武汉市历届元月调考试题分类
- 格式:pdf
- 大小:333.07 KB
- 文档页数:13
第5题图2014-2015学年武汉市部分学校九年级元月调考数 学 试 卷武汉市教育科学研究院命制 2015.1.28亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成,全卷共6面,三大题,满分120分,考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第I 卷(选择题)时,选择出每小题答案后,用2B 铅笔把“答题卡”上对应题目睥答案标号涂黑。
如需改动3,用橡皮擦干净后,再选涂其他答案,不得答在“试卷”上。
4.第II 卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在第I 、II 卷的试卷上无效。
预祝你取得优异成绩!第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1.方程25410x x --=的二次项系数和一次项系数分别为A .5和4B .5和-4C .5和-1D .5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃,2张红桃。
从中随机抽取一张,则 A .能够事先确定抽取的扑克牌的花色 B .抽到黑桃的可能性更大 C .抽到黑桃和抽到红桃的可能性一样大 D .抽到红桃的可能性更大3.抛物线212y x =向下平移一个单位得到的抛物线 A .21(1)2y x =+ B .21(1)2y x =- C .2112y x =+ D .2112y x =-4.用频率估计概率,可以发现,抛掷硬币:“正面朝上”的概率为0.5,是指A .连接掷2次,结果一定是“正面朝上”和“反面朝上”各1次B .连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C .抛掷2n 次硬币,恰好有n 次“正面朝上”D .抛掷n 次,当n 越来越大时,正面朝上的频率会越来越稳定于0.55.如图,在⊙O 中,弦AB 、AC 互相垂直,D 、E 分别为AB 、AC 的中点,则四边形OEAD 为 A .正方形 B .菱形 C .矩形 D .直角梯形 6.在平面直角坐标系中,点A (-4,1)关于原点的对称点的坐标为 A .(4,1) B .(4,-1) C .(-4,-1) D .(-1,4) 7.圆的直径为13cm ,如果圆心与直线的距离是d ,则A .当d=8cm 时,直线与圆相交B .当d =4.5cm 时,直线与圆相离C .当d =6.5cm 时,直线与圆相切D .当d =13cm 时,直线与圆相切 8.用配方法解方程21090x x ++=,下列变形正确的是A .2(5)16x += B .2(10)91x += C .2(5)34x -= D .2(10)109x += 9.如图,在平面直角坐标系中,抛物线25y ax bx =++经过A (2,5),B (-1,2)两点,若点C 在该抛物线上,则C 点的坐标可能是 A .(-2,0) B .(0.5,6.5) C .(3,2) D .(2,2)10.如图,在⊙O 中,弦AD 等于半径,B 为优弧»AD 上的一动点,等腰△ABC 的底边BC 所在的直线经过点D ,若⊙O 的半径等于1,则OC 的长不可能为A .23B 31C .2D 31第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置。
2023~2024学年度高三元月调考语文试卷一、现代文阅读(35分)(一)现代文阅读I (本题共5小题,19分)阅读下面的文字,完成1~5题。
清代常州词人张惠言曾指出,词是有比兴寄托的,“意内而言外”。
张惠言说温庭筠的词可比美,于屈子《离骚》,欧阳修的词反映了北宋初年政治上的党争,每句词都有深刻的含意。
王国维反对张惠言的这种比兴寄托的说法,可王国维自己的词里却也有许多比兴寄托。
他还在《人间词话》中以三首小词比喻古今成大事业大学问的三种境界。
他说“昨夜西凤凋碧树,独上高楼,望尽天涯路”(晏殊《堞恋花》词)为第一种境界,“衣带渐宽终不悔,为伊消得人憔悴”(柳永《凤栖梧》词)为第二种境界,“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”(辛弃疾《青玉案》词)为第三种境界。
如果他认为张惠言说温庭筠和欧阳修等人的小词有比兴寄托是“深文罗织”,而他自己却又把晏殊、柳永、辛弃疾的三首小词说成是成大事业大学问的三种境界,对他的这种说法该如何看待呢?这就需要我们先将什么叫“比兴寄托”解释清楚。
比兴寄托有广义的解释,也有狭义的解释;有字面的解释,也有引中的解释;有就作者方面而言的说法,也有就读者方面而言的说法。
我们可以从不同的角度分析这个问题。
而对词这种形式,不论是张惠言还是王国维,为什么他们在写作或欣赏别人的词作的时候,都容易发生这种现象?而他们附加这些内容的时候使用的阐述方式又有什么不相同的地方?本来“比”“兴”二字是写诗的两种作法,如果换一种较新的说法,我以为比兴就是指心与物相结合的两种基本关系,“兴”是见物起兴,是由物及心。
见物起兴是说你看到一个物象,引起你内心的一种感发,以《诗经》来说,“关关雎鸠,在河之洲”是外在的物象,所谓“物象”是眼睛所能看见的,耳朵所能听见的,凡是感官所能感受的统称物象。
这在中国诗歌中有很久远的传统。
即如《诗品·序》中就说:“若乃春风春鸟,秋月秋蝉,夏云暑雨,冬月祁寒,斯四候之感诸诗者也。
2014—2015学年度武汉市部分学校九年级调研测试语文试卷第Ⅰ卷(选择题,共30分)一、(共12分,每小题3分)1.下面各组词语中加点字的读音或书写有误的一组是A.猝然蹂躏(lìn)膂(lǚ)力入不敷出B.匮乏磕绊(bàn)耷(dā)拉汗流浃背C.窒息无垠(yín)自艾(yì)光怪陆离D.秀颀虬(qiú)枝水渍(zé)吹毛求庇2.依次填入下面横线处的词语,恰当的一组是司马迁的伟大,在于他从未以成败论英雄,从未以简单的道德观念来_____历史人物。
他____将前代的杀手、同时代的违法者塑造成了英雄或准英雄。
或许,这不是他一个人的想法,剌客们不是经常出现在汉代的画像石上吗?中国历史上最著名的六大刺客,东汉时期就刻在了山东嘉祥的武梁祠内,______。
A.评判竟然惟妙惟肖B.判断竟然惟妙惟肖C.评判居然栩栩如生D.判断居然栩栩如生3.下列各项中,有语病的一项是A.为了方便患者,提高效率,我院决定采取分时段挂号,详情请见告示。
B.本次摄影展展示出的这些照片从不同的角度记录了全国道德模范的平凡生活。
C.为了惩戒失信行为,市文明办、市法院今年第四次联合发布失信被执行人名单。
D.本次电视问政,将现场公布“十个突出问题”承诺整改单位的年终考评总成绩。
4.填入下面文字中横线处与上下文衔接最恰当的一项是对于以陶渊明为代表的安然自立型的文化人格,中国民众不像对魏晋名士那样陌生。
陶渊明以自然为神灵,_____,____,____,____,再以最自然的文笔描写自然。
A.他投身自然,耕种自然,追慕自然,信仰自然B.他信仰自然,追慕自然,耕种自然,投身自然C.他投身自然,耕种自然,信仰自然,追慕自然D.他信仰自然,追慕自然,投身自然,耕种自然二、(共9分,每小题3分)阅读下面的短文,完成5?7题。
人脑计算机目前,科学家正致力于建造一种“人脑计算机”,使其成为世界上最强大的计算机。
湖北省武汉市江岸区2022-2023学年高三上学期元月调考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.2.8B.2.9f x4.已知定义在R上的函数()()()()++=f f f202220232024A.2-B.05.已知97c=,则b=,79a=,88<<B.b<c<aA.c a b6.双曲线的中心为原点O,焦点在直于1l的直线分别交1l,2l于A,反向.则双曲线的离心率为()A.5B.727.设()1g t和()2g t是函数siny=二、多选题三、填空题四、解答题(1)求多面体AEBFCD 体积;(2)若点P 在直线DE 上,求21.如图,在平面直角坐标系,已知设点()1,0D 为线段2OF (1)若D 为长轴AB 的三等分点,求椭圆方程;(2)直线MN (不与x 轴重合)过点圆C 交于P ,Q 两点,设直线MN 于a 的函数,即()21k f a k =,求f 22.若函数()()(2ln 2f x x x =++(1)若()0f x ≤恒成立,求实数a (2)若k a ,()1,2k b k n = 均为正数,12121n b b b n a a a ≤ .参考答案:加入矿泉水后,记石瓢壶内水深为由图可知ABC AFG 所以有,AB BCAF FG=即466AB AB =+,解得12AB =,由ABC ADE ,得AB BCAD DE=,即12418h r=-,解得:183h r =-,故加入矿泉水后圆台的体积为()(21π18363V r =-+解得31255r ==,所以183 3.0h r =-=故选:C 4.B9.AC【分析】以D 为原点,以1,,DA DC DD 边分别为,,x y z 轴,建立如图所示的空间直角坐标系,设正方体的棱长为1,结合空间向量与法向量的坐标运算,逐一判断,即可得到结果.【详解】根据题意,以D 为原点,以1,,DA DC DD 边分别为,,x y z 轴,建立如图所示的空间直角坐标系,设正方体的棱长为1,则()()()()()()()()11111,1,0,0,1,1,0,0,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0B C D D B C A A 即()11,0,1BC =- ,设()1,0,BP BC λλλ==-,其中()0,1λ∈所以()1,1,P λλ-对于A ,因为(),0,BP λλ=- ,()11,1,1B D =--- ,且10BP B D λλ⋅=-= ,即1BP B D ⊥,故正确;对于B ,因为()10,1,1CD =- ,则10BP CD λ⋅=≠ ,即BP 与1CD不垂直,故错误;对于C ,因为()1,1,1A P λλ=-- ,()11,1,1B D =--- ,则11110A P B D λλ⋅=-+-=,即11A PB D ⊥ ,故正确;建立直角坐标系,设(1,0A ()(1,1,PA PB x y x =-----即是求正八边形边上的点到原点的最大距离,显然当连接AF ,过H ,G 分别作三角形,222AF ∴=+,在AFG 距离最大,当01a <<时,0a m =,a M =当1a ≥时,lg lg ,a a m a a M ==故答案为:13或10.17.(1)3π(2)250,8⎛⎤ ⎥⎝⎦【分析】(1)首先根据三角形内角和1cos cos 4A C ⋅=,又2b ac =,则(2)根据(1)的结论()cos C A -=的边长为x ,AC CD AC CD ⋅= 【详解】(1)()cos cos A C B --又2b ac =,则2sin sin sin B A C =⋅故21sin cos cos sin 4B AC A -=⋅-24cos 4cos 30cos B B ⇒+-=⇒(2)由(1)结论,①+②得cos 则A C ∠=∠,故ABC 为等边三角形设ABC 的边长为x .则05x <<答案第17页,共17页(2)由(1),知()ln 12x x +>+,则ln 1≤-x x ,ln 1k k a a ≤-,ln k k k k k b a a b b ≤-,ln k b k k k k a a b b ≤-,累加可得111ln k n n nb k k k k k k k a a b b ===≤-∑∑∑,又112212n n na b a b a b b b b +++≤+++ 所以1212ln 0n b b b n a a a ≤ ,即12121n b b b n a a a ≤ .【点睛】本题考查了利用导数研究函数,考查了恒成立问题和数列的证明,计算量较大,属于难题.本题的关键点有:(1)恒成立问题进行参变分离,构造函数后只需()min a h x ≤即可;(2)利用(1)的结论证明数列不等式.。
武昌区2015届高三年级元月调研测试理科综合试卷本试卷共300分,考试用时150分钟。
★祝考试顺利★本卷分为第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题)两部分,第Ⅰ卷为第1至6 页,第Ⅱ卷为第7至18页。
本卷共18页。
注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卡指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卡上的指定位置。
2.第Ⅰ卷的作答:选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.第Ⅱ卷的作答:用黑色墨水的签字笔直接答在答题卡上的每题所对应的答题区域内。
答在试题卷上或答题卡指定区域外无效。
4.选考题的作答:先把所选题目的题号在答题卡指定位置用2B铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡对应的答题区域内,答在试题卷、草稿纸上无效。
5.考试结束,监考人员将答题卡收回,考生自己保管好试题卷,评讲时带来。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:H 1 C 12 O 16 Na 23 S 32 Cl 35.5 Ca 40 Fe 56 Br 80一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.生命科学研究中常用“建模”方法表示微观物质的结构,图中1~3分别表示植物细胞中常见的三种大分子有机物,每种有机物都有其特定的基本组成单位。
则下图中1~3可分别表示A.多肽、RNA、淀粉B.DNA、RNA、纤维素C.DNA、蛋白质、糖原D.核酸、多肽、糖原2.下列实验材料的选择与该实验的目的不相符合的是A.③④B.①②③C.①②D.②③④3.研究发现,当人体组织细胞中的氧含量低于正常值的60%以下时,缺氧的组织细胞就可能癌变;进一步的研究表明,癌细胞和正常分化的细胞在有氧条件下产生的ATP总量没有明显差异,但是癌细胞即使在氧供应充分的条件下也主要是通过无氧呼吸获取能量。
2009-2010 学年度武汉市部分学校九年级调研测试数学试题武 市教育科学研究院命制2010.1.26.一、 (每小 3 分,共 36 分)1、要使式子 2a3 在 数范 内存心 ,字母 a 的取 必 足()A.a ≥0. B. a≥ - 3 .C. a≠ - 3.D. a≤- 3.2222. 以下 算①35 = 15 ;②3 3 ; ③ 3 2 =2;④ 16 =4. 此中 的是 ( )100 10 27 3A . ① B. ② C. ③ D. ④3. 在一元二次方程 x 2-4x-1=0 中,二次 系数和一次 系数分 是()A.1 , 4.B.1,-4.C. 1, -1.D. x2,4x.4. 某校九个班 行迎新春大合唱比 ,用抽 的方式确立出 序。
筒中有9 根形状、大小完整同样的 ,上面分 有出 的序号1, 2, 3,⋯, 9. 以下事件中是必定事件的是()A. 某班抽到的序号小于 6.B. 某班抽到的序号 0.C. 某班抽到的序号7.D. 某班抽到的序号大于0.5. 在一个口袋中有 3 个完整同样的小球,把它 分 号 1,2,3,随机地摸取一个小球而后放回,再随机地摸出一个小球。
两次取的小球的 号同样的概率 ()A.1 . B.1 C. 1. D.136296. 方程 x 2-5x-6=0 的两根之和 ( ) A. -6. B. 5 C. -5. D. 1.7. 以下 案是部分汽 的 志,此中是中心 称 形的是() A.B.C.D.8. 如 ,在⊙ O 中,弦 BE 与 CD 订交于点 F , CB,ED 的延 订交于点 A , 若∠ A=30°,∠ CFE=70° , ∠ CDE=( ) A. 20°B. 40° .C. 50° .D. 60°9.2009 年,甲型 H1N1病毒延伸全世界,抗病毒的 物需求量大增。
某制 厂 两个月加大投入,提升生 量,此中九月份生 35 万箱, 十一月份生 51 万箱。
武汉初三元月调考数学试卷及答案(图片版)数学网编辑保举:
2019武汉初三元月调考语文试卷及答案(图片版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
数学网编辑保举:
2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)
2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
第 1 页。
武汉市部分学校九级元月调考数学试卷2012-2013学年度武汉市部分学校九年级调研测试数学试卷一、选择题(共IO 小题,每小题3分,共30分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号 涂黑. 1.要使式子2a 在实数范围内有意义,字母a的取值必须满足A .a≥2 B.a≤2 C .a≠2 D.a≠0 2.车轮要做成圆形,实际上就是根据圆的特征 A .同弧所对的圆周角相等B .直径是圆中最大的弦C .圆上各点到圆心的距离相等D .圆是中心对称图形3.在平面直角坐标系中,点A(l ,3)关于原点O 对称的点A′的坐标为A .(-1,3)B .(1,-3) C.(3,1) D .(-1,-3)4.同时抛掷两枚硬币,正面都朝上的概率为( )A.21B.31C.41D.325.下列式子中,是最简二次根式的是( )A.21B.313C.51D.86.商场举行摸奖促销活动,对于“抽到一等奖的概率为O.1”.下列说法正确的是( ) A.抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖 . C .抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.方程x 2-7=3x 的根的情况为( )A .有两个不等的实数根B .有两个相等的实数根C .有一个实数根 D.没有实数根 8.收入倍增计划是2012年l1月中国共产党第十八次全国代表大会报告中提出的,“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人 均收人为3万元,到2020年该地城乡居民人均收入达到6万元,设每五年的平均增长率为 a %,下列所列方程中正确的是( )A.3(1+ a %)=6B.3(1+a%)2=6 C.3 +3(1-a %)+3(1+ a %)2=6 D.3(1+2 a %)=6OI ABCBOD9.已知x 1、x 2是方程x 2-5x+l=O 的两根,则x 1+x 2的值为( )A.3B.5C.7 D . 10.如图,点I 和O 分别是△ABC 的内心和外心,则∠A IB 和∠AOB 的关系为( )A .∠AIB=∠AOB B .∠AIB≠∠AOBC .2∠AIB -∠AOB=180°D .2∠AOB -∠AIB=180°二、填空题(共6小题,每小题3分,共18分) ll.计算:248÷6=____12.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请II 个好友转发倡议书,每个好友转发倡议书之后,又邀请n 个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n= ____.13.如图,在⊙O 中,半径OA ⊥弦BC ,∠AOB=50°,DBAHFOE则圆周角∠ADC=_____14.如图,正八边形ABCDEFGH 的半径为2,它的面积为____.15.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是____.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性的大小相同,三辆汽车经过这个十字路口,至少有两辆车向左转的概率为____.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证DCOAB573420明过程、演算步骤或域出图形.17.(本题6分)解方程:x (2x-5)=4x-10.18.(本题6分)有两个可以自由转动的质地均匀转盘都被分成了3.个全等的扇形,在每一扇形内均标有不同的自然数,如图所示,转 动转盘,两个转盘停止后观察并记录两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).(l)用列表法或画树形图法求出同时转动两个转盘一次的所 有可能结果;(2)同时转动两个转盘一次,求“记录的两个数字之和为7”的概率.19.(本题6分)如图,两个圆都以点D为圆心.求证:AC =BD;20.(本题7分)已知关于x 的一元二次方程x 2+4x+m=O .图1CAB图2B 1C 1CAOB(1)当m=l 时,请用配方法求方程的根: (2)若方程没有实数根,求m 的取值范围.21.(本题7分)△ABC 为等边三角形,点D 是边AB 的延长线上一点(如图1),以点D 为中心,将△ABC 按顺时针方向旋转一定角度得到△A 1B 1C 1.(1)若旋转后的图形如图2所示,请将△A 1B 1C 1以点D 为中心,按顺时针方向再次旋转同样的角度得到△A 2B 2C 2,在图2中用尺规作出△A 2B 2C 2,请保留作图痕迹,不要求写作法:(2)若将△ABC 按顺时针方向旋转到△A 1B 1C 1的旋转角度为α(0°<α<360°). 且AC∥B 1C 1,直接写出旋转角度α的值为_____22.(本题8分)如图,已知在Rt△ABC 中,∠ACB=90°,BC >AC ,⊙O 为△ABC 的外接圆,以点C 为圆 心,BC 长为半径作弧交CA 的延长线于点D ,交⊙O 于点E ,连接BE 、DE. (l)求∠DEB 的度数;(2)若直线DE 交⊙0于点F ,判断点F 在半圆AB 上的位置,并证明你的结论.FEDOABC23.(本题10分)如图,利用一面墙(墙EF 最长可利用25米),围成一个矩形花园ABCD ,与围墙平行的 一边BC 上要预留3米宽的入口(如图中MN 所示,不用砌墙),用砌46米长的墙的材料,当 矩形的长BC 为多少米时,矩形花园的面积为299平方米.3m25mD C EAB图1ECAD 图2F EAD24.(本题10分)已知等边△ABC,边长为4,点D 从点A 出发,沿AB 运动到点B ,到点B 停止运动.点E 从A 出发,沿AC 的方向在直线AC 上运动.点D 的速度为每秒1个单位,点E 的速度为每秒2个单位,它们同时出发,同时停止.以点E 为圆心,DE 长为半径作圆.设E 点的运动时间为t 秒. (l)如图l ,判断⊙E 与AB 的位置关系,并证明你的结论;(2)如图2,当⊙E 与BC 切于点F 时,求t 的值; (3)以点C 为圆心,CE 长为半径作⊙C ,OC 与射线AC 交于点G .当⊙C 与⊙E 相切时,直接 写出t 的值为____ED OABC25.(本题12分)如图,在边长为1的等边△OA B 中,以边AB 为直径作⊙D ,以D 为圆心似长为半径作圆O,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E,BC=a,AC=b, (1)求证:AE=b+3a (2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+3ax=b 2+3ab 的一个根,求m 的取值范围.参考答案题1 2 3 4 5 6 7 8 9 10 号A C D CBC A B A C答案11.4212.10 13.25 14.8215.150716.2717.解:2x2-9x+10=0 ………3分∴x 1=2 x 2=25 …………6分 18.解:(1) A 盘 B 盘 0 243 0,3 2,3 4,3 5 0,5 2,5 4,5 70,72,74,7由上表可知转动两个圆盘一次共有9中不同结果…………3分(2)第一问的9中可能性相等,其中“记录的两个数字之和为7”(记为事件A )的结果有3个,∴所求的概率P(A)=93=31………6分19.证明:过点O 作OE ⊥AB 于E ,………1分 在小⊙O 中,∵OE ⊥AB ∴EC=ED ………3分 在大⊙O 中,∵OE ⊥AB ∴EA=EB ………5分 ∴AC=BD ………6分20.(1)当m=1时,x 2+4x+1=0 ………1分x 2+4x+4=3 ,(x+2)2=3,x+2=±3∴x=-2±B2C 2A 2B 1C1A 1C A OBαB 1C 1A1C A O B αB 1C11CAOB3……4分(2)∵x2+4x+m=O ∴42-4m<0,∴m>4 ………7分21.(1)如图……3分(2)60°或240图如下22.证明:(1)连接CE 、BD ,∵∠BDE 与∠ECB 所对的弧都为弧EB∴∠BDE=21∠ECB 同理∠DBE=21∠ECD ∴∠BDE+∠DBE =21∠DCB ………3分∵∠ACB=90°∴∠BDE+∠DBE =45°∴∠DEB=135°………5分(2)由(1)知∠DEB=135°∴∠BEF=45°………6分 ∴弧FB=21弧AB 即F 为弧AB 中点;23.解:设矩形花园BC 的长为x 米,则其宽为21(46-x+3)米,依题意列方程得: 21(46-x+3)x=299,……5分 x 2-49x-498=0, 解这个方程得:x 1=26, x 2=23………8分25<26∴x 1= 26不合题意,舍∴x=23 …………9分答:矩形花园的长为23米; …………10分GEBC D24.解:(1)AB 与⊙E 相切, ………1分 理由如下:过点D 作DM ⊥AC 于点M∵△ABC 为等边三角形∴∠A=60° 在Rt △ADM 中∵AD=t, ∠A=60°∴AM=21t,DM=23t, ∵AE=2t ∴ME=23t,在Rt △DME中,DE2=AM2+EM2=3t2,在Rt △ADE 中,∵AD 2=t 2,AE 2=4t 2,DE 2=3t 2,∴AD 2+DE 2=AE 2∴∠ADE=90°∴AD 与⊙D 相切 …………4分(2)连BE 、EF ,∵BD 、BE 与⊙O 相切∴BE 平分∠ABC∵AB=BC ∴AE=CE ∵AC=4 ∴AE=2,t=1 …………8分(3)t=133832±;当⊙C 与⊙E 相切时,DE=EG=2EC,∵DE=3t,∴EC=23t,有两种情形:第一,当E 在线段AC 上时,AC=AE+EC,∴2t+23t=4,t=133832-……9分GEBC DMH EDOABC第二、当点E 在AC 的延长线上时,AC=AE-EC, 2t-23t=4,t=133832 …….10分25.解:(1)连接BE,∵△ABC 为等边三角形∴∠AOB=60°∴∠AEB=30°∵AB 为直径∴∠ACB=∠BCE=90°,∵BC=a ∴BE=2a,CE=3a,∵AC=b ∴AE=b+3a …………3分(2)过点C 作CH ⊥AB 于H,在Rt △ABC 中,BC=a,AC=b,AB=1∴a 2+b 2=1∴(a+b) 2=a 2+b 2+2ab=1+2ab=1+2CH ·AB=1+2CH≤1+2MD=1+2AD=2 ∴a+b ≤2,故a+b 的最大值为2…………7分(3) x 2+3ax=b 2+3ab ∴x 2- b 2+3ax-3ab=0 (x+b)(x-b)+3a(x-b)=0,(x-b)(x+b+3a)=0∴x=b 或x=-(b+3a)当a=m=b时,m=b=AC<AB=1∴0<m<1 (9)分当m=-(b+3a)时,由(1)知AE=-m,又AB<AE≤2AO=2∴1<-m≤2∴-2≤m<-1…………11分∴m的取值范围为0<m<1或-2≤m<-1。
武汉市历届元月调考试题分类专题一:数与式1.a 的取值必须满足A.0a ≠B.a ≥2C.a ≠2D.a ≤24.下列函数中,自变量x 的取值范围是x ≥3的函数是(A )3-=x y (B )x y -=3(C )31-=x y (D )xy -=314.要使式子1x +有意义,x 的取值范围是( ). (A )x ≥-2 (B )x ≠-1 (C )x ≥-2且x ≠-1 (D )x ≥-12.下列运算不正确的是4=5-110= D.(218=1.化简9的结果是 (A )3 (B )-3 (C )±3 (D )93.下列等式成立的是( ).(A (B(C )=(D )215.观察下列各式的规律:①③.若则a =___________________. 13.计算下面几个式子,它们的结果呈现出一定的规律:1999+⨯、1999999+⨯、1999999999+⨯、1999999999999+⨯.用你发现的规律直接写出式子9999991999999个个个n n n +⨯的结果是 .13观察你计算的结果,用= .18.先化简,再求值:3x =. 18.一个三角形的三边长分别为55x 、x 2021、xx 5445. (1)求它的周长(要求结果化简);(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.武汉市历届元月调考试题分类专题二:方程与不等式3.如果2是方程20x c -=的一个根,那么c 的值是A.4B.-4C.2D.-23.一元二次方程0)3(=+x x 的根为(A )0 (B )3 (C )0或3 (D )0或-35.如果x =3是一元二次方程ax 2=c 的一个根,那么该方程另一根是(A )3 (B )-3 (C )0 (D )11.一元二次方程20x x -=的根为( ).(A )0或1 (B )±1 (C )0或-1 (D )11. 一元二次方程x 2=x 的根是(A) x =1. (B) x =0. (C) x =±1. (D) x 1=0, x 2=1.3.下列方程中,没有实数根的是(A) x 2-x +1=0. (B)3x 2-2x -4=0.(C) x 2-3x =0. (D) x 2+2x +1=0.9.2008年10月29日,央行宣布,从10月30日起下调金融机构人民币存款基准利率.其中一年期存款基准利率由现行的3.87%下调至3.60%.11月26日,央行宣布,从11月27日,一年期存款基准利率由现行的 3.60%下调至2.52%.短短一个月,连续两次降息.设平均每次存款基准利率下调的百分率为x ,根据以上信息可列方程A.3.87% 2.52%2x -=B.()23.871 2.52x -=C.()23.87%1% 1.52%x -=D.()22.52%1 3.87%x +=16.为了让国人分享“神七”升空的骄傲,中央电视台在神七发射期间与“问问”网站联合举办“神七我问问”的活动,网友可以自由地提出问题,解答问题,对问题的解答发表评论。
2023~2024学年度高三元月调考数学试卷参考答案一㊁选择题:1.B ㊀㊀2.C ㊀㊀3.A㊀㊀4.A㊀㊀5.C ㊀㊀6.B ㊀㊀7.B ㊀㊀8.A 二㊁选择题:9.B C ㊀㊀10.A C D㊀㊀11.A B D㊀㊀12.A C D 三㊁填空题:13.11或17㊀㊀㊀㊀㊀㊀14.236,133éëêêöø÷15.5623㊀㊀㊀㊀㊀16.2+12四㊁解答题:17.(1)已知2c o s B +C ()b c =c o s B a b +c o s C a c,由B +C =π-A ,有c o s B +C ()=-c o s A ,所以-2c o s A b c =c o s B a b +c o s Ca c,两边同乘以a b c 得:-2a c o s A =c c o s B +b c o s C .由正弦定理得:-2s i n A c o s A =s i n C c o s B +c o s C s i n B =s i n B +C ()=s i n A .由A ɪ0,π(),s i n A ʂ0,所以c o s A =-12,A =2π3.(2)因为D 在B C 边上,且B D =3D C ,所以A D ң=A B ң+B D ң=A B ң+34B C ң=A B ң+34A C ң-A B ң()=14A B ң+34A C ң.因为D A ʅB A ,所以A D ң A B ң=0,则14A B ң+34A C ңæèçöø÷ AB ң=0即A B ң2+3AC ң A B ң=0,得A Bң2=-3A C ң A B ң c o s A ,所以c 2=32b c ,2c =3b .不妨设b =2,c =3.在әA B C 中,由余弦定理:a 2=b 2+c 2-2b c c o s A =4+9+6=19,所以a =19.由余弦定理:c o s C =a 2+b 2-c 22a b =19+4-92ˑ19ˑ2=71938.18.(1)因为四边形A B C D 为平行四边形,且әA D E 为等边三角形,所以øB C E =120ʎ.又因为E 为C D 的中点,则C E =E D =D A =C B ,所以әB C E 为等腰三角形,可得øC E B =30ʎ,øA E B =180ʎ-øA E D -øB C E =90ʎ,即B E ʅA E ,因为平面A P E ʅ平面A B C E ,平面A P E ɘ平面A B C E =A E ,B E ⊂平面A B C E ,则B E ʅ平面A P E ,且A P ⊂平面A P E ,所以A P ʅB E .1(2)作P O ʅA E ,过O 作O y ʊEB ,由面A P E ʅ面A BC E 得P O ʅ面A B CE则O A ,O y ,O P 两两垂直,建立如图所示空间直角坐标系.P (0,0,3),A (1,0,0),E (-1,0,0)B (-1,23,0),C (-2,3,0)设平面P A C 的一个法向量为 m =(x 1,y 1,z 1)由 m P A ң=0 m A C ң=0{知x 1=3z 1y 1=3x 1{可取 m =(3,3,1)同理得平面P B E 的一个法向量 n =(-3,0,1).设平面P A C 与平面P B E 的夹角为θ.则c o s θ=mn | m ||n |=-3+113ˑ2=1313.ʑ面P A C 与面P B E 夹角的余弦值为1313.19.(1)函数f x ()=e -a ()e x +x a ɪR (),x ɪR ,则f ᶄ(x )=(e -a )e x+1,当e -a ȡ0,即a ɤe 时,f ᶄ(x )>0恒成立,即f (x )在R 上单调递增;当e -a <0,即a >e 时,令f ᶄ(x )=0,解得x =-l n (a -e),x(-¥,-l n (a -e))-l n (a -e )(-l n (a -e ),+¥)fᶄ(x )+0-f (x )↗极大值↘综上所述,当a ɤe 是,f (x )在R 上单调递增;当a >e 时,f (x )在(-¥,-l n (a -e ))上单调递增,在(-l n (a -e ),+¥)上单调递减.(2)f (x )ɤλa 等价于(e -a )e x +x -λa ɤ0,令h (x )=(e -a )e x+x -λa ,当a ɤe 时,h (1+λa )=(e -a )e 1+λa +1>0,所以h (x )ɤ0不恒成立,不合题意.当a >e 时,f (x )ɤλa 等价于λa ȡf (a )m a x ,由(1)可知f (x )m a x =f (-l n (a -e ))=-1-l n (a -e ),所以λa ȡ-1-l n (a -e ),对a >e 有解,所以λȡ-1-l n (a -e)a对a >e 有解,因此原命题转化为存在a >e ,使得λȡ-1-l n (a -e)a.令u (a )=-l n (a -e )-1a,a >e ,则λȡu (a )m i n ,u ᶄ(a )=-a a -e -l n (a -e )a 2+1a 2=l n (a -e )-ea -ea2,2令φ(a )=l n (a -e )-e a -e ,则φᶄ(a )=1a -e +e(a -e)2>0,所以φ(a )在(e ,+¥)上单调递增,又φ(2e )=-e 2e -e +l n (2e -e )=0,所以当e <a <2e 时,φ(a )<0,u ᶄ(a )<0,故u (a )在(e ,2e )上单调递减,当a >2e 时,φ(a )>0,u ᶄ(a )>0,故u (a )在(2e ,+¥)上单调递增,所以u (a )m i n =u (2e )=-1e ,所以λȡ-1e ,即实数λ的取值范围是-1e ,+¥éëêêöø÷.20.(1)设b n =a n +-1()n ,则b 1=-1,b n +1=a n +1+-1()n +1=-a n 2+12-1()n --1()n =-a n2-12-1()n =-12b n .因此数列a n +-1()n{}是首项为-1,公比为-12的等比数列,且a n +-1()n=--12æèçöø÷n -1.(2)由(1),a n =-1()n -1--12æèçöø÷n -1,所以S n =1--1()n 1--1()-1--12æèçöø÷n1--12æèçöø÷=-16-12-1()n +23-12æèçöø÷n.取数列r n =-23-12æèçöø÷n ,则r n {}是等比数列,并且S n +r n =-16-12-1()n .因此集合S n +r n |n ɪN ∗{}=-23,13{}.所以数列S n {}具有P 2()性质.21.解:(1)n =3㊀即3次摸换球后ξ的可能取值为1,2,3当ξ=1㊀即3次摸球都摸到黑球P (ξ=1)=13ˑ13ˑ13=127当ξ=2㊀即3次摸球中有且仅有2次摸到黑球,1次白球P (ξ=2)=P (黑黑白)+P (黑白黑)+P (白黑黑)=13ˑ13ˑ23+13ˑ23ˑ23+23ˑ23ˑ23=1427当ξ=3㊀即3次摸球中有且仅有1次摸到黑球,2次白球P (ξ=3)=P (黑白白)+P (白黑白)+P (白白黑)=13ˑ23ˑ13+23ˑ23ˑ13+23ˑ13ˑ1=12273ʑ分布列为ξ123P12714271227(2)n =k (k ȡ3)时,即k 次摸球换球后,黑球个数ξ可能取值为1,2,3同(1)当ξ=1,即k 次摸球都摸到黑球P (ξ=1)=(13)k当ξ=2,即k 次摸球有且仅有 k -1 次摸到黑球,1次摸到白球P (ξ=2)=P (白黑 黑)+P (黑白黑 黑)+ +P (黑黑 黑白)=23ˑ(23)k -1+13ˑ23ˑ(23)k -2+ +(13)k -1ˑ23=13k (2k +2k -1+ +2)=13k2(1-2k)1-2=2 2k -13k当ξ=3,P (ξ=3)=1-P (ξ=1)-P (ξ=2)=1-(13)k -2(2k-1)3k=1-2k +1-13kʑE ξ=(13)k +4(2k -1)3k +3-3(2k +1-1)3k =3-2 2k3k=3-2(23)k22.(1)设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2).则切线MA 方程为y -y 1=x 12(x -x 1)整理得x 1x =2(y +y 1)同理,M B 方程为x 2x =2(y +y 2)又M 在MA ,M B 上ʑx 1x 0=2(y 0+y 1)x 2x 0=2(y 0+y 2){ʑl A B :x 0x =2(y 0+y )ȵM (x 0,y 0)在x 2=4(y +1)上㊀㊀ʑy 0=x 024-14ʑl A B :x 0x =2(y +x 024-1)(2)设l M F :y =k x +1,D (x 3,y 3)联立y =k x +1x 2=4(y +1){㊀ʑx 2-4k x -8=0㊀ʑx 0+x 3=4k x 0x 3=-8{ʑ|MD |=1+k 2|x 0-x 3|=1+k 216k 2+32=41+k 2k 2+2设A ㊁B 到l M F 的距离为d 1㊁d 2.则d 1+d 2=|k x 1-y 1+1|1+k 2+|k x 2-y 2+1|1+k 2=|k (x 1-x 2)-(y 1-y 2)|1+k 2=k (x 1-x 2)-x 12-x 2241+k 2=|x 1-x 2|41+k2|4k -(x 1+x 2)|联立x 2=4yx 0x =2(y 0+y ){㊀㊀ʑx 2-2x 0x +4y 0=0㊀㊀ʑx 1+x 2=2x 0x 1x 2=4y 0{ʑd 1+d 2=4x 02-16y 041+k 2|4k -2x 0|=2|2k -x 0|1+k2,(其中4x 02-16y 0=4ˑ4(y 0+1)-16y 0=2)ʑS 四边形M A D B =12|MD |(d 1+d 2)=21+k 22+k 2 2|2k -x 0|1+k 2=42+k 2|2k -x 0|又x 02=4(y 0+1)(y 0>0)k =y 0-1x 0ìîíïïïï㊀ʑk =x 02-84x 0代入得ʑS 四边形M A D B =42+116(x 0-8x 0)2x 02-82x 0-x 0=12(x 0-8x 0)2+32 x 0+8x 0=12(x 0+8x 0)2ȡ12(28)2=16当且仅当x 0=22,即M (22,1)取最小值.5。