解直角三角形的实际应用
- 格式:docx
- 大小:37.30 KB
- 文档页数:3
专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。
将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。
在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。
为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。
模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。
【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。
专题7:解直角三角形的应用拥抱型方法点睛解直角三角形的实际应用题解题方法审题、分析题意,将已知量和未知量弄清楚,明确题目中的一些名词、术语的含义,如仰角、俯角、坡角、坡度、方位角等;若所给三角形是直角三角形,确定合适的边角关系进行计算;若不是直角三角形,可尝试添加辅助线,把它们分割成一些直角三角形或矩形,把实际问题转化为直角三角形问题进行解决.此外,在测量问题中往往会涉及测角仪、身高等与计算无关的数据,在求建筑物高度时不要忽略这些数据.模型典例分析例1(2022营口中考)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A 处测得大楼顶部M的仰角是58︒,沿着山坡向上走75米到达B处.在B处测得大楼顶部M的仰角是22︒,已知斜i=(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,坡AB的坡度3:4︒≈︒≈)C均在同一平面内,N,A,C在同一水平线上,参考数据:tan220.4,tan58 1.6【答案】大楼MN的高度为92米【解析】【分析】过点B分别作BE⊥AC,BF⊥MN,垂足分别为E、F,通过解直角三角形表示出BF、AN、AE的长度,利用BF=NE 进行求解即可.【详解】过点B 分别作BE ⊥AC ,BF ⊥MN ,垂足分别为E 、F ,90BEA BFN BFM MNA ∴∠=∠=∠=∠=︒∴四边形BENF 为矩形,,BE AN BF NE∴==设MN x =,在Rt ABE △中,斜坡AB 的坡度3:4i =,即34BE AE =,3sin 5BE BAE AB ∴∠==75AB =45,60BE AE ∴==45FN ∴=45MF x ∴=-在Rt AMN △中,tan ,58MN MAN MAN AN∠=∠=︒tan 58 1.6x AN∴︒=≈58AN x ∴≈5608NE AN AE x ∴=+=+在Rt BMF △中,tan ,22MF MBF MBF BF∠=∠=︒45tan 220.4x BF -∴︒=≈5(45)2BF x ∴≈-5560(45)82x x ∴+=-解得92x =,所以,大楼MN 的高度为92米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题,准确理解题意,能添加辅助线构造直角三角形是解题的关键.专题过关1.(2022葫芦岛中考)(12分)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC⊥AM于点E,在A处测得大树底端C的仰角为15°,沿水平地面前进30米到达B处,测得大树顶端D的仰角为53°,测得山坡坡角∠CBM =30°(图中各点均在同一平面内).(1)求斜坡BC的长;(2)求这棵大树CD的高度(结果取整数),(参考数据:sin30°≈,cos53°≈,tan53°≈,≈1.73)【分析】(1)根据题意可得:∠CAE=15°,AB=30米,根据三角形的外角可求出∠ACB=15°,从而可得AB=BC=30米,即可解答;(2)在Rt△CBE中,利用锐角三角函数的定义求出CE,BE的长,再在Rt△DEB中,利用锐角三角函数的定义求出DE的长,然后进行计算即可解答.【解答】解:(1)由题意得:∠CAE=15°,AB=30米,∵∠CBE是△ABC的一个外角,∴∠ACB=∠CBE﹣∠CAE=15°,∴∠ACB=∠CAE=15°,∴AB=BC=30米,∴斜坡BC的长为30米;(2)在Rt△CBE中,∠CBE=30°,BC=30米,∴CE=BC=15(米),BE=CE=15(米),在Rt△DEB中,∠DBE=53°,∴DE=BE•tan53°≈15×=20(米),∴DC=DE﹣CE=20﹣15≈20(米),∴这棵大树CD的高度约为20米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,熟练掌握锐角三角函数的定义是解题的关键.2.(2022鄂州中考)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG=30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB ,(结果保留根号)【答案】(1)(2)()90+米【解析】【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH=DG=30米,DH=BG ,证明AB=BC ,设AB=BC=x米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到30903x x -=+据此求解即可.【小问1详解】解:∵斜坡CF 的坡比=1:3,铅垂高度DG=30米,∴13DG CG =,∴90CG =米,∴CD ==米;【小问2详解】解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH=DG=30米,DH=BG ,∵∠ABC=90°,∠ACB=45°,∴△ABC 是等腰直角三角形,∴AB=BC ,设AB=BC=x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,在Rt △ADH 中,tan 3AH ADH DH ∠==,∴30903x x -=+,解得90x =+,∴()90AB =米.【点睛】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,勾股定理,正确理解题意作出辅助线是解题的关键.3.(2022信阳三模)由绿地集团耗资22亿建设的“大玉米”位于河南省省会郑州市郑东新区,因为其是圆柱塔式建筑,夜晚其布景灯采用黄色设计,因此得名,如今已经成为CBD 的一座新地标建筑.某数学兴趣小组为测量其高度,一人先在附近一楼房的底端A 点处观测“大玉米”顶端C 处的仰角是45°,然后爬到该楼房顶端B 点处观测“大玉米”底部D 处的俯角是30°.已知楼房AB 高约是162m ,根据以上观测数据求“大玉米”的高.(结果≈1.41≈1.73)【答案】280米【解析】【分析】在Rt △ABD 中由边角关系求出AD 的长,在Rt △ACD 中,求出CD 即可.【详解】解:如图,由题意可知,∠CAD =45°,∠EBD =30°=∠ADB ,AB =DE =162米,在Rt △ABD 中,∵tan30°AB AD=,∴AD 33==3,在Rt △ACD 中,∠CAD =45°,∴CD =AD =3≈280(米),答:“大玉米”的高约为280米.【点睛】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.4.(2022河南永城一模)濮阳龙碑是纪念中华第一龙特设的纪念碑.雄伟高大的龙碑展现了濮阳龙乡的古老文明和现代化城市的勃勃雄姿.某实验学校九年级数学兴趣小组测量龙碑的高度(示意图如图所示),测得底座CE =2.5m ,在平地上的B 处测得石碑的底部E 的仰角为10°,向前走1m 到达点D 处,测得石碑的顶端A 的仰角为60°,求石碑AE 的高度.(精确到0.1m ;参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.183)【答案】石碑AE 的高度为19.8m【解析】【分析】在Rt BCE 中利用正切可求出BC 的长,从而得出CD 的长,再在Rt ACD △中利用正切即可求出AC 的长,进而可求出AE 的长.【详解】解:根据题意可知10EBC ∠=︒,60ADC ∠=︒,1m BD =.∵在Rt BCE 中,tan EC EBC BC∠=,∴ 2.5tan10BC ︒=,∴ 2.513.9m 0.18BC ≈≈,∴12.9m CD BC BD =-=.∵在Rt ACD △中,tan AC ADC CD ∠=,∴tan 6012.9AC ︒=,∴13.9tan 6012.912.9 1.22.37m 3AC =⨯︒=⨯≈⨯≈,∴22.3 2.519.8m AE AC EC =-=-=.答:石碑AE 的高度为19.8m .【点睛】本题考查解直角三角形的实际应用.利用数形结合的思想是解题关键.5.(2022河南二模)洛阳市栾川县老君山景区的老子铜像,是目前世界上最高的老子铜像.某数学活动小组用学到的锐角三角函数的知识去测量老子铜像的高度.如图,铜像底座CE 的高度为21m ,他们在测量点A (与C 在同一水平线上)测得底座最高点E 的仰角为20°,沿AC 方向前进24m 到达测量点B ,测得老子铜像顶部D 的仰角为60°.求老子铜像DE 的高度.(结果精确到0.1m .参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,1.73≈)【答案】老子铜像DE 的高约38.3米.【解析】【分析】在t R ACE △,由根据正切定义解得AC 的长,继而得到BC 的长,在t R BCD 中,由正切定义解得CD 的长,最后根据线段的和差解答.【详解】解:在t R ACE △tan 20,21CE CE AC ︒==2158.33tan 20AC ∴=≈︒24AB =58.32434.3BC ∴=-=在t tan 60CDR BCD BC︒=,tan 6034.359.34CD BC ∴=⋅︒=⨯59.342138.3DE CD CE ∴=-=-≈(米)答:老子铜像DE的高约38.3米.【点睛】本题考查解直角三角形的应用—仰角俯角问题,建立好数学模型,利用直角三角形中的三角函数是解题关键.6.(2022郑州二模)如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,≈1.41,sin53°≈45,cos53°≈35,tan53°≈4 3)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)【答案】(1)点B距水平地面AE的高度为5米;(2)广告牌CD的高度约为6.7米【解析】【分析】(1)过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由坡度的含义可求得∠BAM=30゜,由含30度角的直角三角形的性质即可求得结果;(2)由辅助线作法及已知得四边形BMEN是矩形,可得NE=BM,BN=ME=MA+AE,在Rt△BMA中可求得AM 的长,从而可得BN;再由∠CBN=45゜可得CN=BN,进而得CE的长;在Rt△DAE中由三角函数知识可求得DE,根据CD=CE−DE即可求得CD的长.【详解】(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1AB=10米,AE=21米.∵i=1=BMAM=tan∠BAM,∴∠BAM=30°,∴BM=12AB=5(米),即点B距水平地面AE的高度为5米;(2)∵BM⊥AE,BN⊥CE,CE⊥AE,∴四边形BMEN 为矩形,∴NE=BM=5米,BN=ME ,在Rt △ABM 中,∠BAM =30°,∴AM =cos302AB AB °==(米),∴ME =AM+AE =()米=BN ,∵∠CBN =45°,∴CN =BN =()米,∴CE =CN+NE =()米,在Rt △ADE 中,∠DAE =53°,AE =21米,∴DE =AE•tan53°≈21×43=28(米),∴CD =CE ﹣DE =﹣28=2≈6.7(米),即广告牌CD 的高度约为6.7米.【点睛】本题是解直角三角形的应用,考查了矩形的判定与性质,解直角三角形,关键是理解坡度的含义,构造适当的辅助线便于在直角三角形中求得相关线段.7.(2022西工大附中三模)如图,某学校老师们联合组织九年级学生外出开展数学活动,经过某公园时,发现工人们正在建5G 信号柱,于是老师们就带领学生们对信号柱进行测量.已知信号柱直立在地面上,在太阳光的照射下,信号柱影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得信号柱顶端A 的仰角为30°,在C 处测得信号柱顶端A 的仰角为45°,斜坡与地面成60°角,CD=12米,求信号柱AB 的长度.(结果保留根号)【答案】信号柱AB 的长度为12)+米【解析】【分析】延长AD 交BC 的延长线于G ,过D 作DH BG ⊥于H ,由锐角三角函数定义定义求出CH 、DH 、HG ,设BC x =米,再由锐角三角函数定义求出BG ,然后列出方程,解方程即可.【详解】(方法一)解:过点D 作DE BC ⊥交BC 的延长线于点E ,过点D 作DH AB ⊥交AB 于点H ,又AB BC ⊥,则四边形BEDH 为矩形,在Rt DCE V 中,1260CD DCE =∠=︒,,6CE DE ∴==,,=BH DE ∴=在Rt ABC △中,45ACB =︒∠,∴设==AB BC x ,(6)DH BE BC CE x ∴==++,(AH AB BH x ∴=-=+,在Rt ADH 中,30ADH ∠=︒,3tan 303AH DH ∴︒==,63x x -∴=+,解得:12)x =+.答:信号柱AB的长度为12)+米.(方法二)解:延长AD 交BC 的延长线于G ,过D 作DH BG ⊥于H ,在Rt DHC △中,60,12DCH CD ∠=︒=米,则cos 12cos 606CH CD DCH =⋅∠=⨯︒=(米),sin 12sin 60DH CD DCH =⋅∠=⨯︒=(米),,30DH BG G ⊥∠=︒,18tan 33DH HG G ∴===(米),24CG CH HG ∴=+=(米),设AB x =米,,30,45AB BG G BCA ⊥∠=︒∠=︒,,3tan 33AB BC x BG G ∴====(米),BG BC CG -=,324x -=,解得:312x =+,答:信号柱AB 的长度为312)+米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的定义,正确作出辅助线构造直角三角形是解题的关键.8.(2021自贡中考)(8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)【分析】由题意可知AB =24米,∠BDA =53°,因为tan ∠BDA=,可求出AD ,又由tan30°=,可求出CD ,即得到答案.【解答】解:由题意可知AB =24米,∠BDA =53°,∴tan ∠BDA===1.33,∴AD=≈18.05.∵tan ∠CAD =tan30°===,∴CD =18.05×≈10.4(米).故办公楼的高度约为10.4米.9.(2021威海中考)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B 处安置测倾器,于点A 处测得路灯MN 顶端的仰角为10︒,再沿BN 方向前进10米,到达点D 处,于点C 处测得路灯PQ 顶端的仰角为27︒.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈,sin 270.45︒=,cos 270.89︒≈,tan 270.51︒≈)【答案】路灯的高度为13.4m .【解析】【分析】延长AC 交PQ 于点E ,交MN 于点F ,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN ,设路灯的高度为xm ,则MN=PQ=xm ,MF=PE=x-1.2;在Rt △AFM 中求得 1.2tan10x FA -=︒,即可得 1.22tan10x AE -=︒;在Rt △CEP 中,可得1.2tan 27 1.22tan1001x x -︒=--︒,由此即可求得路灯的高度为13.4m .【详解】延长AC 交PQ 于点E ,交MN 于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN ,设路灯的高度为xm ,则MN=PQ=xm ,MF=PE=x-1.2,在Rt △AFM 中,∠MAF=10°,MF=x-1.2,tan MF MAF FA ∠=,∴ 1.2tan10x FA -︒=,∴ 1.2tan10x FA -=︒,∴11 1.2 1.222tan102tan10x x AE AF --==⋅=︒︒;∴CE=AE-AC= 1.22tan10x -︒-10,在Rt △CEP 中,∠PCE=27°,CE= 1.22tan10x -︒-10,tan PE PCE CE∠=,∴1.2tan27 1.22tan11xx-︒=--︒,解得x≈13.4,∴路灯的高度为13.4m.答:路灯的高度为13.4m.【点睛】本题考查了解直角三角形的应用,构造直角三角形,熟练运用三角函数解直角三角形是解决问题的关键.10.(2021枣庄中考)(8分)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果精确到1米,参考数据:≈1.732,≈1.414)【分析】在两个直角三角形中求出AO、BO,进而计算出AB,最后求出速度即可.【解答】解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD =AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.11.(2021朝阳中考)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力;应用意识.【答案】(8+4)m.【分析】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(8+4)m,即这棵古树的高AB为(8+4)m.12.(2021宿迁中考)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到12≈1.414,3≈=1.732).【答案】无人机飞行的高度约为14米.【解析】【分析】延长PQ ,BA ,相交于点E ,根据∠BQE =45°可设BE =QE =x ,进而可分别表示出PE =x +5,AE =x -3,再根据sin ∠APE =AE PE ,∠APE =30°即可列出方程353x x -=+,由此求解即可.【详解】解:如图,延长PQ ,BA ,相交于点E ,由题意可得:AB ⊥PQ ,∠E =90°,又∵∠BQE =45°,∴BE =QE ,设BE =QE =x ,∵PQ =5,AB =3,∴PE =x +5,AE =x -3,∵∠E =90°,∴sin ∠APE =AE PE ,∵∠APE =30°,∴sin30°=35x x -=+x =7+≈14,答:无人机飞行的高度约为14米.【点睛】本题考查解直角三角形的应用-俯角仰角问题,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.13.(2021湘潭中考)万楼是湘潭历史上的标志性建筑,建在湘潭城东北、湘江的下游宋家桥.万楼的外形设计既融入了皇家大院、一类寺庙的庄严典雅,也吸收了江南民居诸如马头墙、猫拱背墙、灰瓦等特色,而最为独特的还是万楼“九五至尊”的结构.某数学小组为了测量万楼主楼高度,进行了如下操作:用一架无人机在楼基A 处起飞,沿直线飞行120米至点B ,在此处测得楼基A 的俯角为60°,再将无人机沿水平方向向右飞行30米至点C ,在此处测得楼顶D 的俯角为30°,请计算万楼主楼AD 的高度.(结果保留整数,≈1.41,≈1.73)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;推理能力;模型思想.【答案】万楼主楼AD 的高度约为52米.【分析】由题意可得在Rt △ABE 中和Rt △CDE 中,AB =120米,∠ABE =60°,∠DCE =30°,CE =BE+CB ,根据解直角三角形在在Rt △ABE 中,可计算出BE 和AE 的长度,在Rt △CDE 中,可计算出AD 的长度,由AD =AE ﹣AD 计算即可得出答案.【解答】解:由题意可得,在Rt △ABE 中,∵AB =120米,∠ABE =60°,∴BE ===60(米),AE =sin60°•AB =(米),在Rt △CDE 中,∵∠DCE =30°,CE =BE+CB =60+30=90(米),∴DE =tan30°•CE ==30(米),∴AD =AE ﹣AD =60=30≈52(米).答:万楼主楼AD 的高度约为52米.14.(2022绥化中考)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)【答案】4.9m【解析】【分析】先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC=30m ,AB=10m ,∠C=90°,则BC=AC -AB=30-10=20,在Rt △ADC 中,tan 30tan 30DC AC A =⨯∠=⨯=o ,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯o ,∴20tan 48DE EC DC =-=⨯-o即20tan 4820 1.11110 1.732 4.9DE =⨯-⨯-⨯=o 故广告牌DE 的高度为4.9m .【点睛】本题考查了解直角三角形的应用,掌握锐角三角函数的性质是解答本题的关键.。
解直角三角形.典型应用题20例1.已知:如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽 CD 为50m .现需从山顶 A 到河对岸点C 拉一条笔直的缆 绳AC ,求山的高度及缆绳 AC 的长(答案可带根号)•2•已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔 M 在北偏西45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少 ?(精确到0.1海里,J 3止1.732)3.已知:如图,在两面墙之间有一个底端在端在B 点;当它靠在另一侧墙上时,梯子的顶端在45°.点D 到地面的垂直距离 DE =3J2m ,求点B 到地面的垂直距离 BC •4.已知:如图,小明准备测量学校旗杆 的影子恰好落在水平地面和斜坡的坡面上, 上的影长CD = 8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐 角为30°,求旗杆 AB 的高度(精确到1m ) •A 点的梯子,当它靠在一侧墙上时,梯子的顶D 点.已知/ BAC = 60°,/ DAE=AB 的高度,当他发现斜坡正对着太阳时,旗杆AB测得水平地面上的影长 BC = 20m ,斜坡坡面北A5.已知:如图,在某旅游地一名游客由山脚一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶 C 处观测到景点 B 的俯角为60°.求山高CD (精确到0.01米).5.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一 根2m 长的竹竿,测得竹竿影长为 1m ,他沿着影子的方向,又向远处走出两根竹竿的 长度,他又竖起竹竿,测得影长正好为2m .问路灯高度为多少米 ?运动员从营地A 出发,沿北偏东60°方向走了 500 30°方向走了 500m ,到达目的地 C 点.求IIIA 沿坡角为30°的山坡AB 行走400m ,到达6.已知:如图,在一次越野比赛中,到达B 点,然后再沿北偏西北n(1)A 、C 两地之间的距离;⑵确定目的地C 在营地A 的什么方向?已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,迎水坡和背水坡都是坡度为1 : 1的等腰梯形.现要将大堤加高坡度改为1 : 1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米, 多少立方米的土石?(1)BC 的长; ⑵△ ABC 的面积.(1)求AB 的长;a⑵求证:—一si n ot7. 1m ,背水坡完成工程需已知:如图,在△ ABC 中, 9. 已知:如图,在△ ABC 中, AC = b , BC = a ,锐角/ A = Ct ,/ B =P .__b sin P . A拓展、探究、思考AB = c , AC = b ,锐角/ A = Ct .RRt △ ADC 中,/ D = 90°,/ A=a ,/ CBD = P , AB = a.用含a 及P的三10.已知:如图,在角函数的式子表示CD的长.11.已知:△ ABC 中,/ A = 30°, AC = 10,12.已知:四边形 ABCD 的两条对角线 AC 、=a (0 °v a v 90° ),求此四边形的面积. BD 相交于 E 点,AC = a , BD = b , / BEC13 ..已知:如图, 长.(精确到 AB = 52m , / DAB = 430.01m),/ CAB = 40°,求大楼上的避雷针 CD 的□□□□□□□□□ □□口□□口口口口口□□口口□□口口14.已知:如图, 知测角仪AB 的高为在距旗杆 25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已BC =5J2,求 AB 的长.4 1如图,△ ABC 中,AC = 10, si nC=-,si nB=-,求 AB .3如图,在O O 中,/ A =/ C ,求证:AB = CD (利用三角函数证明).如图,P 是矩形ABCD 的CD 边上一点,PE 丄AC 于E , PF 丄BD 于F , AC18.已知:如图,一艘渔船正在港口 A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到 A 港,已知C 岛在A 港的北偏东60 ° 方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速 度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时"(丁㊁止1.41, J 3 7.73, J 6 止 2.45)15 .已知:16.已知:17.已知:=15, BC = 8,求 PE + PF.C19.已知:如图,直线y = —x+ 12分别交X轴、y轴于A、B点,将△ AOB折叠,使A 点恰好落在0B的中点C处,折痕为DE .(1)求AE 的长及sin / BEC 的值; ⑵求△ CDE 的面积.20..已知:如图,斜坡 PQ 的坡度i = 1 : J 3,在坡面上点0处有一根1m 高且垂直于水平面的水管0A ,顶端A 处有一旋转式喷头向外喷水,水流在各个方向沿相同的 抛物线落下,水流最高点 M 比点A 高出1m ,且在点A 测得点M 的仰角为30°, 以0点为原点,OA 所在直线为 标系•设水喷到斜坡上的最低点为(1) 写出A 点的坐标及直线 PQ 的解析式; (2) 求此抛物线AMC 的解析式;⑶求 I X C — X B I ; ⑷求B 点与C 点间的距离.y 轴,过O 点垂直于OA 的直线为X 轴建立直角坐 B ,最高点为C.。
解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。
直角三角形的重要性在于它具有很多实际应用价值。
本文将介绍一些直角三角形在实际生活中的应用。
一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。
通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。
例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。
二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。
在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。
直角三角形可以帮助我们测量坡度的比例。
通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。
三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。
然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。
通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。
四、导航和定位直角三角形在导航和定位中也有广泛的应用。
例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。
通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。
五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。
例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。
通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。
六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。
通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。
这对于照明设计师来说非常重要,以确保正确照亮目标物体。
解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。
在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。
下面列举一些常见的直角三角形应用题型。
1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。
这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。
例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。
解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。
2. 求角度已知直角三角形两个角度,求第三个角度。
由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。
例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。
解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。
3. 求高已知直角三角形的斜边和一条直角边,求高。
我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。
例题:已知直角三角形的斜边长为5,直角边长为3,求高。
解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。
利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。
4. 求面积已知直角三角形的两条直角边长度,求面积。
我们可以利用面积公式S=1/2*底边长*高求出面积。
例题:已知直角三角形的两条直角边长分别为4和3,求面积。
解:利用面积公式S=1/2*4*3,可得面积为6。
以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。
解直角三角形的实际应用题的解题步骤一、引言在数学中,直角三角形是研究的重要对象之一,其特殊的性质和广泛的应用使其成为数学学习中的重要内容。
解直角三角形的实际应用题,是数学知识与实际问题相结合的体现,也是数学运用能力的考验。
在本文中,我们将探讨解直角三角形的实际应用题的解题步骤,希望能帮助读者更深入地理解这一内容。
二、实际应用题的解题步骤1. 理解问题解题的第一步是要充分理解问题。
在解直角三角形的实际应用题时,我们需要明确问题的背景和要求,理解其中涉及的相关知识点。
如果题目是要求求解某个角的值或某条边的长度,我们需要明确所给信息和要求,以便有针对性地进行求解。
2. 标注已知量和未知量解题的第二步是要标注已知量和未知量。
在直角三角形中,我们通常会遇到三边、三角或边角关系的已知量和未知量,标注清楚有助于我们更清晰地把握问题的本质。
通过标注已知量和未知量,我们可以更好地运用三角函数关系进行求解。
3. 应用三角函数关系接下来,我们需要应用三角函数关系进行求解。
根据已知量和未知量的不同组合,我们可以选择使用正弦、余弦或正切等三角函数来建立方程,然后通过解方程来求解未知量。
这一步需要我们熟练掌握三角函数的性质和运用技巧,以便准确地进行计算和推导。
4. 检验和解答问题我们需要检验和解答问题。
在求解过程中,我们得到的答案可能是角的大小或边的长度,需要通过检验来验证我们的答案是否符合题意。
在解答问题时,我们也需要根据问题的要求给出完整的答案和解释,以便清晰地呈现解题过程和结果。
三、个人观点和总结解直角三角形的实际应用题需要我们熟练掌握三角函数的运用和技巧,也需要我们对实际问题有较强的理解和分析能力。
在解题过程中,我们要善于应用已知信息,创造性地建立方程,以及正确地运用三角函数关系,才能得到准确的答案。
通过解直角三角形的实际应用题,我们不仅能够巩固数学知识,还能培养解决实际问题的能力,这对我们的学习和生活都具有重要意义。
解直角三角形的实际应用
在我们日常生活中,直角三角形就扮演着一个非常重要的角色。
从简单的构建平面图到较为综合的三角计算,直角三角形都拥有广泛的应用。
解直角三角形的实际应用将在本文中进行讨论,它们通常被归类为建筑、航海和地理测量、电子学和机械加工。
建筑
在建筑领域内,解直角三角形的应用十分广泛。
首先,通过这种方法可以测量和计算建筑物各种元素,例如房屋的长度、高度和倾斜角度等。
建筑工人常常需要判断房屋边角处应当设置多大的角度。
借助直角三角形,他们可以容易地计算出准确的角度,进而执行准确的建筑操作。
此外,建筑师还可以利用解直角三角形的方法,对建筑物的下降程度进行计算。
这对于确保建筑物的结构保持牢固和稳定非常重要。
也就是说,直角三角形完全可以扮演建筑行业中不可或缺的角色。
航海和地理测量
航海和地理测量方面,直角三角形也被广泛应用。
根据知识体系,大气压力,海拔和角度大小等数据,通过解直角三角形的方法,人们可以轻松地解决测量距离的问题。
例如,航海员常常需要测量船的位置和方向,判断船距离目的地还有多远。
如果处理不当,他们可能会偏
离目的地数英里。
在地理测量方面,人们利用直角三角形来衡量山谷的大小和方向、测量百分比的坡度、计算山丘的高度等等。
利用这种方法,我们可以测定任何地形,从而制定相应的战略、设计合适的建筑。
电子学
电子学中,直角三角形通常被应用于电子电路的设计和编程。
电路中各个部件的位置和尺寸通常需要进行精确定位。
此时,解直角三角形会成为解决这一问题的有力工具。
此外,在编写程序时,注重角度和方向的用法也是很重要的。
借助直角三角形,开发者可以轻松地计算出各种参数和变量之间的关系,从而更好地设计出满足客户需求的电子产品。
机械加工
在制造领域内,直角三角形也扮演极其重要的角色。
设想一个人需要精确地切割材料或对零件进行加工,这时解直角三角形的方法就可以发挥重要作用。
使用直角三角形,我们可以任意准确地测量出某一物体的角度、高度、斜边长度以及其它参数。
这让机械工作者能够更好地预判加工中可能出现的问题,从而采取更加正确的操作。
总之,直角三角形在我们的日常生活、工作和学习中都扮演着非常重
要的角色。
从建筑、航海和地理测量到电子学和机械加工,利用直角三角形的方法,我们可以解决很多实际问题,并且使我们的生活变得更加便利。