低压抽汽调节阀油动机液压原理图
- 格式:doc
- 大小:60.50 KB
- 文档页数:1
油动机的⼯作原理及电路图油动机⼯作原理图解:主汽门控制的油系统如图1所⽰,主要由伺服阀(MOOG阀),卸荷阀,油动机组成,油动机下缸进油打开汽门,油动机上缸与有压回油相通,汽门上部装有复位弹簧,当油动机下缸泄油时,汽门在上部弹簧回复⼒的作⽤下关汽门,油动机下缸的进油或泄油是由伺服阀控制的,⽽伺服阀接受伺服卡的驱动电信号,控制伺服阀的进油或泄油量,打闸停机时遮断电磁阀(AST电磁阀)动作,将安全油压(AST油压)泄去,这时卸荷阀打开,油动机下缸油压经卸荷阀迅速泄去,主汽门在弹簧回复⼒的作⽤下也迅速关闭,因此正常停机后,油动机下缸与有压回油是相通的,原理基本相似。
图1:汽门控制EH油系统2.2 伺服阀的⼯作原理图2是伺服阀的⼯作原理图。
MOOG J761—003伺服阀是双喷嘴挡板式伺服阀,由两级液压放⼤及机械反馈系统所组成。
第⼀级液压放⼤是双喷嘴和挡板系统;第⼆级功率放⼤是滑阀系统。
伺服阀线圈接受⼀正向电流指令信号时,线圈将会产⽣电磁⼒作⽤于衔铁的两端,衔铁因此⽽带动挡板偏转,挡板的偏转将减少某⼀个喷嘴的流量,进⽽改变了与此喷嘴相通的滑阀⼀侧的压⼒,推动滑阀朝⼀边移动,滑阀上的凸肩打开了EH压⼒油供油⼝,同时滑阀另⼀凸肩打开油动机的进油⼝,油动机进油,汽门打开,汽门的位置发送器LVDT输出的反馈信号增⼤,指令与反馈信号的偏差在不断减少,⾄伺服阀的开阀驱动指令也在不断减⼩,当伺服阀的输出指令与弹簧回复⼒平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停⽌进油,汽门位置保持不变;反之线圈接受负向电流信号时,滑阀向另⼀边移动,滑阀凸肩关闭进油⼝,另⼀凸肩打开回油⼝,油动机泄油,其它动作与开阀原理相同。
电液伺服阀是有机械零偏的,其主要作⽤是当伺服阀失去控制信号或线圈损坏时,靠它的机械偏置使滑阀移动打开泄,使油动机下缸与回油相通,使⽓门关闭,防⽌⽓门突开引起机组超速。
微机电液控制系统说明书1 概述随着电站控制系统自动化水平的日益提高,原来的液压机械调节系统已不能适应锅炉给水量的自动调节要求,因此,微机电液控制系统便得到广泛的发展和应用。
东方汽轮机厂给水泵小机上配置了高压抗燃油微机电液控制系统,简称MEH (其中包括小汽轮机危急遮断器,简称METS )。
这是新一代控制系统,它是由我厂进行系统设计,并且依照用户的要求装载应用软件,该系统可靠性好,操作简单灵活方便。
该MEH 以高压抗燃油为工作介质,以电液伺服阀为液压接口设备,以高低压调节阀油动机为执行机构,构成一套完整的MEH 控制系统,控制给水泵汽轮机的转速,满足用户的要求。
本说明书中,关于手动,转速自动控制,锅炉自动三种控制方式的转速范围最终应以主机启动运行的说明书为准。
2 控制系统原理锅炉给水泵汽轮机用于驱动大型电站锅炉给水泵,满足锅炉给水的要求。
MEH 控制原理图见2-1。
机组在启动和正常运行过程中,通过测速板采集机组的转速,开关量通过开入板送到控制回路上,DPU 将这些信号进行判断、分析、计算,再综合LVDT 返回的信号,输出控制信号到伺服阀,通过伺服阀来改变调节阀的开度,控制进入给水泵汽轮机的蒸汽流量,改变汽轮机的转速。
当汽机转速变化时,它所控制的给水泵转速也随着变化,给水泵的出口流量变化,从而达到对锅炉给水流量的要求。
本机组有两个汽源。
一个工作汽源,来自主机四段抽汽;一个备用汽源,来自再热器冷端蒸汽。
工作汽源(主机四段抽汽)和备用汽源(再热器冷端蒸汽)都用同一个蒸汽室—喷嘴室,采用喷嘴配汽。
进汽系统示意图见图2-2。
不同工程的工作汽源和备用汽源可能略有不同。
冷端蒸汽)(主机再热器备用蒸汽进口图2-2 MEH 进汽系统示意图图2-1 MEH控制系统原理图本机组采用低压辅助汽源启动。
启动过程中,辅汽通过逆止阀、电动闸阀、低压主汽阀、低压调节阀进入给水泵汽轮机,此时抽汽逆止阀、切换阀均关闭。
随着大机负荷的上升,工作蒸汽参数也随之上升。
油动机是调节汽阀的执行机构,它将由电液转换器输入的二次油信号转换为有足够作功能力的行程输出以操纵调节阀。
油动机是断流双作用往复式油动机,以汽轮机油为工作介质,动力油用~0.8MPa的调节油。
油动机结构如图1所示。
图1 油动机油动机主要由油缸、错油门、连接体和反馈机构组成。
错油门(8)通过连接体(7)与油缸(5)连接在一起,错油门与油缸之间的油路由连接体沟通,油路接口处装有O形密封圈。
油缸由底座、筒体、缸盖、活塞、活塞杆等构成。
筒体与底座、缸盖之间装有O形密封圈,它们由
4只长螺栓组装在一起。
活塞配有填充聚四氟乙烯专用活塞环。
活塞动作时在接近上死点处有~10mm的阻尼区,用以减小活塞的惯性力。
1、DUMP(卸荷)阀该卸荷阀安装在液压块上,当卸荷阀动作时,它将油动机的高压油迅速泄去,使汽阀快速关闭,弹簧使卸荷阀保持在打开位置。
正常运行时,高压油通过试验电磁阀、节流孔进入腔室Y。
此压力与伺服阀供给油缸的高压油压力相近,但由于在Y腔室中,它作用的面积较大,因而克服了弹簧力,以及阀下腔的高压油作用力,使卸荷阀关闭。
当它关闭时,卸荷阀将油缸中的高压油与回油通道切断,在油缸活塞下建立起油压。
危急遮断油总管压力是等于或略高于送到Y腔室的压力。
因而,当此总管压力降低时,总管逆止阀找开,卸荷阀内的逆止阀也打开,腔室Y压力降低,卸荷阀打开,将油缸活塞下的高压油与回油接通,从而将再热调节汽阀关闭。
当试验电磁阀通电时,它将Y腔室的高压油与回油通道接通,这就使卸荷阀内的逆止阀打开从而使卸荷阀打开,而关闭再热调节汽阀。
当危急遮断油总管压力重新建立和试验电磁阀断电时,卸荷阀迅速关闭,使油缸活塞下建立起油压。
2、快速卸荷阀快速卸荷阀安装在油动机液压块上,它主要作用是当机组发生故障必须紧急停机时或在危急脱扣装置等动作使危急遮断油泄油失压后,可使油动机活塞下腔的压力油经快速卸荷阀快速释放,这时不论伺服放大器输出的信号大小,在阀门弹簧力作用下,均使阀门关闭。
在快速卸荷阀中有一个杯状滑阀4,在滑阀下部的腔室A与油动机活塞下的高压油路相通。
滑阀上部的复位油室一路经逆止阀与危急遮断油相通,而另一路是经一针阀1与油动机活塞上腔及回油通道B相连。
节流孔3是产生该阀的复位油的,一旦该节流孔堵死,则会产生复位油降低或失压的现象,将会直接影响执行机构的正常运行。
调试时,该针阀靠调节手柄2完全压死在阀座上,仅在现场用于手动卸荷时才拧开此针阀。
在正常运行时,滑阀上部的油压作用力加上弹簧力将大于滑阀下高压油的作用力,杯状滑阀压在底座上,使高压油与油缸回油相通的油口关闭,油缸活塞下腔的高压油建立,执行机构具备工作条件。
阻尼孔7是对滑阀起稳定作用,以免在系统油压变化时产生不利的振荡。