滑轮受力分析
- 格式:doc
- 大小:102.50 KB
- 文档页数:2
定滑轮动滑轮受力分析一、定滑轮受力分析定滑轮是固定在某一位置,不随物体运动的滑轮。
当物体通过定滑轮提升时,定滑轮只起到改变力的方向的作用,不改变力的大小。
因此,定滑轮的受力分析相对简单。
(1)物体对定滑轮的作用力:物体通过绳子与定滑轮连接,物体对定滑轮的作用力等于物体的重力。
(2)绳子对定滑轮的作用力:绳子对定滑轮的作用力等于物体的重力,方向与物体对定滑轮的作用力相反。
(3)定滑轮对绳子作用力:定滑轮对绳子作用力等于物体的重力,方向与绳子对定滑轮的作用力相反。
2. 定滑轮受力分析的计算方法:(1)确定物体对定滑轮的作用力,即物体的重力。
(2)根据牛顿第三定律,确定绳子对定滑轮的作用力,即物体的重力。
(3)确定定滑轮对绳子作用力,即物体的重力。
二、动滑轮受力分析动滑轮是随物体运动的滑轮。
当物体通过动滑轮提升时,动滑轮不仅改变力的方向,还能改变力的大小。
因此,动滑轮的受力分析相对复杂。
(1)物体对动滑轮的作用力:物体通过绳子与动滑轮连接,物体对动滑轮的作用力等于物体的重力。
(2)绳子对动滑轮的作用力:绳子对动滑轮的作用力等于物体的重力,方向与物体对动滑轮的作用力相反。
(3)动滑轮对绳子作用力:动滑轮对绳子作用力等于物体的重力,方向与绳子对动滑轮的作用力相反。
2. 动滑轮受力分析的计算方法:(1)确定物体对动滑轮的作用力,即物体的重力。
(2)根据牛顿第三定律,确定绳子对动滑轮的作用力,即物体的重力。
(3)确定动滑轮对绳子作用力,即物体的重力。
3. 动滑轮受力分析的特殊情况:(1)当绳子与动滑轮的连接点位于动滑轮的轴心时,动滑轮的受力分析可以简化为定滑轮的受力分析。
(2)当绳子与动滑轮的连接点偏离动滑轮的轴心时,动滑轮的受力分析需要考虑绳子的张力、绳子的弯曲半径等因素。
三、定滑轮与动滑轮的受力分析对比1. 受力方向:定滑轮和动滑轮的受力方向相同,均为垂直于绳子的方向。
2. 受力大小:定滑轮和动滑轮的受力大小相同,均为物体的重力。
受力分析,求解平衡方程就能得出结论;在分析滑轮受力情况时应把握住两条原则:①同一根绳了各处拉力相等.②滑轮组平衡时作用在轴上的力为作用在轮上力的2倍。
如图3,不考虑动滑轮重力且不计摩擦,求F与G的关系对图3的甲、乙、丙三个滑轮及物体G作受力分析如图4由(l)(2)(3)解得F=G/7六、指导学生根据滑轮组的实验完成综合实验习题为使学生深刻理解滑轮组机械效率测定的有关问题,实验后有所收益,仅让学生写出实验报告、根据数据算出机械效率是远远不够的.真正掌握这个实验的内容,指导学生做好实验习题是较好的措施。
下面是笔者发给学生的实验习题。
l.组装滑轮组时,为了准确、迅速地穿绕绳子应采取什么办法?2.这个实验中给你一个定滑轮、一个动滑轮,还需要哪些实验材料?3.选定上述器材后,画出最省力的实验装置图。
4.该实验中为什么要求钩码匀速上升?5.实验中测量钩码上升的距离和弹簧移动的距离采取什么办法?注意什么事项?6.有上面的滑轮组实验时,若增加所挂钩码的重力,滑轮组机械效率有无变化?为什么?7.若改用两个定滑轮两个动滑轮组成的滑轮组进行实验,但要求所挂钩码重力和上面实验相同,滑轮组机械效率有无变化?为什么?8.在动滑轮的下面不挂重物,拉动滑动组时,滑轮组机械效率是多少?为什么?9.通过6、7、8题的分析,滑轮组的机械效率与什么有关?跟重物上升的距离有无关系?10.根据上面的分析考虑如何提高滑轮组的绍机械效率?11.请你设计出测定滑轮组机械效率实验的步骤、实验记录表。
七、指导学生掌握题目中有滑轮组出现且含有机械效率η的习题的计算方法进行滑轮组机械效率的目的计算,在弄清力的关系、距离的关系、功的关系的基础上,利用公式η=W有用/W总,一般是会将题目顺序解答的。
对于滑轮组,无论考虑额外功、还是不考虑额外功,距离关系是定数。
对由一般绳子绕制而成的滑轮组,若动滑轮和重物由n股绳子承担,绳子自由端动力通过的距离S动是有用阻力通过距离S有用的n倍,即S动=nS有用。
滑轮整体受力分析与分体分析1. 滑轮整体受力分析1. 滑轮整体受力分析滑轮整体受力分析是一种对滑轮结构整体受力进行分析的方法。
它旨在检测滑轮结构的受力状态,以及滑轮结构的受力特性,以便确定滑轮结构的受力能力。
滑轮整体受力分析可以帮助确定滑轮结构的受力范围,以及滑轮结构的受力特性,从而确定滑轮结构的受力能力。
滑轮整体受力分析的主要步骤包括:确定滑轮结构的受力特性;确定滑轮结构的受力范围;确定滑轮结构的受力能力;确定滑轮结构的受力状态;确定滑轮结构的受力分布。
滑轮整体受力分析可以帮助确定滑轮结构的受力范围,以及滑轮结构的受力特性,从而确定滑轮结构的受力能力。
此外,滑轮整体受力分析还可以帮助确定滑轮结构的受力状态,以及滑轮结构的受力分布,从而确定滑轮结构的受力能力。
2. 滑轮分体分析2. 滑轮分体分析滑轮分体分析是一种分析滑轮的构造,它可以帮助确定滑轮的各个部件的受力情况。
它的基本原理是,将滑轮分解为多个独立的部件,并分析每个部件的受力情况。
首先,需要确定滑轮的各个部件,包括轴承、轮毂、滑轮本体、螺栓和垫圈等。
然后,需要确定每个部件的受力情况,包括轴向力、径向力、摩擦力和弯矩等。
最后,需要根据受力情况来计算滑轮的受力总和,以确定滑轮的受力是否超出其规定的负荷限制。
滑轮分体分析可以帮助确定滑轮的构造,以及滑轮的受力情况,从而帮助优化滑轮的性能。
3. 滑轮受力分析方法滑轮受力分析方法是一种分析滑轮的受力情况的方法。
它分为整体受力分析和分体受力分析两种。
整体受力分析是指对滑轮整体进行受力分析,以确定滑轮的受力情况,以便进行后续设计。
分体受力分析是指对滑轮的每个部分进行受力分析,以确定滑轮的受力情况,以便进行后续设计。
整体受力分析的基本步骤是:首先,确定滑轮的受力情况,包括外力和内力;其次,确定滑轮的受力状态,包括压力、拉力和扭转力;最后,根据受力情况,确定滑轮的设计参数,包括材料、尺寸和颜色等。
分体受力分析的基本步骤是:首先,确定滑轮的每个部分的受力情况,包括外力和内力;其次,确定滑轮每个部分的受力状态,包括压力、拉力和扭转力;最后,根据受力情况,确定滑轮每个部分的设计参数,包括材料、尺寸和颜色等。
用受力分析法解滑轮组问题滑轮组问题是学生物理学习的难点之一。
对于由一段绳子绕成的滑轮组,我们可以用课本上的规律:“使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力便是物重的几分之一。
”但对于一些由多段绳子绕成的滑轮组和一些不常见的滑轮组,这种方法便显得无能为力了。
如图1,若用数绳子段数的方法来解,表面上看是6段,所以F=G/6,这是不正确的。
在实际的物理教学中,我总结出了一种通过对滑轮组各部分的受力情况进行分析,从而来解滑轮组问题的方法。
现介绍给大家:首先,将滑轮组中各个滑轮及物体分别隔离开,从绳子端点处开始进行逐个分析,作出受力图,分析每个力的大小和方向时,应遵循以下几点:(1)做匀速直线运动的物体处于受力平衡状态;(2)跨过滑轮的两段绳子承担的力是相等的;(3)有作用力必有反作用力,作用力和反作用力大小相等,方向相反,分别作用在两个物体上。
每段绳子上承担的力既等于作用力也等于其反作用力。
现用此方法针对各类滑轮组问题作具体分析:一、可用来分析滑轮组的省力情况。
例一:如图2所示的滑轮组,不计动滑轮重力和摩擦,若重物的重力G为150牛,那么,提起重物所用的力F是多大?解析:我们可以通过受力分析法首先把各个滑轮及物体隔离开,每个滑轮及物体都受平衡力,分析每个滑轮的受力情况得到每段绳子上承担力的情况,可在原图上标出。
(如图2)所以G=8F,所以F=G/8例二:如图3,滑轮组下面吊一个重物G,它的重力为1400牛,如忽略动滑轮重力和摩擦,问拉力F为多少?解析:各滑轮的受力情况或各段绳承担力的情况及重物G的受力情况,分析如图3:所以4F+2F+F=G,所以F=G/7=200牛。
例三、如图4所示,吊篮重力为200牛,人的重力为600牛,动滑轮的重力为10牛,不计摩擦,人用多大力拉绳,可使吊篮平衡?解析:假设人的拉力为F,则通过分析,每段绳承担的力如图4所示。
再把人、吊篮、动滑轮看成一个整体,作为研究对象,分析其受力情况如图5。
定滑轮动滑轮受力分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#课前检测1.如图1所示,一根绳子绕过定滑轮,一端挂在重物G上,手执另一端,分别用F1、F2、F3拉起重物,则A.F1较大 B.F2较大C.F3较大 D.F1=F2=F32.(如图13是小海同学“研究定滑轮和动滑轮特点”的实验装置。
他按图示提起钩码时注意保持测力计匀速移动,分别测得一组数据如下表所示请你分析:(1)比较测力计示数的大小,可知:使用动滑轮的好处是;(2)比较测力计拉力的方向,可知:使用定滑轮的好处是;(3)把钩码升高相同的高度,比较乙和丙实验测力计移动的距离,可知:使用动滑轮;二、新课内容例题1.如图,滑轮重、绳重及摩擦不计,提升的重物重均为G=100N,则 F1= N, F2= N, F3= N。
延伸:.若滑轮G轮=10N, 绳重及摩擦不计。
则F1= N, F2= N, F3= N。
钩码重G/N钩码升高高度h/m测力计示数F/N测力计移动距离S/m甲乙丙F1F2F3例题2、如图所示,物体A重20N,滑轮重1N,弹簧秤示数为25N,不计绳重和摩擦,则物体B重( )A.24N B.21NC.12N D.23N例题3.如图所示,若物体A重200牛,当物体沿水平方向匀速移动时,它受到的摩擦力是120牛,(绳、滑轮重及摩擦不计)则F1=_______;F 2=_______ ;F3=_______能力提升1.如图6所示,动滑轮重,物体重,当OA=2OB时,为使轻质杠杆保持水平平衡、在A端所加的力应为(不计摩擦)()A.4N B.2N C.1N D.图6能力提升2.图24是一个上肢力量健身器示意图。
配重A受到的重力为1200N,D是动滑轮,其重力为100N;杠杆EH可绕O点在竖直平面内转动,OE∶OH=2∶5。
小成受到的重力为600N,他通过细绳在H点施加竖直向下的拉力F1时,杠杆在水平位置平衡,此时A对水平地面的压力恰好为零,杠杆EH和细绳的质量均忽略不计。
滑轮有限元分析-ANSYS FEM 大作业1.问题描述某滑轮结果如下图所示,试分析结构在实际工作中的受力情况,并利用FEM类软件校核材料的强度是否满足要求。
其中天车最大钓钩载荷为3150KN,游动系统以及钢丝绳总重为150KN。
材料为Q345。
2.问题分析天车最大钓钩载荷为3150KN,游动系统以及钢丝绳总重为150KN,游车与天车选用6x7轮系,钢丝绳实际最大拉力F=(3150+150)/12=275KN。
滑轮受力图如下图所示,当钢丝绳两端拉力平行,滑轮受力最大为2F=550KN。
图1 滑轮受力分析滑轮上端面与绳索接触,所有滑轮外表面的上半面受力,且载荷不是均匀分析,而是按照正弦函数分析。
同时滑轮内表面的上半面受力,下半面为自由状态。
在有限元分析中,需要注意选择合适的边界条件和载荷加载。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,且能适应各种复杂形状,因而成为行之有效的工程分析手段3.求解步骤滑轮材料为Q345,根据API Spec 8C-2012第5版4.7规定滑轮的设计安全系数不小于3,所以滑轮的许用应力为115Mpa,其中弹性模量为2.1e11Pa,泊松比为0.3。
对滑轮结构进行有限元网格划分,滑轮存在较多倒角过度细节,所以采用四面体网格进行划分,对倒角圆孔区域进行局部加密,有限元网格模型如下图所示。
图2
F
甲
乙
G
F 1
F 3 图1
同学们在遇到滑轮或滑轮组问题时,对滑轮及滑轮组的动力或阻力大小判断有时不知从何下手,本文就此问题希望能指点迷津,帮助同学们正确理解滑轮。
一、 一根绳子力相等
无论是定滑轮、动滑轮还是滑轮组,只要在同一根绳子上,不管绳子有多长,也不管绳子绕过多少滑轮,绳子上的力总是相等的。
如图1,用定滑轮沿不同的方向提升重物,判断1F 、2F 、3F 的大小关系。
分析 要提起物体,绳子必须对重物施加向上的大小为G 的拉力,绕
过滑轮,不论方向如何,拉力的力臂都是轮的半径,所以,拉力大小都等于被提起的物体的重力。
所以321F F F == 二、滑轮两边力平衡
滑轮静止或做匀速直线运动时,滑轮受到相反方向上的
合力相互平衡。
如图2用动滑轮匀速竖直提升重物,拉力F 与物体重G 的关系。
分析 不计滑轮重,动滑轮处于平衡状态,如图2甲,则 若动滑轮的重量为0G ,如图2乙,则02G G F += 即 )(2
1
0G G F +=
下面就利用上面的结论解决有关滑轮的一些问题。
例1 如图3所示的装置处于平衡状态,若滑轮重、绳重以及摩擦均忽略不计,则1G 与2G 之比为( )
A .1∶1
B .2∶1
C .1∶2
D .1∶3
分析 依据一个绳子力相等,每段绳子上受到的拉力都是F ,动滑轮处于平
衡状态,所以2122G F G ==,即1G ∶2G =2∶1故选B 。
例2、如图4用用滑轮组允速拉动水平面上的物体,若所用的拉力F
F F
F
图3
f
F
F 3F
图4
为10N ,物体受到的摩擦力是多大?
分析 根据一根绳子力相等,动滑轮对物体产生3F 的拉力, 物体做匀速直线运动,物体受到的摩擦力与3F 平衡,所以N F f 303== 。
例3 如图5所示的装置中,当人用力向右拉滑轮时,物体A 恰能匀速直线运动,此时弹簧测力计的读数为3N ,忽略滑轮、绳与测力计重及滑轮与轴间的摩擦,则人的拉力F 为( )
A .3N
B .4N
C .6N
D .8N
分析 依据一根绳子所受拉力相等,弹簧测力计对动滑轮的拉力与对动滑轮的拉力都等于3N ,动滑轮做匀速直线运动,水平方向上受力平衡,所以,N N f F 6322=⨯==。
例4 用如图6所示的装置匀速拉起重为G 的物体(不计摩擦、滑轮重及绳重),求拉力F 与G 的关系。
分析 依据一根绳子力相等,滑轮两边力平衡,在图中标出各绳子所受8,有 G F =4,所以,G F 4
1
=。
例5 如图7,动滑轮重5N ,物体G 的重量为15N ,用力F 使物体匀速上升,求所用力F 的大小(不计摩擦)。
分析 如图,根据同一根绳子受力相等,
标出各绳子所受力,以滑轮为研究对象,再依据滑轮所受力平衡,有
N N N G G F 35515220=+⨯=+=。
例6 如图8所示,在忽略滑轮自重和摩擦的情况下,当滑轮平衡时,拉力
=F G 。
分析 根据每个滑轮上绳子所承受力的特点,在图上标出每一股绳子所承受力的大小。
物体受到的总的拉力是F 7,物体处于平衡状态,所以G F =7,即G F 7
1
=。
由上面的例题可以看出,在判断滑轮或滑轮组的省力或费力情况时,先从动力端入手,依据滑轮两边力相等,逐个分析滑轮的受力情况,最后根据力的平衡,得出结论。
f f
图5
图6
G
G 0
图7
图8。