2014版高考数学(理科)二轮复习第三篇 1
- 格式:ppt
- 大小:2.20 MB
- 文档页数:29
最新2014年全国高考理科数学二模试题及答案-山东卷解析:C对于f(x)=ax,当a1时,f(x)在R上是增函数。
对于g(x)=(2-a)x,当2-a>0时,g(x)在R上是增函数;当2-a<0时,g(x)在R上是减函数。
所以当a>2时,f(x)是减函数,g(x)是增函数,两者同时成立,为充分必要条件。
答案选C。
4在平面直角坐标系内,点A(0,0),点B(3,4),点C(4,3),则△ABC的面积为A5B6C7D8解析:BABC的面积可以用向量叉积求解,设向量BA=(3,-4),向量CA=(4,-3),则ABC的面积为1/2|BA×CA|=1/2|3×(-3)-4×4|=6.答案选B。
5已知集合A={x|x2-2x-3<0},则A的取值范围是A(-∞,1)∪(3,∞)B(-∞,1)∪(3,∞)C(-∞,-1)∪(3,∞)D(-∞,-1)∪(1,3)∪(3,∞)解析:Dx2-2x-3=(x-3)(x+1)<0,解得x∈(-∞,-1)∪(3,∞)。
答案选D。
6已知函数f(x)=x3-3x2+5x-1,则f(x)的单调递减区间为A(-∞,1)B(1,2)C(2,+∞)D(1,+∞)解析:Af'(x)=3x2-6x+5,判别式△=6-4×3×5=-560的解不存在,f(x)在R上单调递减。
答案选A。
7已知集合A={x|x2+px+q>0},其中p,q∈R,若A中至少有一个元素,则下列说法正确的是A p2-4q≤0B p2-4q>0C p2+4q≤0D p2+4q>0解析:B当A中至少有一个元素时,x2+px+q>0,即判别式△=p2-4q0.答案选B。
8已知函数f(x)=x2-2ax+a2+3a-1,若对于任意实数x,都有f(x)≥0,则a的取值范围是A(-∞,-2]∪[1,2]B(-∞,-2]∪[2,+∞)C[-1,2]D(-∞,-1]∪[2,+∞)解析:Bf(x)=x2-2ax+a2+3a-1=(x-a)2+(3a-1),当a≥2或a≤-2时,(3a-1)≤0,所以f(x)≤0,不符合条件。
审题是解题的开端,深入细致的审题是成功解题的必要前提.著名数学教育家波利亚说,“最糟糕的情况就是学生没有弄清问题就进行演算和作图.”为此波利亚总结出一张“怎样解题表",将解题的过程分为四个阶段.其中第一步弄清问题就是我们常说的审题.审题就是多角度地观察,由表及里,由条件到结论,由数式到图形,洞察问题实质,选择正确的解题方向.事实上,很多考生往往对审题掉以轻心,或不知从何处入手进行审题,致使解题失误而丢分,真是令人痛心不已.本讲结合实例,教你正确的审题方法,给你制订一条“审题路线图”,破解高考不再难.一审条件挖隐含任何一个数学问题都是由条件和结论两部分构成的.条件是解题的主要素材,充分利用条件间的内在联系是解题的必经之路.条件有明示的,有隐含的,审视条件更重要的是要充分挖掘每一个条件的内涵和隐含的信息,发挥隐含条件的解题功能.例1已知0≤α<β<γ〈2π,且sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,求β-α.审题路线图条件sin α+sin β+sin γ=0,cos α+cos β+cos γ=0根据审题路线图,可以规范地将题目解出.解由已知得错误!①2+②2得2+2(sin αsin β+cos αcos β)=1,故cos(β-α)=-12。
由0≤α<β<γ〈2π,知0〈β-α<2π,所以β-α=错误!或β-α=错误!.同理可得cos(γ-α)=-错误!,0<γ-α〈2π,所以γ-α=错误!或γ-α=错误!。
由于β<γ,得β-α<γ-α,所以β-α取小值,γ-α取大值,即β-α=错误!.设α,β都是锐角,且cos α=错误!,sin(α+β)=错误!,则cos β等于()A。
错误! B.错误!C。
错误!或错误!D。
错误!或错误!答案A解析依题意得sin α=错误!=错误!,cos(α+β)=±错误!=±错误!。
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【KS5U 解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【KS5U 解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=Θ3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 5【答案】A 【KS5U 解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+Θ4.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5B.5 C. 2 D. 1【答案】B 【KS5U 解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==Θ5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】 A 【KS5U 解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 13【答案】 C 【KS5U 解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴πΘΘ7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7 【答案】 D 【KS5U 解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】 D 【KS5U 解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=Θ9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【KS5U 解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.33 B.93 C. 6332 D. 94【答案】 D【KS5U 解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2 【答案】 C 【KS5U 解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
3.三角函数、解三角形、平面向量1. α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=yx ,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -152. 同角三角函数的基本关系式及诱导公式(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[问题2] cos 9π4+tan ⎝⎭⎫-7π6+sin 21π的值为________. 答案22-333. 三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点);(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝⎛⎭⎫k π+π2,0,k ∈Z ;y =tan x ,⎝⎛⎭⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎡⎦⎤-π2+2k π,π2+2k π (k ∈Z ),减区间:⎣⎡⎦⎤π2+2k π,3π2+2k π (k ∈Z ); y =cos x 的增区间:[]-π+2k π,2k π (k ∈Z ), 减区间:[2k π,π+2k π] (k ∈Z );y =tan x 的增区间:⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z ). (4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.易错警示:求y =A sin(ωx +φ)的单调区间时,容易出现以下错误: (1)不注意ω的符号,把单调性弄反,或把区间左右的值弄反; (2)忘掉写+2k π,或+k π等,忘掉写k ∈Z ;(3)书写单调区间时,错把弧度和角度混在一起.如[0,90°]应写为⎣⎡⎦⎤0,π2. [问题3] 函数y =sin ⎝⎛⎭⎫-2x +π3的递减区间是________. 答案 ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ). 4. 两角和与差的正弦、余弦、正切公式及倍角公式sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2tan α1-tan 2α.在三角的恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. [问题4] 已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 答案 -56655. 解三角形(1)正弦定理:a sin A =b sin B =csin C=2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(ⅰ)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中A >B ⇔sin A >sin B .(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理鉴定三角形的形状.[问题5] 在△ABC 中,a =3,b =2,A =60°,则B =________. 答案 45° 6. 向量的平行与垂直设a =(x 1,y 1),b =(x 2,y 2),且b ≠0,则a ∥b ⇔b =λa ⇔x 1y 2-x 2y 1=0. a ⊥b (a ≠0)⇔a·b =0⇔x 1x 2+y 1y 2=0.0可以看成与任意向量平行,但与任意向量都不垂直,特别在书写时要注意,否则有质的不同.[问题6] 下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a =0,则-a =0.其中正确命题是________. 答案 ④ 7. 向量的数量积|a |2=a 2=a·a ,a·b =|a||b |cos θ=x 1x 2+y 1y 2, cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22,a 在b 上的投影=|a |cos 〈a ,b 〉=a·b |b|=x 1x 2+y 1y 2x 22+y 22. 注意:〈a ,b 〉为锐角⇔a·b >0且a 、b 不同向; 〈a ,b 〉为直角⇔a·b =0且a 、b ≠0; 〈a ,b 〉为钝角⇔a·b <0且a 、b 不反向.易错警示:投影不是“影”,投影是一个实数,可以是正数、负数或零.[问题7] 已知|a |=3,|b |=5,且a ·b =12,则向量a 在向量b 上的投影为________. 答案1258. 当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )c 与a (b ·c )不一定相等,(a ·b )c 与c 平行,而a (b ·c )与a 平行.[问题8] 下列各命题:①若a ·b =0,则a 、b 中至少有一个为0;②若a ≠0,a ·b =a ·c ,则b =c ;③对任意向量a 、b 、c ,有(a ·b )c ≠a (b ·c );④对任一向量a ,有a 2=|a |2.其中正确命题是________. 答案 ④9. 几个向量常用结论:①P A →+PB →+PC →=0⇔P 为△ABC 的重心; ②P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心; ③向量λ(AB →|AB →|+AC→|AC →|) (λ≠0)所在直线过△ABC 的内心;④|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.易错点1 图象变换方向或变换量把握不准致误例1 要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可). 错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了.正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位.答案 左π12易错点2 忽视隐含条件的挖掘致误例2 已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2,求cos β.错解 由0<α<π2,0<β<π2,得0<α+β<π,则cos(α+β)=±1114.由cos α=17,0<α<π2,得sin α=437.故cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=7198或12.找准失分点 由0<α+β<π,且sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π,又cos α=17<12,∴π3<α<π2,即α+β∈⎝⎛⎭⎫2π3,π,∴cos(α+β)=-1114. 正解 ∵0<α<π2且cos α=17<cos π3=12,∴π3<α<π2,又0<β<π2, ∴π3<α+β<π,又sin(α+β)=5314<32,∴2π3<α+β<π. ∴cos(α+β)=-1-sin 2(α+β)=-1114,sin α=1-cos 2α=437. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12.易错点3 忽视向量共线致误例3 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是__________.错解 ∵cos θ=a·b|a|·|b |=2λ+15·λ2+1.因θ为锐角,有cos θ>0, ∴2λ+15·λ2+1>0⇒2λ+1>0,得λ>-12,λ的取值范围是⎝⎛⎭⎫-12,+∞.找准失分点 θ为锐角,故0<cos θ<1,错解中没有排除cos θ=1即共线且同向的情况. 正解 由θ为锐角,有0<cos θ<1. 又∵cos θ=a·b |a|·|b |=2λ+15·λ2+1,∴0<2λ+15·λ2+1≠1, ∴⎩⎪⎨⎪⎧ 2λ+1>0,2λ+1≠5·λ2+1,解得⎩⎪⎨⎪⎧λ>-12,λ≠2.∴λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠2.答案 ⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠21. 已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2等于( ) A .-104B .-64C.64D.104答案 B解析 根据题意得cos α=x5+x 2=24x , 解得x =3或x =-3或x =0. 又α是第二象限角,∴x =- 3. 即cos α=-64,sin ⎝⎛⎭⎫α+π2=cos α=-64. 2. 已知sin θ+cos θ=43 (0<θ<π4),则sin θ-cos θ的值为( )A.23B .-23C.13D .-13答案 B解析 ∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+sin 2θ=169,∴sin 2θ=79,又0<θ<π4,∴sin θ<cos θ.∴sin θ-cos θ=-(sin θ-cos θ)2 =-1-sin 2θ=-23. 3. (2012·辽宁)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .|a |=|b |D .a +b =a -b答案 B解析 因为|a +b |=|a -b |, 所以(a +b )2=(a -b )2, 即a ·b =0,故a ⊥b .4. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.②解①②得x =-79,y =-73.5. (2012·陕西)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22 C.12D .-12答案 C解析 利用余弦定理求解. ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2. ∴cos C ≥12.∴cos C 的最小值为12.6. 函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图象如图所示,那么f (0)=( )A .-12B .-1C .-32D .- 3答案 B解析 由题图可知,函数的最大值为2,因此A =2. 又因为函数经过点⎝⎛⎭⎫π3,2,则2sin ⎝⎛⎭⎫2×π3+φ=2, 即2×π3+φ=π2+2k π,k ∈Z ,得φ=-π6+2k π,k ∈Z .f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=-1. 7. 在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为________.答案 π6解析 由5cos(B +C )+3=0得cos A =35,则sin A =45,445=52sin B ,sin B =12.又a >b ,B 必为锐角,所以B =π6.8. 将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________. 答案 y =sin ⎝⎛⎭⎫12x -π10 9. 关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题:①y =f (x )的图象关于直线x =-π6对称;②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6;③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称;④由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍.其中正确命题的序号是________. 答案 ②③解析 ①中,由2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ),若k π2+π12=-π6,可得k =-12Z ,故①错;②中,f (x )=4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫π2-2x -π3=4cos ⎝⎛⎭⎫π6-2x =4cos ⎝⎛⎭⎫2x -π6,故正确;③中,由2x +π3=k π(k ∈Z ),得x =k π2-π6(k ∈Z ),当k =0时,可得对称中心是⎝⎛⎭⎫-π6,0,故③正确;④中,有2x 1+π3=k 1π,有2x 2+π3=k 2π(k 1,k 2∈Z ),所以x 1=k 1π2-π6,x 2=k 2π2-π6,所以x 1-x 2=(k 1-k 2)π2,由于k 1-k 2不一定是偶数,故x 1-x 2不一定是π的整数倍.10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C +cos C =1-sin C2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值. 解 (1)由已知得sin C +sin C2=1-cos C ,即sin C 2⎝⎛⎭⎫2cos C 2+1=2sin 2C 2. 由sin C 2≠0得2cos C 2+1=2sin C2,即sin C 2-cos C 2=12.两边平方得sin C =34.(2)由sin C 2-cos C 2=12>0得π4<C 2<π2,即π2<C <π,则由sin C =34得cos C =-74.由a 2+b 2=4(a +b )-8得(a -2)2+(b -2)2=0, 则a =2,b =2.由余弦定理得c 2=a 2+b 2-2ab cos C =8+27, 所以c =7+1.。
1.(2014·新课标全国卷Ⅰ)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.证明:(1)由题设知,A,B,C,D四点共圆,所以∠D=∠CBE.由已知,得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,如图,则由MB=MC知,MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.2.(2014·郑州质检)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(1)若EC CB =13,ED DA =1,求DC AB 的值;(2)若EF 2=F A ·FB ,证明:EF ∥CD .解:(1)∵A ,B ,C ,D 四点共圆,∴∠EDC =∠EBF ,又∠AEB 为公共角,∴△ECD ∽△EAB ,∴DC AB =EC EA =ED EB .∴⎝ ⎛⎭⎪⎫DC AB 2=EC EA ·ED EB =EC EB ·ED EA =14×12=18. ∴DC AB =24.(2)证明:∵EF 2=F A ·FB ,∴EF F A =FB FE , 又∵∠EF A =∠BFE ,∴△F AE ∽△FEB ,∴∠FEA =∠EBF ,又∵A ,B ,C ,D 四点共圆,∴∠EDC =∠EBF ,∴∠FEA =∠EDC ,∴EF ∥CD .3.(2014·海口调研)如图,直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,⊙O 交直线OB 于E ,D ,连接EC ,CD .(1)求证:直线AB 是⊙O 的切线;(2)若tan ∠CED =12,⊙O 的半径为3,求OA 的长.解:(1)证明:如图,连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB .∵OC 是圆的半径,∴直线AB 是⊙O 的切线.(2)由(1)知,直线AB 是⊙O 的切线,∴∠BCD =∠E ,又∠CBD =∠EBC ,∴△BCD ∽△BEC ,∴BC BE =BD BC ,BC 2=BD ·BE ,∵tan ∠CED =CD EC =12,△BCD ∽△BEC ,∴BD BC =CD EC =12,设BD =x ,则BC =2x ,∵BC 2=BD ·BE ,∴(2x )2=x (x +6),∴BD =2,∴OA =OB =BD +OD =2+3=5.(2014·云南统检)如图,P 是⊙O 的直径AB 延长线上的一点,割线PCD 交⊙O 于C ,D 两点,弦DF 与直径AB 垂直,H 为垂足,CF 与AB 交于点E .(1)求证:P A ·PB =PO ·PE ;(2)若DE ⊥CF ,∠P =15°,⊙O 的半径等于2,求弦CF 的长. 解:(1)证明:如图,连接OD .∵AB 是⊙O 的直径,弦DF 与直径AB 垂直,H 为垂足,C 在⊙O 上, ∴∠DOA =∠DCF ,∴∠POD =∠PCE .又∵∠DPO =∠EPC ,∴△PDO ∽△PEC ,∴PD PE =PO PC ,即PD ·PC =PO ·PE .由割线定理,得P A ·PB =PD ·PC ,∴P A ·PB =PO ·PE .(2)由已知,直径AB 是弦DF 的垂直平分线,∴ED =EF ,∴∠DEH =∠FEH .∵DE ⊥CF ,∴∠DEH =∠FEH =45°.由∠PEC =∠FEH =45°,∠P =15°,得∠DCF =60°.由∠DOA =∠DCF ,得∠DOA =60°.在Rt △DHO 中,OD =2,DH =OD sin ∠DOH =3,∴DE =EF =DH sin ∠DEH =6, CE =DE tan ∠DCE =2, ∴CF =CE +EF =2+ 6.5.(2014·哈师附中、东北师大附中、辽宁实验中学联合模拟)如图,P A ,PB 是圆O 的两条切线,A ,B 是切点,C 是劣弧AB (不包括端点)上一点, 直线PC 交圆O 于另一点D ,Q 在弦CD 上,且∠DAQ =∠PBC .求证:(1)BD AD =BC AC ;(2)△ADQ ∽△DBQ .证明:(1)由题知,△PBC ∽△PDB ,所以BD BC =PD PB ,同理AD AC =PD P A .又因为P A =PB ,所以BD BC =AD AC ,即BD AD =BC AC .(2)如图,连接AB .因为∠BAC =∠PBC =∠DAQ ,∠ABC =∠ADQ , 所以△ABC ∽△ADQ ,即BC AC =DQ AQ ,故BD AD =DQ AQ ,又因为∠DAQ =∠PBC =∠BDQ ,所以△ADQ ∽△DBQ .6.(2014·昆明调研)如图所示,已知D 为△ABC 的BC 边上一点,⊙O 1经过点B ,D ,交AB 于另一点E ,⊙O 2经过点C ,D ,交AC 于另一点F ,⊙O 1与⊙O 2的另一交点为G .(1)求证:A ,E ,G ,F 四点共圆;(2)若AG 切⊙O 2于G ,求证:∠AEF =∠ACG .证明:(1)如图,连接GD ,四边形BDGE ,CDGF 分别内接于⊙O 1,⊙O 2,∴∠AEG=∠BDG,∠AFG=∠CDG,又∠BDG+∠CDG=180°,∴∠AEG+∠AFG=180°,∴A,E,G,F四点共圆.(2)∵A,E,G,F四点共圆,∴∠AEF=∠AGF,∵AG与⊙O2相切于点G,∴∠AGF=∠ACG,∴∠AEF=∠ACG.如图,在圆的内接四边形ABCD中,AD为圆的直径,对角线AC与BD 交于点Q,AB,DC的延长线交于点P,连接PQ并延长交AD于点E,连接EB.求证:(1)PE⊥AD;(2)BD平分∠EBC.证明:(1)由已知AD为直径,所以∠ABD=∠ACD=90°,所以点Q为△P AD的垂心.则PE为AD边上的高,即PE⊥AD.(2)由(1)知,∠PBD=∠PED=90°,因而P,B,E,D四点共圆,则∠AEB=∠BPC,又∠PCB=∠DAB,所以△AEB∽△CPB,所以∠EBA=∠CBP,所以∠EBD=∠CBD,即BD平分∠EBC.8.(2014·石家庄一模)已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(1)当点D与点A不重合时,如图(1),证明:ED2=EB·EC;(2)当点D与点A重合时,如图(2),若BC=2,BE=6,求⊙O2的直径的长.解:(1)证明:连接AB,在EA的延长线上取点F,如图(1)所示.∵AE是⊙O1的切线,切点为A,∴∠F AC=∠ABC,∵∠F AC=∠DAE,∴∠ABC=∠DAE,∵∠ABC是⊙O2内接四边形ABED的外角,∴∠ABC=∠ADE,∴∠DAE=∠ADE,∴EA=ED.∵EA2=EB·EC,∴ED2=EB·EC.(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,故直线CA与⊙O2相切.在EA的延长线上取点P,在CA的延长线上取点M,连接AB,如图(2)所示,由弦切角定理知,∠P AC=∠ABC,∠MAE=∠ABE,又∠P AC=∠MAE,∴∠ABC=∠ABE=12×180°=90°,∴AC与AE分别为⊙O1和⊙O2的直径.由切割线定理知,EA2=BE·CE,而CB=2,BE=6,CE=8,∴EA2=6×8=48,AE=43,∴⊙O2的直径的长为4 3.。
高考数学第二轮复习计划一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。
3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。
三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题.第二轮复习的形式和内容1.形式及内容:分专题的形式,具体而言有以下八个专题。
2012届高考数学二轮复习资料 专题四 三角函数(学生版)【考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos xx x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性. 4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【考点预测】从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现.【要点梳理】1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.3.函数sin()y A x ωϕ=+的问题: (1)“五点法”画图:分别令0x ωϕ+=、2π、π、32π、2π,求出五个特殊点;(2)给出sin()y A x ωϕ=+的部分图象,求函数表达式时,比较难求的是ϕ,一般从“五点法”中取靠近y 轴较近的已知点代入突破; (3)求对称轴方程:令x ωϕ+=2k ππ+()k Z ∈,求对称中心: 令x ωϕ+=k π()k Z ∈; (4)求单调区间:分别令22k x ππωϕ-≤+≤22k ππ+()k Z ∈;22k x ππωϕ+≤+≤322k ππ+()k Z ∈,同时注意A 、ω符号. 4.解三角形:(1)基本公式:正弦、余弦定理及其变形公式;三角形面积公式; (2)判断三角形形状时,注意边角之间的互化. 【考点在线】考点1 三角函数的求值与化简此类题目主要有以下几种题型:⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值的问题.⑶考查已知三角恒等式的值求角的三角函数值的基本转化方法,考查三角恒等变形及求角的基本知识.例1.已知函数f (x )=)2sin(42cos 2ππ+⎪⎭⎫ ⎝⎛-x x .(Ⅰ)求f (x )的定义域; (Ⅱ)若角a 在第一象限且3cos ,5a f a =求().练习1: (2011年高考福建卷文科9)若α∈(0,2π),且2sin α+1cos 24α=,则tan α的值等于( )A.2B. 3C.D.考点2 考查sin()y A x ωϕ=+的图象与性质考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,会用数形结合的思想来解题. 例 2.(2011年高考天津卷文科7)已知函数()2sin(),,f x x x R ωϕ=+∈其中0,.ωπϕπ>-<≤若()f x 的最小正周期为6π,且当2x π=时, ()f x 取得最大值,则( )A. ()f x 在区间[2,0]π-上是增函数B. ()f x 在区间[3,]ππ--上是增函数C. ()f x 在区间[3,5]ππ上是减函数D. ()f x 在区间[4,6]ππ上是减函数 练习2.(2011年高考江苏卷9)函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f考点3 三角函数与向量等知识的综合三角函数与平面向量的综合,解答过程中,向量的运算往往为三角函数提供等量条件. 例3.(2009年高考江苏卷第15题)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b.练习3.(天津市十二区县重点中学2011年高三联考二理)(本小题满分13分)已知向量2,1),(cos ,cos )444x x x m n == , ()f x m n =⋅ .(I )若()1f x =,求cos()3x π+值;(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=, 求函数()f A 的取值范围.考点4. 解三角形解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化. 例4. (2011年高考安徽卷文科16) 在 ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,,,12cos()0B C ++=,求边BC 上的高.练习4. (2011年高考山东卷文科17)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值;(II ) 若cosB=14,5b ABC 的周长为,求的长.【易错专区】1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为( )(A ) 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( )(A )3 (B )2 (C )32 (D )233.(2011年高考安徽卷理科9)已知函数()s i n (2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( )(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 4.(2011年高考辽宁卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asinAsinB+bcos 2则ba=( )(A) (B) (C)5.(2011年高考辽宁卷理科7)设sin 1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)796.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=( )(A (B )(C (D )7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43 8. (2011年高考全国新课标卷理科11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为( )A .3 B .6C .3 D .610.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为( )A.{|,}3x k x k k z ππππ+≤≤+∈B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内( )(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为( )(A )43(B) 8-(C)1 (D) 2313. (2011年高考四川卷理科6)在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是( ) (A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π) 14.(2011年高考辽宁卷理科16)已知函数f (x )=Atan (ωx+ϕ)(ω>0,2π<ω),y=f (x )的部分图像如下图,则f (24π)=____________.15.(2011年高考安徽卷理科14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________16. (2011年高考全国新课标卷理科16)在ABC ∆中,60,B AC ==2AB BC+的最大值为 。
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}考点:交集及其运算.专题:集合.分析:求出集合N的元素,利用集合的基本运算即可得到结论.解答:解:∵N={x|x2﹣3x+2≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5C.﹣4+i D.﹣4﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的几何意义求出z2,即可得到结论.解答:解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A点评:本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5考点:平面向量数量积的运算.专题:平面向量及应用.分析:将等式进行平方,相加即可得到结论.解答:解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1考点:余弦定理.专题:三角函数的求值.分析:利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B 为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.解答:解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.点评:此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.解答:解:设随后一天的空气质量为优良的概率为p,则有题意可得0.75×p=0.6,解得p=0.8,故选:A.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π.切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7考点:程序框图.专题:算法和程序框图.分析:根据条件,依次运行程序,即可得到结论.解答:解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解答:解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.点评:本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8C.3D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB 的面积为()A.B.C.D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.解答:解:由y2=3x,得2p=3,p=,则F().∴过A,B的直线方程为y=,即.联立,得.设A(x1,y1),B(x2,y2),则,.∴==.故选:D.点评:本题考查直线与圆锥曲线的关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间位置关系与距离.分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解答:解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.点评:本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)考点:正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:由题意可得,f(x0)=±,且=kπ+,k∈z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.解答:解:由题意可得,f(x0)=±,且=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.点评:本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.考点:二项式系数的性质.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.解答:解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.考点:三角函数的最值;两角和与差的余弦函数;两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.解答:解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.点评:本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.解答:解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)点评:本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:画出图形即可得到结果.解答:解:由题意画出图形如图:∵点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆心到MN的距离为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故答案为:[﹣1,1].点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.考点:数列的求和;等比数列的性质.专题:证明题;等差数列与等比数列.分析:(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.解答:证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,<=,∴当n=1时,成立,当n≥2时,++…+1+…+==<.∴对n∈N+时,++…+<.点评:本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱柱P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AF至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.解答:(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AF至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AF=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.点评: 本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.考点:线性回归方程.专题:计算题;概率与统计.分析: (Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b 的值,再求出a 的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t 的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5,=﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3; (Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得: =0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.点评: 本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F 1,F 2分别是C :+=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .考点: 椭圆的应用.专题: 圆锥曲线中的最值与范围问题.分析: (1)根据条件求出M 的坐标,利用直线MN 的斜率为,建立关于a ,c 的方程即可求C 的离心率; (2)根据直线MN 在y 轴上的截距为2,以及|MN|=5|F 1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.解答: 解:(1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c ,当x=c 时,y=,即M (c ,),若直线MN 的斜率为, 即tan ∠MF 1F 2=,即b 2==a 2﹣c 2, 即c 2﹣﹣a 2=0, 则, 解得e=. (Ⅱ)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故=4,即b 2=4a ,由|MN|=5|F 1N|,解得|DF 1|=2|F 1N|,设N (x 1,y 1),由题意知y 1<0,则,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.点评:本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数发是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).考点:利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g'(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.解答:解:(Ⅰ)由f(x)得f'(x)=e x+e﹣x﹣2,即f'(x)≥0,当且仅当e x=e﹣x即x=0时,f'(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g'(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x﹣2b+2).①∵e x+e﹣x≥2,e x+e﹣x+2≥4,∴当2b≤4,即b≤2时,g'(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即时,g'(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)由(Ⅱ)知,.当b=2时,由,得;当时,有,由,得.所以ln2的近似值为0.693.点评:1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC 的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.考点:与圆有关的比例线段;相似三角形的判定.专题:选作题;几何证明.分析:(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.解答:证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.点评:本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.考点:参数方程化成普通方程;利用导数研究曲线上某点切线方程;圆的参数方程.专题:坐标系和参数方程.分析:(Ⅰ)半圆C的极坐标方程化为直角坐标方程为(x﹣1)2+y2=1,令x﹣1=cosα∈[﹣1,1],y=sinα,可得半圆C的参数方程.(Ⅱ)由题意可得直线CD和直线l平行.设点D的坐标为(1+cosα,sinα),根据直线CD和直线l的斜率相等求得cotα的值,可得α的值,从而得到点D的坐标.解答:解:(Ⅰ)半圆C的极坐标方程ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,化为直角坐标方程为(x﹣1)2+y2=1,x∈[0,2]、y∈[0,1].令x﹣1=cosα∈[﹣1,1],y=sinα,α∈[0,π].故半圆C的参数方程为,α∈[0,π].(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,∴直线CD和直线l平行,故直线CD和直线l斜率相等.设点D的坐标为(1+cosα,sinα),∵C(1,0),∴=,解得tanα=,即α=,故点D的坐标为(,).点评:本题主要考查把极坐标方程化为直角坐标方程,把直角坐标方程化为参数方程,注意参数的范围,属于基础题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.解答:解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<≤3.综上可得,a的取值范围(,).点评:本题主要考查绝对值三角不等时,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。