磁共振波谱(MRS)临床应用-聂林
- 格式:ppt
- 大小:5.43 MB
- 文档页数:56
MRS成像技术及临床应用总结<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>一MRS成像技术回波时间应用长、短TE确定的常规代谢物-N-乙酰天门冬氨酸(N-acetyl asparte, NAA)-肌酸(creatine, Cr)-胆碱(choline, Cho)-乳酸(lactate, Lac)仅短TE确定的代谢物-脂质(lipids, Lip)-谷氨酰胺和谷氨酸(glutamine and glutamate, Glx)-肌醇(myo-inositol, mI)如何选择长、短TE中等TE(144ms)PRESS用于肿瘤性病变。
易于显示Cho和Lac 峰,两者是肿瘤性病变的主要代谢改变短TE(30-35ms)PRESS用于其他的病理状态体素的位置和大小为提高1H MRS 敏感性,感兴趣区(ROI)要求有严格的边界,并避免来自邻近组织的干扰:●血管、血液、空气、脑脊液、脂肪、坏死区、金属、钙化● 颅骨,ROI距其至少约5~10mm● 邻近静脉窦体素越小,部分容积效应越小,但信噪比及空间分辨率降低如何确定Lac峰(Lac与Lip 共振频率基本相同)严格匀场后,Lac的共振呈双峰线(doublet)当TE为144ms时,Lac峰反转于基线下当选择长TE(270ms)时,Lip信号不再磁化,只能检测到Lac 二MRS分析的主要代谢产物NAA(N-乙酰门冬氨酸):主要存在于神经元及其轴突,可作为神经元的内标物,其含量可反映神经元的功能状态。
含量降低表示神经元受损;峰值升高仅见于Canavan病(海绵状脑白质营养不良)。
第一大峰。
主要位于2.02ppm,正常浓度为6.5-9.7mmol,平均7.8mmol胆碱化合物(Cho )主要是自由胆碱、细胞膜翻转的标志物,反映细胞增殖,其峰值升高见于肿瘤、炎症、慢性缺氧,降低见于卒中、脑病(肝性脑病、AIDS)等位于3.20ppm,正常浓度0.8-1.6mmol,平均1.3mmol肌酸类(Cr)<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>此峰由肌酸、磷酸肌酸、-氨基丁酸、赖氨酸和谷胱甘肽共同组成;是脑细胞能量代谢的提示物,在低代谢状态下增加,而在高代谢状态下减低。
MRS在脑肿瘤疾病中的应用正确诊断脑肿瘤才能更好地对其进行处理和治疗。
MRS是目前唯一无创伤性的研究人体器官、组织代谢、生化改变及化合物定量分析的方法,为传统的影像学技术提供了重要的补充。
现就MRS的原理及MRS在脑肿瘤诊断中的应用现状作一综述。
标签:MRS;脑肿瘤;诊断磁共振波谱(Magnetic Resonance Spec-troscopy, MRS)是检测活体组织器官能量代谢、生化改变以及化合物定量分析的一种非损伤最新技术[1]。
作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,目前主要在脑部应用研究较多。
随着磁共振及其波谱装置不断改进,软件开发及临床研究的不断深入,人们通过磁共振波谱对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。
有的还可应用磁共振的功能成像对脑梗死进行早期诊断,甚至在超急性期即能发现脑梗死灶,提高了病变检出的准确性和效率,达到早诊断、早治疗,以减少致残率和致死率。
1 MRS的原理与方法MRS和MRI的基本原理相似,主要区别在于对数据的处理和显示方式的不同。
MRS使用1个外加磁场激发一个体素组织内的原子核,并使原子核之间的弛豫特征发生微小变化,即出现化学位移。
这种由原子核间相互作用以及原子核周围电子间相互作用产生的磁场所引起的化学位移,可用于鉴别化合物或代谢产物。
用傅里叶变换将复杂的MR信号转换为MR波谱,在所测组织内不同代谢产物的化学位移产生不同的信号强度峰值。
化学位移大小以每百万单位(ppm)表示,纵坐标代表代谢产物的信号强度单位,信号峰值由磁共振频率、峰高和半高宽度决定[2]。
2 用于医学研究的原子核的磁共振波谱2.1 质子(1H)磁共振波谱氢质子磁共振波谱(1H MRS)自应用于临床以来,因其可以在人体无创地分析病变内代谢产物的浓度,从分子水平对病变进行评估,开拓并丰富了脑肿瘤诊断、鉴别诊断、肿瘤分级、评估肿瘤治疗、肿瘤复发和放射治疗损伤的思维,弥补了常规MRI的不足。
磁共振波谱成像技术在中枢神经系统疾病中的临床应用周丽;李晨曦;解燕昭;刘青蕊【期刊名称】《现代电生理学杂志》【年(卷),期】2012(019)004【总页数】4页(P231-233,252)【作者】周丽;李晨曦;解燕昭;刘青蕊【作者单位】河北医科大学第四医院神经内科 050011;河北医科大学第四医院神经内科 050011;河北医科大学第四医院神经内科 050011;河北医科大学第四医院神经内科 050011【正文语种】中文磁共振波谱成像(magnetic resonance spectroscopy imaging, MRSI)是生物医学研究进入分子水平的重要检测工具之一,是分子医学、基因疗法等医学前沿的首选监控技术[1],它可以在疾病发生的早期,对人体的生化环境、组织代谢等进行无创定量分析。
一、磁共振波谱(MRS)分析原理MRS 是一种可以观察活体细胞代谢的无创伤性检测手段,化学位移和自旋耦合现象是它的关键,这两种现象形成了频谱的精细结构。
波谱的水平轴代表共振频率,用每百万单位(ppm)表示,波峰高度或峰下面积与受检原子核数量呈正比。
磁共振波谱学涉及三个不同场强,即稳定磁场B0,定位应用梯度磁场和激发电磁信号场。
现常用激励回波探测法(stimulated-echo acquisition mode,STEAM)、点分辨波谱法(point resolved spectroscopy,PRESS)。
目前多采用1HMRS,测量脑内化合物主要有N-乙酰天门冬氨酸(NAA)、乳酸(Lac)、肌酸与磷酸肌酸(Cr/PCr)、胆碱化合物(Cho)、Myo-肌醇、谷氨酰胺(Gln)和谷氨酸(Glu)等。
二、 MRS 临床应用1、脑血管疾病(1)脑出血脑出血后血-脑屏障破坏和脑水肿进展提示可能存在神经元损伤和水肿刺激因子[2]。
Kobayashi 等[3]利用1HMRS对基底节出血患者进行研究,发现脑出血周围NAA/Cr 持续下降,尤其是在出血后2 周,NAA/Cr 与运动缺失呈负相关,与临床预后呈正相关。
头颅磁共振波谱成像(MRS)基础与临床磁共振波谱(magnetic resonance spectrum,MRS)是最典型的分子成像技术之一,能够观察活体组织代谢和生化变化。
波谱成像的基础—化学位移现象在相同的磁场环境下,处于不同化学环境中的同一种原子核,由于受到原子核周围不同电子云的磁屏蔽作用,而具有不同的共振频率。
波谱分析就是利用化学位移研究分子结构。
常用的原子核有:1H MRS主要检测胆碱、肌酸、脂肪、氨基酸、乳酸等代谢物质;31P MRS主要用于能量代谢研究。
原子核的共振动频率与外加磁场强度有很规律的关系,化学位移如果以外加磁场运行频率的百万分之比数(PPM)值来表示,同一原子核在不同的外加磁场下其化学位移PPM值相同,不同的化合物可以根据其在频谱线频率轴上的共振峰的不同加以区别。
氢质子波谱注:上图纵轴代表物质的含量,横轴代表物质共振时的位置,单位为ppm(百万分之几)常见代谢产物的意义及共振峰位置1、NAA: N-乙酰天门冬氨酸,神经元活动的标志,仅存在神经元内,如其他出现异常,其峰值往往下降。
第一大主峰位于:2.02ppm2、Creatine:Cr肌酸,肌酸和磷酸肌酸的总和,脑组织能量代谢的提示物,峰度相对稳定,常作为波谱分析时的参照物。
第二大主峰位于:3.05ppm3、Choline:Cho胆碱,细胞磷脂代谢成分之一,细胞膜合成的标志,肿瘤细胞中其细胞代谢活跃,其峰值往往升高。
位于:3.20ppm4、Lipid:Lip脂质,细胞坏死提示物。
位于:0.9-1.3ppm5、Lactate:Lac乳酸,两个共振峰组成,TE=144时,双峰向上,TE=288时,双峰向下,正常细胞有氧代谢,检测不到。
缺氧时可出现,是无氧代谢的标志。
位于:1.33-1.35ppm6、Glutamate: Glx谷氨酰氨,脑组织缺血缺氧及肝性脑病时增加位于:2.1-2.4ppm7、MI:肌醇代表细胞膜稳定性判断肿瘤级别位于:3.8ppm谱线注:峰的位置决定了代谢产物,峰下面积代表相对含量MRS在颅脑疾病中的应用注:正常脑发育波谱一、癫痫磁共振波谱能早期发现癫痫病灶及其导致的细胞损害。
DWI和MRS在颅脑疾病鉴别诊断中的应用DWI和MRS在颅脑疾病鉴别诊断中的应用弥散加权成像(DWI)和磁共振波谱(MRS)是目前在临床影像学诊断应用较多的磁共振功能成像,仅年来已经广泛应用于中枢神经系统。
DWI可以反映病变水分子弥散的情况,MRS是目前唯一能够在活体对代谢产物进行无创性检测的方法,通过波峰的变化反映病变的代谢情况,两者均能够为颅脑疾病的影像学鉴别诊断提供重要的信息,结合常规MR表现,可以明显提高颅脑疾病的诊断准确率,现将DWI 和MRS在颅脑疾病鉴别诊断中的应用进行讨论,供影像工作者参考。
1、良恶性胶质瘤的鉴别由于异常增生的胶质细胞破坏了正常神经元,胶质瘤MRS的典型表现为NAA显著降低,Cr中度或明显降低,Cho显著升高。
胶质瘤的恶性程度不同,各波峰改变的程度也不同,通常认为,MRS提示胶质瘤分级比穿刺活检更准确,因为它提供组织代谢信息的区域比活检大的多。
MRS在良恶性胶质瘤鉴别中的敏感性、特异性和准确性分别为100%、86%和96%。
常用Cho/NAA、Cho/Cr比值对胶质瘤的良恶性进行鉴别诊断。
其中Cho/NAA比值更能反映肿瘤的恶性程度。
胶质瘤恶性程度越高,Cho/NAA比值越高。
恶性胶质瘤和胶质母细胞瘤Cho/NAA的比值通常在4以上,多数在5~6之间,而Ⅰ级和Ⅱ级胶质瘤通常在2~4之间。
Lac波与胶质瘤的分级关系也很密切,胶质母细胞瘤常出现较明显的乳酸波。
MI波也能够为胶质瘤的分级提供重要的信息,良性胶质瘤MI/Cr大于恶性胶质瘤。
DWI对胶质瘤良恶性的判断也能够提供重要的信息。
良性胶质瘤的ADC值明显高于恶性胶质瘤和胶质母细胞瘤。
良性胶质瘤ADC值为平均1.52×10- 3mm2/s,恶性胶质瘤和胶质母细胞瘤的ADC值为平均1.23×10-3mm2/s,可能与恶性胶质瘤实质部分的细胞密度高有关。
2、脑膜瘤的MRS和DWI表现特点脑膜瘤和神经鞘瘤属脑外肿瘤,脑外肿瘤不含神经元,所以MRS中检测不到NAA和Cr。
磁共振MRS技术在颅脑肿瘤鉴别诊断中的临床应用分析摘要:目的:通过对脑肿瘤患者行MRS检查与病理检查,研究氢质子磁共振波谱(1H-MRS)成像对脑内肿瘤的诊断价值。
方法选取我院2019年1月至2021年6月颅内占位性病变患者65例作为研究对象,行头颅磁共振波谱成像检查及病理检查明确颅内占位性病变的性质,并回顾性分析其影像学检查结果。
结果全部脑肿瘤患者的肿瘤实质区均表现为N-乙酰天门冬氨酸(NAA)与肌酸(Cr)降低,而胆碱(Cho)峰升高。
各种脑肿瘤之间代谢产物的峰值有差异,颅内肿瘤患者MR增强检查配合核磁共振波谱成像对肿瘤的检出率为92.31%,特别是对额颞叶肿瘤的诊断更为准确。
结论颅脑肿瘤患者采用MRS技术诊断利于鉴别各肿瘤类型,为临床拟定治疗方案提供准确参考,在颅脑肿瘤诊断、鉴别中具有重要价值。
关键词:磁共振MRS技术;颅脑肿瘤;鉴别诊断引言颅脑肿瘤因肿瘤发生于颅腔,是1种颅脑占位性病变,会引发运动障碍、视力丧失、感觉障碍等表现的一种脑部病变,随着病情的发展,会损害患者的大脑功能,重者甚至会导致死亡。
目前主要检查手段包括头颅CT及头颅磁共振成像(MRI),相比而言,磁共振检查由于没有骨伪影干扰及其多序列、多参数成像而对疾病的诊断意义更大[1]。
核磁共振波谱成像(MRS)属于分子影像学的一门新技术,是以生物体内固有分子作为分子探针,可以直接观测到许多与病理生理过程有关的代谢产物及其体内的分布和变化过程[2]。
鉴于此,本研究进一步分析磁共振MRS技术在脑肿瘤鉴别诊断中的应用价值。
现报告如下。
1资料与方法1.1一般资料选取2019年1月至2021年6月在我院就诊的颅内占位性病变65例患者作为研究对象。
纳入标准性别不限,年龄22~74岁,平均(42.28±7.69)岁;病人一般状况良好,临床资料齐全。
排除标准安装人工心脏起博器者、人工瓣膜置换术后、人工关节、或体内金属固定物、妊娠期及哺乳期妇女、幽闭恐惧症患者[3]。
磁共振波谱技术及其临床应用近年来,随着磁共振波谱技术(MRS)的不断完善,容积选择性MRS用于临床成为可能。
在原有MRI形态学诊断的基础上,MRS可从代谢方面对病变进一步定性,临床上用于评价脑发育成熟度、颅脑肿瘤代谢、系统性疾病的肝脏受累和肾移植术后的急性排异反应等。
本文就MRS的有关技术和临床应用作一综述。
1MRS技术许多原子核都有角动量,称之核自旋。
在强磁场中,施加适当频率的射频脉冲后,这些原子核可产生电磁共振信号,其信号频率决定于磁场强度。
一方面,不同原子核因共振敏感性差异其共振频率存在较大差别;另一方面,相同条件下测得相同原子核的MRS因原子核的化学结合状态不同,即样品中其他原子核和电子云的屏蔽作用的差异,产生了谱线位置偏移的现象,这种现象称为化学位移,单位为ppm。
每一特定原子核在特定的分子环境中其精确的共振频率是恒定不变的,因此对该特定分子来说具有特征性。
因而借助共振频率的差异有助于区分和识别不同代谢产物,而共振频率信号强度则反映某特定分子的浓度。
在临床应用MRS时常涉及以下技术。
1.1定位技术精确定位是确保MRS有效性的关键技术。
已报道的定位技术有多种,其中较受欢迎的是梯度依赖性定位方法,使用这种方法可根据个体间的差异从几种可能方案中选择足够的脉冲序列,如选择能够产生自旋双回波或激励回波的连续脉冲用于1H-MRS,选择补偿技术用于31P-MRS。
这些体积选择性技术可从质子象中确定感兴趣体积的大小、位置,能够保证定位的可靠性。
1.2脉冲序列现已有一些MR系统配有双重射频通道,可进行双磁共振实验,如去偶联和极化传递。
随着脉冲序列的开发发展,MRS不仅可以通过一种波谱形式显示代谢产物变化,还可将不同原子核结合起来同时以波谱形式显示,展示不同的代谢途径改变。
继13C去偶联1H-MRS成功用于临床之后,13C 去偶联31P-MRS的有效性也在临床中得到证实,其中之一是将13C去偶联31P-MRS用于检测非胰岛素依赖型糖尿病(NIDD)的肌肉变化,13C-MRS用于观察肌细胞的糖原生成,31P-MRS则用于观察磷酸化葡萄糖的变化。
磁共振波谱成像(MRS)解读及临床意义MRS是目前能够进行活体组织内化学物质无创性检测的唯一方法,MRI提供的是正常和病理组织的形态信息,而MRS则可以提供组织的代谢信息。
大家都清楚在很多疾病的发生过程中,代谢改变往往是早于形态改变的,因此磁共振波谱所能提供的代谢信息无疑有助于疾病的早期诊断,那么MRS是如何成像的。
技术原理·利用原子核化学位移现象成像不同化合物的相同原子核,相同化合物不同原子核之间由于所处的化学环境不同,其周围磁场有轻微变化,共振频率会有差别,这种情况称为化学位移现象,共振频率的差别就是MRS的原理基础·MRS表示方法横轴表示化学位移(频率差别)单位为百万分之一(ppm)纵轴表示信号强度峰高和峰值下面积反映某化合物的存在和量,与共振原子核的数目成正比SV PRESS TE=35ms•NAA波(N-乙酰天门冬氨酸):波峰在2.02ppm。
仅存在于神经系统,由神经元的线粒体产生,是神经元密度和活力的标志。
所有能够导致神经元损伤和丢失的病变都可以表现有NAA波降低和NAA/Cr比值降低,包括脑肿瘤、脑梗死、脑炎等。
•Cho波(胆碱):波峰在3.20ppm。
胆碱参与细胞膜的合成和降解,与细胞膜磷脂代谢有关,并且是神经递质乙酰胆碱的前体。
Cho波增高说明细胞膜更新加快、细胞密度大,通常为肿瘤细胞增殖所致。
•Cr波(肌酸):波峰在3.05ppm。
包括肌酸(Cr)、磷酸肌酸(PCr),存在于神经元和胶质细胞中,为能量代谢物质。
在同一个体脑内不同代谢条件下,Cr+PCr的总量恒定,即信号较稳定,故常用来作参比值。
脑肿瘤时,因为肿瘤对能量代谢需求高可导致Cr降低。
•Lac波(乳酸):波峰在1.33~1.35ppm,为无氧代谢产物。
正常情况下细胞能量代谢以有氧氧化为主,1H-MRS检测不到。
而在缺血/缺氧或者高代谢状态如恶性肿瘤时,乳酸信号强度增加。
包含两个明显的共振峰,称为“双尖波”,在较短TE(136ms、144ms)时表现为倒置双峰,在较长TE(272ms,288ms)时表现为正向双峰。
磁共振波谱的临床应用
赵继泉; 梁碧玲
【期刊名称】《《临床医学工程》》
【年(卷),期】2003(000)006
【摘要】磁共振成像在临床方面的诊断及预后评估价值已为大家所确认。
而作为一种磁共振诊断的新技术.磁共振波谱(Magnetic Resonance Spectroscopy.MRS)正处于研究及临床应用之间.近年来磁共振波谱分析(MRS)的临床研究和应用发展较快,随着高场强磁共振机的发展和技术的进步.MRS临床应用正越来越多.本文就MRS的有关技术和临床应用作一介绍。
【总页数】4页(P30-33)
【作者】赵继泉; 梁碧玲
【作者单位】中山大学附属第二医院放射科
【正文语种】中文
【中图分类】R81
【相关文献】
1.磁共振氢质子波谱成像对原发性r骨肉瘤的临床应用价值 [J], 李莹;任翠萍;程敬亮;李贝贝;肖翠萍
2.磁共振波谱技术的临床应用进展 [J], 刘俊;秦川;李建军;高峰;张文豪;刘长彬;李军;杨德刚;张鑫;张超
3.磁共振波谱成像技术在中枢神经系统疾病诊断中的临床应用效果分析 [J], 徐松;何丽;苟璇;邓梅;张眉;陈义林
4.小鼠脑代谢物活体磁共振波谱分析及与离体样本磁共振波谱与质谱定量分析的比较研究 [J], 陈炜; 雷和花; 宋涛; 张利民; 雷皓
5.磁共振波谱成像技术在中枢神经系统疾病诊断中的临床应用效果分析 [J], 徐松; 何丽; 苟璇; 邓梅; 张眉; 陈义林
因版权原因,仅展示原文概要,查看原文内容请购买。