向量的坐标表示及其运算
- 格式:ppt
- 大小:1.93 MB
- 文档页数:13
向量的坐标表示及运算知识回顾:一、概念:a 是平面内任意一个向量,i 、j 分别是与x 轴,y 轴同向的两个单位向量,a =x i +y j ,()y x ,叫做a 的坐标,记作a =()y x ,。
二、向量的坐标的运算: 设a =()11,y x ,b =()22,y x⑴ 加法运算: ⑵ 减法运算:⑶ 实数与向量的积: ⑷ 向量的数量积:⑸ 已知两点A ()11,y x ,B ()22,y x ,则的坐标可以表示为:⑹ a 的模 |a |=三、三种关系:设a =()11,y x ,b =()22,y x⑴ 相等:a =b ⇔ ⑵ 共线:a //b ⇔ ⑶垂直:a ⊥b ⇔知识的运用:例1:设向量a =()2,1-,b =()1,2-,求(a • b )(a +b )。
例2:平面向量a ,b 中,已知()3,4-=a ,1=b ,且a ·b 0=,求b 。
例3:已知a =()2,1,b =()2,3-,当k 为何值时,⑴ k a +b 与a –3b 垂直? ⑵ k a +b 与a –3b 平行?平行时它们是同向还是反向?例4:已知ABC ∆是等腰直角三角形, 90=∠ABC ,()1,2A ,()2,3-B ,求C 点坐标。
课后练习1.已知点()5,1--A 和向量()3,2=a ,若a AB 3=,则点B 的坐标为 。
2.若平面向量b 与向量()2,1-=a 的夹角是90°53=,则=b 。
3.若平面向量b 与向量()2,1-=的夹角是180°53=,则=b 。
4.已知e 为单位向量,()13,13+-=且e 与a 夹角为45°,则=e 。
5.已知向量()2,2-=a ,()k ,5=b 。
若b a +不超过5,则k 的取值范围是A 、[]6,4-B 、[]4,6-C 、[]2,6-D 、[]6,2-6.已知向量()2,1=a ,()4,2--=b ,5=c ,若()b a +·25=c ,则a 与c 的夹角为A 、30°B 、60°C 、120°D 、150°。
向量的线性运算与坐标表示向量是线性代数中一个基本的概念,它在各个学科领域都有广泛的应用。
本文将重点讨论向量的线性运算以及如何用坐标表示向量。
一、向量的定义与表示在二维和三维空间中,向量通常用箭头表示,箭头的起点表示向量的起点,箭头的方向和长度表示向量的方向和大小。
如图所示:[插入示意图:箭头向量的表示]向量有两种表示方法:行向量和列向量。
行向量按照元素排列在一行中,用方括号括起来;列向量按照元素排列在一列中,用方括号括起来。
例如,行向量[a, b, c]和列向量[a; b; c]表示同一个向量。
二、向量的线性运算向量的线性运算主要包括加法和数乘。
1. 向量的加法向量的加法遵循“平行四边形法则”,即将两个向量的起点放在一起,然后将它们的箭头连接起来,箭头的指向为新向量的方向,连接起点和终点,得到新向量的结果。
如图所示:[插入示意图:向量加法示意图]向量加法的坐标表示为,设向量a的坐标为[a1, a2, a3],向量b的坐标为[b1, b2, b3],则向量a和向量b的和的坐标为[a1+b1, a2+b2,a3+b3]。
2. 向量的数乘向量的数乘是将向量的每个元素与一个实数相乘,得到一个新的向量。
数乘后的向量与原向量的方向相同(当数乘的实数为正数时)或相反(当数乘的实数为负数时),而长度与原向量的长度之比为数乘的实数绝对值。
向量的数乘的坐标表示为,设向量a的坐标为[a1, a2, a3],实数k,则向量a的数乘结果的坐标为[k*a1, k*a2, k*a3]。
三、向量的坐标表示向量可以用坐标进行表示,坐标是指向量在坐标系中的位置。
在二维平面中,通常以x轴和y轴为基础建立直角坐标系;而在三维空间中,通常以x轴、y轴和z轴为基础建立直角坐标系。
在直角坐标系中,向量的坐标表示为(a1, a2, a3),其中a1、a2、a3分别表示向量在x轴、y轴和z轴上的投影长度。
例如,向量a在直角坐标系中的坐标表示为(a1, a2, a3)。
向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
平面向量的坐标表示与运算平面向量是数学中的一个重要概念,它在几何学和向量代数的研究中具有广泛的应用。
在平面直角坐标系中,平面向量可以通过其坐标表示和进行运算。
本文将详细介绍平面向量的坐标表示和运算方法。
一、平面向量的坐标表示平面向量可以用有序数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
例如,向量AB可以表示为(3, 4),其中向量的起点为A,终点为B,x轴上的分量为3,y轴上的分量为4。
二、平面向量的运算1. 向量的加法与减法向量的加法可以通过分别对应分量进行加法运算得到。
例如,向量A(3, 4)与向量B(1, 2)的和向量C可以表示为C(3+1, 4+2),即C(4, 6)。
类似地,向量的减法可以通过分别对应分量进行减法运算得到。
2. 向量的数量积两个向量的数量积,也称为点积或内积,可以表示为两个向量的对应分量乘积的和。
例如,向量A(3, 4)与向量B(1, 2)的数量积可以表示为3×1 + 4×2 = 11。
数量积具有一些重要的性质,如交换律和分配律,可以用于向量的运算。
3. 向量的数量积与夹角两个向量的数量积与它们之间的夹角有一定的关系。
根据数量积的定义,两个向量的数量积等于它们的模的乘积与它们之间夹角的余弦值的乘积。
即A·B = |A| |B| cosθ,其中A·B表示向量A与向量B的数量积,|A|和|B|分别表示向量A和B的模,θ表示A与B之间的夹角。
4. 向量的数量积与平行垂直关系如果两个非零向量的数量积为0,则它们是垂直的。
如果两个非零向量的数量积非零,则可以通过比较它们的数量积的正负来判断其是否平行。
如果数量积为正数,则它们是同向的;如果数量积为负数,则它们是反向的。
5. 向量的向量积向量的向量积,也称为叉积或外积,是一种特殊的向量运算。
向量的向量积满足“左手定则”,结果的方向垂直于原来两个向量所在的平面,并符合右手法则。