属于均裂),这种断裂称为McLafferty重排,简称麦⽒重排(麦⽒于1956年发现),例如:2-戊酮在质谱中,位于含有杂原⼦双键的γ-位氢原⼦,通过六员过渡态转移到杂原⼦上的过程称之为麦⽒重排。
波谱解析复习题波谱解析复习题波谱解析是一门重要的分析技术,广泛应用于化学、物理、天文学等领域。
在波谱解析中,我们通过观察和分析光谱图来获取物质的信息。
本文将带您回顾一些波谱解析的基础知识,并提供一些复习题,以帮助您巩固对这一主题的理解。
一、紫外-可见吸收光谱紫外-可见吸收光谱是一种常用的波谱技术,用于研究物质在紫外和可见光区的吸收行为。
它通过测量物质对不同波长光的吸收程度来确定物质的结构和浓度。
1. 什么是吸收光谱?如何表示吸收光谱图?吸收光谱是指物质对特定波长或一定范围内的光的能量吸收的图谱。
在吸收光谱图中,横轴表示波长或频率,纵轴表示吸收强度或吸光度。
吸收光谱图通常以峰的形式出现,峰的高度和形状与物质的吸收特性相关。
2. 为什么紫外-可见吸收光谱常用于分析有机化合物?紫外-可见吸收光谱对于分析有机化合物非常有用,因为有机化合物通常在紫外和可见光区域吸收较强。
通过测量有机化合物在不同波长的吸收情况,我们可以推断出它们的结构和浓度。
二、红外光谱红外光谱是一种用于研究物质分子振动和转动行为的波谱技术。
它通过测量物质对红外光的吸收来确定物质的化学成分和结构。
1. 什么是红外光谱?红外光谱图如何表示?红外光谱是指物质对红外辐射(通常是波长在2.5-25微米之间的光)的吸收行为。
红外光谱图通常以波数(cm-1)表示,横轴表示波数,纵轴表示吸收强度或吸收百分比。
2. 红外光谱在有机化学中的应用有哪些?红外光谱在有机化学中有广泛的应用。
通过红外光谱,我们可以确定有机化合物的官能团、分子结构和键的类型。
例如,羟基、羰基、胺基等官能团在红外光谱中有特征性的吸收峰,可以用于鉴定有机化合物的结构。
三、核磁共振光谱核磁共振光谱是一种用于研究物质中原子核的磁共振行为的波谱技术。
它通过测量原子核在外加磁场下的共振吸收来确定物质的结构和环境。
1. 什么是核磁共振光谱?核磁共振光谱图如何表示?核磁共振光谱是指物质中原子核在外加磁场下发生共振吸收的现象。
第一章绪论1 •不饱和度的计算不饱和度计算公式:U=n4+l+(n3-nl)/2式中n4、n3、nl分别为4价、3价、1价原子的个数。
2. 波谱分析的一般程序?1 -实验样品的准备;在波谱测定前我们需要根据样品的不同性质、不同纯度及不同波谱测定忖的作样品的准备。
样品准备主要有三方面的工作:一是准备足够的量。
二是在很多情况下要求样品有足够的纯度,所以要作纯度检验。
三是样品在上机前作制样处理。
2.做必要的图谱及元素分析;先选择性做几个觅要、方便的,再根据情况做其他谱。
3.分子量或分子式的确定;(1)经典的分子量测定方法:可用沸点升高、凝固点降低法、蒸汽密度法、渗透压法。
有些样品可用紫外光谱根据Beer定律测定分子量。
误差大。
大分子可用排阻色谱测定。
(2)质谱法:高分辨质谱在测定精确分子量的同时,还能推岀分子式,这是有机质谱最大的贡献。
低分辨质谱由测得的同位素丰度比也可推出分子屮元素的组成,进而得到可能的分子式。
(3)结合核磁共振氢谱、碳谱推测简单坯类等分子的分子式。
(4)综合光谱材料与元素分析确定分子式。
4.计算不饱和度;分子式确定后,可方便的按下式计算出不饱和度来:U=n4+l+(n3-nl)/2式中n4、n3、nl分别为4价、3价、1价原子的个数。
5・各部分结构的确定;Q)不饱和类型红外光谱和核磁共振可用于判断20、C=N等不饱和类型。
UV可用于共辘体系的判断。
(b)官能团和结构单元鉴定可能存在的官能团和部分结构时,各种光谱要交替参照,相互论证,以增加判断的可靠性。
6.结构式的推定;总结所有的官能团和结构片段,并找出各结构单元的关系,提出一种或几种可能结构式。
7.用全部光谱材料核对推定的结构式;①用IR核对官能团。
②用13C-NMR核对碳的类型和对称性。
③用1H-NMR核对氢核的化学位移和它们相互偶合关系,必要时与计算值对④用UV核对分了中共辘体系和一些官能团的取代位置,或用经验规则计算入max值。
波谱解析复习总结(一)常用解谱数据总结关于数据,是一定要记的···大家想怎么记爱怎么记就怎么记吧,建议自己总结,这样记的好一些。
下面是鄙人的,嘻嘻。
(老师PPT上有很多总结的)一、氢谱化学位移值δ(ppm)影响化学位移值的因素:只有空间效应和共轭效应是屏蔽效应增大,向高场位移,即ζ↑,δ↓.(一)0.4~4.0为饱和C上的H① 0.4~1.8 连饱和C的饱和C上的H② 1.8~2.5 连不饱和C的饱和C上的HI. 1.8~2.1 连C=C、C≡C的饱和C上的HII. 2.1~2.5 连C=O、N、S、苯环的饱和C上的H③ 3.0~4.6 连-O-的饱和C上的H其中,4.1左右可能有酯基④例外的:2.3~3.0是叁键上的H(二)4.6~8.0为不饱和C上的H① 4.6~6.0 C=C上的H② 6.0~8.0 苯环上的H(三)4.0~5.5为脂肪醇-OH的H若有0.5~1.0,为稀溶液(四)3.5~7.7为酚的-OH的H若有10~16,为分子内氢键(五)9.0~10.0为H-C=0的H(六)10.5~13为-COOH的H(七)胺类①~1.0 脂肪胺②4~5(气泡峰)芳香胺③6~7(气泡峰)酰胺,仲胺类其它:J值:①任何情况下J顺<j反< p="">②总体情况:J苯环H<j邻(烯h)<j邻(烷h)<j偕h< p="">③苯环H:J对<j间<="">④烯烃H:J邻(顺)<j邻(反)(j邻(顺)6~14hz;j邻(反)11~18hz)< p="">⑤烷烃H:J邻6~8Hz⑥同碳上的H:J偕10~16Hz要求掌握给图能测量算得J值,再推化合物种类。
二、碳谱碳谱的DEPT值:季碳消失!θ=45°,季C消失;θ=90°,季C消失,只有CH向上;θ=135°,季C消失,只有CH2向下。
有机波谱分析期末复习总结名词解析发⾊团(chromophoric groups):分⼦结构中含有π电⼦的基团称为发⾊团,它们能产⽣π→π*和n→π*跃迁从⽽你呢个在紫外可见光范围内吸收。
助⾊团(auxochrome):含有⾮成键n电⼦的杂原⼦饱和基团本⾝不吸收辐射,但当它们与⽣⾊团或饱和烃相连时能使该⽣⾊团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。
红移(red shift):由于化合物结构发⽣改变,如发⽣共轭作⽤引⼊助⾊团及溶剂改变等,使吸收峰向长波⽅向移动。
蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波⽅向移动。
增⾊效应(hyperchromic effect):使吸收强度增加的作⽤。
减⾊效应(hypochromic effect):使吸收强度减弱的作⽤。
吸收带:跃迁类型相同的吸收峰。
指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。
当分⼦结构稍有不同时,该区的吸收就有细微的差异,并显⽰出分⼦特征,反映化合物结构上的细微结构差异。
这种情况就像⼈的指纹⼀样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,⽽且可以作为化合物存在某种基团的旁证。
但该区中各种官能团的特征频率不具有鲜明的特征性。
共轭效应 (conjugated effect) :⼜称离域效应,是指由于共轭π键的形成⽽引起分⼦性质的改变的效应。
诱导效应(Inductive Effects):⼀些极性共价键,随着取代基电负性不同,电⼦云密度发⽣变化,引起键的振动谱带位移,称为诱导效应。
核磁共振:原⼦核的磁共振现象,只有当把原⼦核置于外加磁场中并满⾜⼀定外在条件时才能产⽣。
化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进⾏⽐较,其相对距离称为化学位移。
弛豫:通过⽆辐射的释放能量的途径核由⾼能态向低能态的过程。
分⼦离⼦:有机质谱分析中,化合物分⼦失去⼀个电⼦形成的离⼦。
有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
一、名词解释:
1、生色基、助色基、红移现象、蓝移现象、增色效应、减色效应、官能团吸收峰、(n+1 规则)、偶合常数、基频峰、亚稳离子、自旋-自旋偶合?
二、问答题:
1、有机化合物结构测定的经典方法?
2、有机分子电子跃迁有哪几种类型?
4、紫外谱图提供的结构信息有哪些?
5、产生红外光谱的必要条件?
6、影响IR谱峰位置变化的因素有哪些?举例说明之。
7、IR谱图解析的基本步骤?
8、影响化学位移的因素有哪些?举例说明之。
9、NMR谱图可以向我们提供关于有机分子结构的哪些信息?
10、NMR谱图解析的基本步骤?
11、波谱综合分析方法的基本步骤?
12、紫外吸收光谱的基本原理是什么?
13、影响离子断裂的因素有哪些?
14、解析红外谱图应注意哪些事项?
15、化学位移是如何产生的?
三、波谱解析:
1. 分子式为C6H14,红外光谱如下,试推其结构。
2. 分子式为C8H7N ,红外光谱如下,试推其结构。
3. 分子式为C4H6 O2,红外光谱如下,试推其结构。
4. 分子式为C10H14S ,红外光谱如下,试推其结构。
5、C3H6O2IR 3000cm-1 1700cm-1
=1 NMR 11.3 (单峰1H) 2.3 (四重峰2H)
1.2 (三重峰3H)
6、C7H8O IR 3300,3010,1500,1600,730,690cm-1
=4 NMR 7.2 (多重峰5H) 4.5 (单峰2H)
3.7 (宽峰1H)
7、根据下列谱图决定化合物的结构,并解析谱图。
波谱分析复习题第⼀章绪论1.不饱和度的计算不饱和度计算公式:U=n4+1+(n3-n1)/2式中n4、n3、n1分别为4价、3价、1价原⼦的个数。
2.波谱分析的⼀般程序?1. 实验样品的准备;在波谱测定前我们需要根据样品的不同性质、不同纯度及不同波谱测定⽬的作样品的准备。
样品准备主要有三⽅⾯的⼯作:⼀是准备⾜够的量。
⼆是在很多情况下要求样品有⾜够的纯度,所以要作纯度检验。
三是样品在上机前作制样处理。
2.做必要的图谱及元素分析;先选择性做⼏个重要、⽅便的,再根据情况做其他谱。
3.分⼦量或分⼦式的确定;(1)经典的分⼦量测定⽅法:可⽤沸点升⾼、凝固点降低法、蒸汽密度法、渗透压法。
有些样品可⽤紫外光谱根据Beer定律测定分⼦量。
误差⼤。
⼤分⼦可⽤排阻⾊谱测定。
(2)质谱法:⾼分辨质谱在测定精确分⼦量的同时,还能推出分⼦式,这是有机质谱最⼤的贡献。
低分辨质谱由测得的同位素丰度⽐也可推出分⼦中元素的组成,进⽽得到可能的分⼦式。
(3)结合核磁共振氢谱、碳谱推测简单烃类等分⼦的分⼦式。
(4)综合光谱材料与元素分析确定分⼦式。
4.计算不饱和度;分⼦式确定后,可⽅便的按下式计算出不饱和度来:U=n4+1+(n3-n1)/2式中n4、n3、n1分别为4价、3价、1价原⼦的个数。
5.各部分结构的确定;(a)不饱和类型红外光谱和核磁共振可⽤于判断C=O、C=N等不饱和类型。
UV可⽤于共轭体系的判断。
(b)官能团和结构单元鉴定可能存在的官能团和部分结构时,各种光谱要交替参照,相互论证,以增加判断的可靠性。
6.结构式的推定;总结所有的官能团和结构⽚段,并找出各结构单元的关系,提出⼀种或⼏种可能结构式。
7. ⽤全部光谱材料核对推定的结构式;①⽤IR核对官能团。
②⽤13C-NMR核对碳的类型和对称性。
③⽤1H-NMR核对氢核的化学位移和它们相互偶合关系,必要时与计算值对照。
④⽤UV核对分⼦中共轭体系和⼀些官能团的取代位置,或⽤经验规则计算λmax值。
波谱分析复习题库答案一、名词解释1、化学位移:将待测氢核共振峰所在位置与某基准氢核共振峰所在位置进行比较,求其相对距离,称之为化学位移。
2、屏蔽效应:核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一个与外加磁场相对抗的第二磁场,对于氢核来讲,等于增加了一个免受外磁场影响的防御措施,这种作用叫做电子的屏蔽效应。
3、相对丰度:首先选择一个强度最大的离子峰,把它的强度作为100%,并把这个峰作为基峰。
将其它离子峰的强度与基峰作比较,求出它们的相对强度,称为相对丰度。
4、氮律:分子中含偶数个氮原子,或不含氮原子,则它的分子量就一定是偶数。
如分子中含奇数个氮原子,则分子量就一定是奇数。
5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。
6、助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并使吸收强度增加的基团。
7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。
8、质荷比:质量与电荷的比值为质荷比。
9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。
10、发色团:分子结构中含有π电子的基团称为发色团。
11、磁等同H核:化学环境相同,化学位移相同,且对组外氢核表现出相同耦合作用强度,想互之间虽有自旋耦合却不裂分的氢核。
12、质谱:就是把化合物分子用一定方式裂解后生成的各种离子,按其质量大小排列而成的图谱。
13、i-裂解:正电荷引发的裂解过程,涉及两个电子的转移,从而导致正电荷位置的迁移。
14、α-裂解:自由基引发的裂解过程,由自由基重新组成新键而在α位断裂,正电荷保持在原位。
15、红移吸收峰向长波方向移动16. 能级跃迁分子由较低的能级状态(基态)跃迁到较高的能级状态(激发态)称为能级跃迁。
17. 摩尔吸光系数浓度为1mol/L,光程为1cm时的吸光度二、选择题1、波长为670.7nm的辐射,其频率(MHz)数值为(A)A、4.47×108B、4.47×107C、1.49×106D、1.49×10102、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了(C)A、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状3、紫外光谱是带状光谱的原因是由于(C )A、紫外光能量大B、波长短C、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因D、电子能级差大4、化合物中,下面哪一种跃迁所需的能量最高?(A)A、σ→σ*B、π→π*C、 n→σ*D、 n→π*5、n→π﹡跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大(D)A、水B、甲醇C、乙醇D、正已烷6、CH3-CH3的哪种振动形式是非红外活性的(A)A、νC-CB、νC-HC、δas CHD、δs CH7、化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰这是因为:(C)A、诱导效应B、共轭效应C、费米共振D、空间位阻8、一种能作为色散型红外光谱仪的色散元件材料为:(D)A、玻璃B、石英C、红宝石D、卤化物结体9、预测H2S分子的基频峰数为:(B)A、4B、3C、2D、110、若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的?(B)A、不变B、逐渐变大C、逐渐变小D、随原核而变11、下列哪种核不适宜核磁共振测定(A)A、12CB、15NC、19FD、31P12、苯环上哪种取代基存在时,其芳环质子化学位值最大(D)A、–CH2CH3B、–OCH3C、–CH=CH2D、-CHO13、质子的化学位移有如下顺序:苯(7.27)>乙烯(5.25) >乙炔(1.80) >乙烷(0.80),其原因为:(D)A、诱导效应所致B、杂化效应所致C、各向异性效应所致D、杂化效应和各向异性效应协同作用的结果14、确定碳的相对数目时,应测定(D)A、全去偶谱B、偏共振去偶谱C、门控去偶谱D、反门控去偶谱15、1J C-H 的大小与该碳杂化轨道中S 成分 (B )A 、成反比B 、成正比C 、变化无规律D 、无关16、在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H ,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化? (B )A 、从大到小B 、从小到大C 、无规律D 、不变17、含奇数个氮原子有机化合物,其分子离子的质荷比值为: (B )A 、偶数B 、奇数C 、不一定D 、决定于电子数18、二溴乙烷质谱的分子离子峰(M )与M+2、M+4的相对强度为: (C )A 、1:1:1B 、2:1:1C 、1:2:1D 、1:1:219、在丁酮质谱中,质荷比值为29的碎片离子是发生了 (B )A 、α-裂解产生的B 、I-裂解产生的。