北京市朝阳区2019届高三数学第二次(5月)综合练习(二模)试题理(含参考答案)
- 格式:doc
- 大小:1.21 MB
- 文档页数:12
北京市朝阳区高三年级第二次综合练习数2018.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+<R ,则AB =(A )32x x ⎧⎫≥⎨⎬⎩⎭ (B )322x x ⎧⎫≤<⎨⎬⎩⎭(C ){}12x x << (D )322xx ⎧⎫<<⎨⎬⎩⎭(2)如果0a b >>,那么下列不等式一定成立的是(A )33log log a b < (B )11()()44a b>(C )11a b< (D )22a b <(3)执行如右图所示的程序框图.若输出的结果为2,则输入的正整数a 的可能取值的集合是 (A ){}1,2,3,4,5 (B ){}1,2,3,4,5,6 (C ){}2,3,4,5 (D ){}2,3,4,5,6(4)已知函数()π()sin (0,0,)2f x A x A ωϕωϕ=+>><的 部分图象如图所示,则ϕ= (A )π6- (B )6π(C )π3- (D )π3(5)已知命题p :复数1iiz +=在复平面内所对应的点位于第四象限;命题q :0x ∃>,cos x x =,则下列π3π122-2O y x开始 i =0结束i =i +1a >13?输出i 是否a =2a +3 输入a(A )()()p q ⌝∧⌝ (B )()p q ⌝∧ (C )()p q ∧⌝ (D )p q ∧(6)若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是(A )(1,2] (B )[2,)+∞ (C) (D))+∞ (7)某工厂分别生产甲、乙两种产品1箱时所需要的煤、电以及获得的纯利润如下表所示.若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是(A )60万元 (B )80万元 (C )90万元 (D )100万元(8)如图放置的边长为1的正△PMN 沿边长为3的正方形ABCD 的各边内侧逆时针方向滚动.当△PMN 沿正方形各边滚动一周后,回到初始位 置时,点P 的轨迹长度是 (A )83π (B )163π(C )4π (D )5π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b ____. (10)5(12)x -的展开式中3x 项的系数为___.(用数字表示)(11)如图,AB 为圆O 的直径,2AB =,过圆O 上一点M 作圆O 的切线,交AB 的延长线于点C ,过点M作MD AB ⊥于点D ,若D 是OB 中点,则AC BC ⋅=_____.BA(12)由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .(13)已知数列{}n a 的前n 项和为n S ,且满足24()n n S a n *=-∈N ,则n a = ;数列2{log }n a 的前n 项和为 . (14)若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞ 上是有界函数.下列函数①1()1f x x =-; ②2()1x f x x =+; ③ln ()xf x x=; ④()sin f x x x =, 其中“在(1,)+∞上是有界函数”的序号为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3A 2π=,3b =,△ABC. (Ⅰ)求边a 的长; (Ⅱ)求cos2B 的值.(16)(本小题满分13分)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计A (第11题图)22俯视图侧视图正视图(第12题图)从全市高中学生中任意选取一人,其参 加社区服务时间不少于90小时的概率; (Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.(17)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,2PA PD AD ===.(Ⅰ)求证:EF ∥平面PBC ; (Ⅱ)求二面角E DF A --的余弦值; (Ⅲ)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.(18)(本小题满分13分)已知函数21()e1x f x ax +=-+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.(19)(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.服务时间/小时FABCDP E(20)(本小题满分13分)已知1x ,2x 是函数2()f x x mx t =++的两个零点,其中常数m ,t ∈Z ,设120()nn r rn r T x x n -*==∈∑N .(Ⅰ)用m ,t 表示1T ,2T ; (Ⅱ)求证:543T mT tT =--;(Ⅲ)求证:对任意的,n n T *∈∈N Z .北京市朝阳区高三年级第二次综合练习数2018.515.(本小题满分13分)解:(Ⅰ)由1sin 2ABC S bc A ∆=得,13sin 23ABC S c ∆2π=⨯⨯=. 所以5c =.由2222cos a b c bc A =+-得,22235235cos493a 2π=+-⨯⨯⨯=, 所以7a =. ……………7分(Ⅱ)由sin sin a bA B=3sin B =,所以sin B =所以271cos 212sin 98B B =-=. ……………13分 16.(本小题满分13分) 解:(Ⅰ)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人),参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人). 所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为6020802.2002005P +=== ……………5分(Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=; 11232354(1)()()55125P C ξ==⋅=; 22132336(2)()()55125P C ξ==⋅=; 3303238(3)()()55125P C ξ==⋅=. 随机变量ξ的分布列为因为 ξ~2(3)5B ,,所以355E ξ=⨯=. ……………13分 17.(本小题满分14分)证明:(Ⅰ)如图,连结AC . 因为底面ABCD 是正方形, 所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点, 所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . ……………4分 (Ⅱ)取AD 中点O .在△PAD 中,因为PA PD =, 所以PO AD ⊥.因为面PAD ⊥底面ABCD , 且面PAD面=ABCD AD ,所以PO ⊥面ABCD .因为OF ⊂平面ABCD 所以PO OF⊥. 又因为F 是AC 中点,所以OF AD ⊥.如图,以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系. 因为2PA PD AD ===,所以OP =(0,0,0)O ,(1,0,0)A ,(1,2,0)B ,(1,2,0)C -,(1,0,0)D -,P ,1(,0,)22E ,(0,1,0)F .于是(0,2,0)AB =,3(2DE =,(1,1,0)DF =. 因为OP ⊥面ABCD ,所以OP =是平面FAD 的一个法向量.E P DCBAF设平面EFD 的一个法向量是000=(,,)x y z n .因为0,0,DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n所以00000,30,2x y x z +=⎧⎪⎨=⎪⎩即0000,.y x z =-⎧⎪⎨=⎪⎩ 令01x =则=(1,1,-n .所以cos ,OP OP OP ⋅<>===⋅n n n由图可知,二面角E-DF-A 为锐角,所以二面角E-DF-A .…10分 (Ⅲ)假设在棱PC 上存在一点G ,使GF ⊥面EDF .设111(,,)G x y z ,则111=(,1,)FG x y z -. 由(Ⅱ)可知平面EDF 的一个法向量是=(1,1,-n . 因为GF ⊥面EDF ,所以=FG λn .于是,111,1,xy z λλ=-=-=,即111,1,x y z λλ==-=.又因为点G 在棱PC 上,所以GC 与PC 共线. 因为(1,2,PC =-,111(+1,2,)CGx y z =-, 所以111212x y +--==. 所以1112λλ+---==故在棱PC 上不存在一点G ,使GF ⊥面EDF 成立. ……………14分 18.(本小题满分13分)(Ⅰ)由已知得21()2ex f x a +'=-. 因为曲线()f x 在点(0,(0))f 处的切线与直线e 10x y ++=垂直, 所以(0)e f '=.所以(0)2e e f a '=-=.所以e a =. ……………3分(Ⅱ)函数()f x 的定义域是(),-∞+∞,21()2ex f x a +'=-. (1)当0a ≤时,()0f x '>成立,所以)(x f 的单调增区间为(),-∞+∞. (2)当0a >时,令()0f x '>,得11ln 222a x >-,所以()f x 的单调增区间是11(ln ,)222a -+∞; 令()0f x '<,得11ln 222a x <-,所以()f x 的单调减区间是11(,ln )222a -∞-. 综上所述,当0a ≤时,)(x f 的单调增区间为(),-∞+∞;当0a >时,()f x 的单调增区间是11(ln,)222a -+∞, ()f x 的单调减区间是11(,ln )222a -∞-. ……………8分(Ⅲ)当0x =时,(0)e 11f =+≥成立,a ∈R .“当(0,1]x ∈时,21()e11x f x ax +=-+≥恒成立” 等价于“当(0,1]x ∈时,21e x a x+≤恒成立.”设21e ()x g x x+=,只要“当(0,1]x ∈时,min ()a g x ≤成立.”212(21)e ()x x g x x +-'=. 令()0g x '<得,12x <且0x ≠,又因为(0,1]x ∈,所以函数()g x 在1(0, )2上为减函数; 令()0g x '>得,12x >,又因为(0,1]x ∈,所以函数()g x 在1(,1]2上为增函数.所以函数()g x 在12x =处取得最小值,且21()2e 2g =.所以22e a ≤. 又因为a 32e <,所以实数a 的取值范围22(,e ]-∞. ……………13分(Ⅲ)另解:(1)当0a ≤时,由(Ⅱ)可知, ()f x 在[0,1]上单调递增,所以()(0)e 1f x f ≥=+.所以当0a ≤时,有()1f x ≥成立.(2)当02e a <≤时, 可得11ln 0222a -≤. 由(Ⅱ)可知当0a >时,()f x 的单调增区间是11(ln ,)222a -+∞, 所以()f x 在[0,1]上单调递增,又()(0)e 1f x f ≥=+,所以总有()f x ≥1成立.(3)当32e 2e a <<时,可得110ln 1222a <-<.由(Ⅱ)可知,函数()f x 在11[0,ln )222a -上为减函数,在11(ln ,1]222a -为增函数,所以函数()f x 在11ln 222a x =-处取最小值, 且ln 211(ln )e ln 1ln 122222222a a a a a a af a -=-++=-+.当[0,1]x ∈时,要使()f x ≥1成立,只需ln 1122a aa -+≥, 解得22e a ≤.所以22e 2e a <≤.综上所述,实数a 的取值范围22(,e ]-∞.19.(本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y a b +=()0a b >>,半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=.解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ……………4分 (Ⅱ)解:存在直线l ,使得22OA OB OA OB +=-成立.理由如下:由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=.222(8)4(34)(412)0km k m ∆=-+->,化简得2234k m +>.设1122(,),(,)A x y B x y ,则122834kmx x k +=-+,212241234m x x k -=+. 若22OA OB OA OB +=-成立,即2222OA OB OA OB +=-,等价于0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=, 221212(1)()0k x x km x x m ++++=,222224128(1)03434m km k km m k k -+⋅-⋅+=++, 化简得,2271212m k =+.将227112k m =-代入2234k m +>中,22734(1)12m m +->,解得,234m >.又由227121212m k =+≥,2127m ≥,从而2127m ≥,m ≥m ≤所以实数m 的取值范围是2(,[21,)7-∞+∞. ……………14分20.(本小题满分13分)解:(Ⅰ)由12x x m +=-,12x x t =. 因为120nn rrn r T xx-==∑,所以11112120r r r T x x x x m -===+=-∑.222222212112212120()r r r T x x x x x x x x x x m t -===++=+-=-∑. …………3分(Ⅱ)由120kk rr k r T xx -==∑,得54545551211221420r rr r r r T xx x x x x x T x --====+=+∑∑.即55142T x T x =+,同理,44132T x T x =+. 所以5241232x T x x T x =+.所以5142412312412343()()T x T x T x x T x x T x x T mT tT =+-=+-=--.……………8分 (Ⅲ)用数学归纳法证明.(1)当1,2n =时,由(Ⅰ)问知k T 是整数,结论成立._(2)假设当1,n k =-n k =(2k ≥)时结论成立,即1,k k T T -都是整数.由120k k r r k r T x x -==∑,得111112112200kkk rr k r r k k r r T x x x x x x ++--++====+∑∑.即1112k k k T x T x ++=+.所以112k k k T x T x -=+,121212k k k x T x x T x +-=+. 所以11212112121()()k k k k k k T x T x T x x T x x T x x T +--=+-=+-. 即11k k k T mT tT +-=--.由1,k k T T -都是整数,且m ,t ∈Z ,所以1k T +也是整数. 即1n k =+时,结论也成立.由(1)(2)可知,对于一切n *∈N ,120nn r rr x x -=∑的值都是整数.………13分。
北京市朝阳区高三年级第二次综合练习数学(理)2019.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则AB =A.{|0}x x >B.{|12}x x <<C.{|12}x x ≤<D.{|0x x >且1}x ≠ 2. 复数i(1+i)的虚部为A.B. 1C. 0D. 1-3.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算. 根据德国数学家莱布尼茨在1674年给出的求π的方法绘制 的程序框图如图所示.执行该程序框图,输出s 的值为 A.4B.83C.5215D.3041054.在△ABC 中,6B π=,4c =,cos C =,则b =A. B. 3 C.32 D. 435. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. 已知函数2,,(),.x x a f x x x a ⎧≥=⎨-<⎩若函数()f x 存在零点,则实数a 的取值范围是A.(),0-∞B.(),1-∞C. ()1,+∞D. ()0,+∞7. 在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和A. 有最小值32 B.有最大值52C. 为定值3D. 为定值28.在同一平面内,已知A 为动点,,B C 为定点,且3BAC π∠=, 2ACB π∠≠,1BC =,P 为BC 中点.过点P 作PQ BC ⊥交AC 所在直线于Q ,则AQ 在BC 方向上投影的最大值是A.13B. 12C. D.23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知3log e a =,ln3b =,3log 2c =,则a ,b ,c 中最小的是 .10.已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则点M 到抛物线C 焦点的距离是 . 11.圆cos ,:1sin x C y θθ=⎧⎨=+⎩(θ为参数)上的点P 到直线12,:1x t l y t =+⎧⎨=-+⎩(t 为参数)的距离最小值是 .12. 已知实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若z x y =+的最大值为4,则1,3x y ==”为假命题的一组(,)x y 值是 .13.由数字1,2,3,4,5,6组成没有重复数字的三位数,偶数共有 个,其中个位数字比十位数字大的偶数共有 个.B14. 如图,在平面直角坐标系xOy 中,已知点(0,0),(4,0),(4,0),(0,2),(0,2)O M N P Q --,(4,2)H .线段OM 上的动点A 满足((0,1))OA OM λλ=∈;线段HN 上的动点B 满足HB HN λ=.直线PA 与直线QB 交于点L ,设直线PA 的斜率记为k ,直线QB 的斜率记为k ',则k k '⋅的值为_______;当λ变化时,动点L 一定在__________(填“圆、椭圆、双曲线、抛物线”之中的一个)上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()2sin cos f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当[,]312x ππ∈-时,求证:()f x ≥某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如下表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如下:(Ⅰ)求a 的值,并用频率估计概率,估计某场外观众评分不小于9的概率;(Ⅱ)从5名专家中随机选取3人,X 表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y 表示评分不小于9分的人数;试求()E X 与()E Y 的值; (Ⅲ)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数x 作为该选手的最终得分. 方案二:分别计算专家评分的平均数1x 和观众评分的平均数2x ,用122x x +作为该选手最终得分. 请直接写出x 与122x x +的大小关系.0.5a 0.2 789 10 评分O频率组距在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC 的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ; (Ⅱ) 求证:1BC ⊥平面1AB D ; (Ⅲ) 求二面角1A B C B --的余弦值.B 1B已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()f x 的极小值为1a,试求a 的值.已知椭圆:C 2221x y a+=(>1)a 的离心率为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 过点(1,0)M 且与椭圆C 相交于,A B 两点.过点A 作直线3x =的垂线,垂足为D .证明:直线BD 过x 轴上的定点.对于由有限个自然数组成的集合A ,定义集合(){,}S A a b a A b A =+∈∈∣, 记集合()S A 的元素个数为(())d S A . 定义变换T ,变换T 将集合A 变换为集合()()T A AS A=. (Ⅰ)若{}0,1,2A =, 求(),()S A T A ;(Ⅱ)若集合A 有n 个元素,证明:“(())21d S A n =-”的充要条件是“集合A 中的所有元素能组成公差不为0的等差数列”; (Ⅲ)若{1,2,3,4,5,6,7,8}A ⊆且{1,2,3,,25,26}(())T T A ⊆,求元素个数最少的集合A .北京市朝阳区高三年级第二次综合练习数学(理)答案2019.5二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)2()2sin cos f x x x x =+-sin 2x x =+2sin(2)3x π=+所以()f x 的最小正周期2T ωπ==π.………….6分(II )因为[,]312x ππ∈-,即2+[,]332x πππ∈-, 所以()f x 在[,]312ππ-上单调递增.当2+=33x ππ-时,即=3x π-时,min ()=f x所以当[,]312x ππ∈-时, ()f x ≥ ………….13分 16.(本小题满分13分)解:(Ⅰ)由图知0.3a =,某场外观众评分不小于9的概率是12. ………….3分 (Ⅱ)X 的可能取值为2,3.2141353(X 2)5C C P C ===;34352(X 3)5C P C ===. 所以X 的分布列为所以3212()23555E X =⨯+⨯=. 由题意可知,1~(3,)2Y B ,所以3()2E Y np ==. ………….10分(Ⅲ)122x x x +<. ………….13分 17.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D ,所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -, 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C ,E ,(0,2,0)C.所以1(0,DB =-,DA =,1BC =. 又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥. 又因为1DADB D =,所以1BC ⊥平面1AB D . ………….9分(Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,B又(AC =-,1(0,4,B C =-,由2210,0,AC B C ⎧⋅=⎪⎨⋅=⎪⎩n n得20,40.y y ⎧-+=⎪⎨-=⎪⎩ 设1x =,则y =,z =,则2=n .所以121212cos ,⋅<>===n n n n n n 设二面角1A B C B --的平面角为θ,由图可知此二面角为锐二面角,所以cos θ=………….14分 18. (本小题满分13分)解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()y f x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分 (Ⅱ)①当1a <-时,x 变化时(),()f x f x '变化情况如下表:此时1321()ln()f a a a a a -=+-=,解得11ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x在(0,)+∞单调递减. 此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4fa =--,由题意可得4a a--=, 解得2a =-+或2a =--. 因为10a -<<,所以2a =.④当0a >时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=, 解得2a =-+2a =--.综上所述2a =-+.………….13分 19. (本小题满分14分)(Ⅰ)由题意可得2221,3.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩解得1,b a =⎧⎪⎨=⎪⎩所以椭圆C 的方程为2213x y +=. ………….4分(Ⅱ)直线BD 恒过x 轴上的定点(2,0).证明如下 (1) 当直线l 斜率不存在时,直线l 的方程为1x =,不妨设A ,(1,B ,D . 此时,直线BD 的方程为:(2)3y x =-,所以直线BD 过点(2,0). (2)当直线l 的斜率存在时,设:(1)l y k x =-,1122(,),(,)A x y B x y ,1(3,)D y .由22(1),33y k x x y =-⎧⎨+=⎩得2222(31)6330k x k x k +-+-=.所以22121222633,3131k k x x x x k k -+==++. 直线2112:(3)3y y BD y y x x --=--,令0y =,得1221(3)3y x x y y ---=-, 所以2112121333y y y x y x y y --+=-212213y y x y y -=-2122143x x x x x --=-2222112431k x k x x -+=-. 由于2122631k x x k =-+,所以2222221243126231k x k x k x k -+==-+. 故直线BD 过点(2,0).综上所述,直线BD 恒过x 轴上的定点(2,0). ………….14分 20. (本小题满分13分)解:(Ⅰ)若集合{}0,1,2A =, 则{}()()0,1,2,3,4S A T A ==. ….3分 (Ⅱ)令12{,,}n A x x x =.不妨设12n x x x <<<.充分性:设{}k x 是公差为d ()0d ≠的等差数列.则111(1)(1)2(2)(1,)i j x x x i d x j d x i j d i j n +=+-++-=++-≤≤ 且22i j n ≤+≤.所以i j x x +共有21n -个不同的值.即(())21d S A n =-. 必要性:若(())21d S A n =-.因为1122i i i i x x x x ++<+<,(1,2,,1)i n =-.所以()S A 中有21n -个不同的元素:12122312,2,,2,,,,n n n x x x x x x x x x -+++.任意i j x x +(1,i j n ≤≤) 的值都与上述某一项相等.又1212i i i i i i x x x x x x +++++<+<+,且11122i i i i i x x x x x +++++<<+,1,2,,2i n =-.所以212i i i x x x +++=,所以{}k x 是等差数列,且公差不为0.….8分(Ⅲ)首先证明: 1A ∈. 假设1A ∈/, A 中的元素均大于1, 从而1()S A ∈/, 因此1()T A ∈/,1(())S T A ∈/, 故1(())T T A ∈/, 与{}1,2,3,...,25,26(())T T A ⊆矛盾, 因此1A ∈.设A 的元素个数为n , ()S A 的元素个数至多为2n C n +, 从而()T A 的元素个数至多为2(3)2n n n C n n +++=. 若2n =, 则()T A 元素个数至多为5, 从而(())T T A 的元素个数至多为58202⨯=, 而(())T T A 中元素至少为26, 因此3n ≥. 假设A 有三个元素, 设23{1,,}A a a =, 且2318a a <<≤, 则223322331,2,,1,,1,2,,2(),a a a a a a a a T A +++∈从而1,2,3,4(())T T A ∈.若25a >, (())T T A 中比4大的最小数为2a ,则5(())T T A ∈/, 与题意矛盾, 故25a ≤.集合(())T T A 中最大数为34a , 由于26(())T T A ∈, 故3426a ≥, 从而37a ≥. (i)若2{1,,7}A a =且25a ≤. 此时, 22221,2,,1,7,8,2,7,14()a a a a T A ++∈, 则有81422,21428(T T A +=⨯=∈, 在22与28之间可能的数为2214+2,21a a +.此时23,24,25,26不能全在(())T T A 中, 不满足题意.(ii)若2{1,,8}A a =且25a ≤. 此时, 22221,2,,1,8,9,2,8,16()a a a a T A ++∈, 则有16925(())T T A +=∈,若26(())T T A ∈, 则216226a +=或216(8)26,a ++= 解得25a =或22a =.当{1,2,8}A =时, 15,21,22,23(())T T A ∈/, 不满足题意. 当{1,5,8}A =时,(()){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,29,32},T T A =满足题意.故元素个数最少的集合A 为{}1,5,8 ………….13分。
北京市朝阳区高三年级第二次综合练习数学(理)2019.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则AB =A.{|0}x x >B.{|12}x x <<C.{|12}x x ≤<D.{|0x x >且1}x ≠ 2. 复数i(1+i)的虚部为A.B. 1C. 0D. 1-3.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算. 根据德国数学家莱布尼茨在1674年给出的求π的方法绘制 的程序框图如图所示.执行该程序框图,输出s 的值为 A.4B.83C.5215D.3041054.在△ABC 中,6B π=,4c =,cos 3C =,则b =A. B. 3 C.32 D. 435. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. 已知函数2,,(),.x x a f x x x a ⎧≥=⎨-<⎩若函数()f x 存在零点,则实数a 的取值范围是A.(),0-∞B.(),1-∞C. ()1,+∞D. ()0,+∞7. 在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和A. 有最小值32 B.有最大值52C. 为定值3D. 为定值28.在同一平面内,已知A 为动点,,B C 为定点,且3BAC π∠=, 2ACB π∠≠,1BC =,P 为BC 中点.过点P 作PQ BC ⊥交AC 所在直线于Q ,则AQ 在BC 方向上投影的最大值是A.13B. 12C. D.23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知3log e a =,ln3b =,3log 2c =,则a ,b ,c 中最小的是 .10.已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则点M 到抛物线C 焦点的距离是 . 11.圆cos ,:1sin x C y θθ=⎧⎨=+⎩(θ为参数)上的点P 到直线12,:1x t l y t =+⎧⎨=-+⎩(t 为参数)的距离最小值是 .12. 已知实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若z x y =+的最大值为4,则1,3x y ==”为假命题的一组(,)x y 值是 .13.由数字1,2,3,4,5,6组成没有重复数字的三位数,偶数共有 个,其中个位数字比十位数字大的偶数共有 个.B14. 如图,在平面直角坐标系xOy 中,已知点(0,0),(4,0),(4,0),(0,2),(0,2)O M N P Q --,(4,2)H .线段OM 上的动点A 满足((0,1))OA OM λλ=∈;线段HN 上的动点B 满足HB HN λ=.直线PA 与直线QB 交于点L ,设直线PA 的斜率记为k ,直线QB 的斜率记为k ',则k k '⋅的值为_______;当λ变化时,动点L 一定在__________(填“圆、椭圆、双曲线、抛物线”之中的一个)上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()2sin cos f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当[,]312x ππ∈-时,求证:()f x ≥16.(本小题满分13分)某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如下表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如下:(Ⅰ)求a 的值,并用频率估计概率,估计某场外观众评分不小于9的概率;(Ⅱ)从5名专家中随机选取3人,X 表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y 表示评分不小于9分的人数;试求()E X 与()E Y 的值; (Ⅲ)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数x 作为该选手的最终得分. 方案二:分别计算专家评分的平均数1x 和观众评分的平均数2x ,用122x x +作为该选手最终得分. 请直接写出x 与122x x +的大小关系.0.5a 0.2 789 10 评分O频率组距17.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC 的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ; (Ⅱ) 求证:1BC ⊥平面1AB D ; (Ⅲ) 求二面角1A B C B --的余弦值.18. (本小题满分13分)已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()f x 的极小值为1a,试求a 的值.19. (本小题满分14分)已知椭圆:C 2221x y a+=(>1)a的离心率为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 过点(1,0)M 且与椭圆C 相交于,A B 两点.过点A 作直线3x =的垂线,垂足为D .证明:直线BD 过x 轴上的定点.B 1B20.(本小题满分13分)对于由有限个自然数组成的集合A ,定义集合(){,}S A a b a A b A =+∈∈∣, 记集合()S A 的元素个数为(())d S A . 定义变换T ,变换T 将集合A 变换为集合()()T A AS A=. (Ⅰ)若{}0,1,2A =, 求(),()S A T A ;(Ⅱ)若集合A 有n 个元素,证明:“(())21d S A n =-”的充要条件是“集合A 中的所有元素能组成公差不为0的等差数列”; (Ⅲ)若{1,2,3,4,5,6,7,8}A ⊆且{1,2,3,,25,26}(())T T A ⊆,求元素个数最少的集合A .北京市朝阳区高三年级第二次综合练习数学(理)答案2019.5二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)2()2sin cos f x x x x =+-sin 2x x =+2sin(2)3x π=+所以()f x 的最小正周期2T ωπ==π.………….6分(II )因为[,]312x ππ∈-,即2+[,]332x πππ∈-, 所以()f x 在[,]312ππ-上单调递增.当2+=33x ππ-时,即=3x π-时,min ()=f x所以当[,]312x ππ∈-时, ()f x ≥ ………….13分 16.(本小题满分13分)解:(Ⅰ)由图知0.3a =,某场外观众评分不小于9的概率是12. ………….3分 (Ⅱ)X 的可能取值为2,3.2141353(X 2)5C C P C ===;34352(X 3)5C P C ===. 所以X 的分布列为所以3212()23555E X =⨯+⨯=. 由题意可知,1~(3,)2Y B ,所以3()2E Y np ==. ………….10分(Ⅲ)122x x x +<. ………….13分 17.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D , 所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D,连接1DD .显然DA ,DC ,1DD两两互相垂直,如图,建立空间直角坐标系D xyz -, 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C ,E ,(0,2,0)C.所以1(0,DB =-,DA =,1BC =. 又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥. 又因为1DADB D =,所以1BC ⊥平面1AB D . ………….9分(Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,B又(AC =-,1(0,4,B C =-,由2210,0,AC B C ⎧⋅=⎪⎨⋅=⎪⎩n n得20,40.y y ⎧-+=⎪⎨-=⎪⎩ 设1x =,则y =,z =,则2=n .所以121212cos ,⋅<>===n n n n n n . 设二面角1A B C B --的平面角为θ,由图可知此二面角为锐二面角,所以cos θ=. ………….14分 18. (本小题满分13分)解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()y f x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分 (Ⅱ)①当1a <-时,x 变化时(),()f x f x '变化情况如下表:此时1()ln()f a a a a a -=+-=,解得1ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减. 此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得14a a--=,解得2a =-+2a =--因为10a -<<,所以2a =.④当0a >时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=, 解得2a =-+2a =--,故不成立.综上所述2a =-+.………….13分 19. (本小题满分14分)(Ⅰ)由题意可得2221,.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩解得1,b a =⎧⎪⎨=⎪⎩所以椭圆C 的方程为2213x y +=.………….4分(Ⅱ)直线BD 恒过x 轴上的定点(2,0).证明如下 (1) 当直线l 斜率不存在时,直线l 的方程为1x =,不妨设A ,(1,B ,D . 此时,直线BD 的方程为:2)y x =-,所以直线BD 过点(2,0). (2)当直线l 的斜率存在时,设:(1)l y k x =-,1122(,),(,)A x y B x y ,1(3,)D y . 由22(1),33y k x x y =-⎧⎨+=⎩得2222(31)6330k x k x k +-+-=.所以22121222633,3131k k x x x x k k -+==++. 直线2112:(3)3y y BD y y x x --=--,令0y =,得1221(3)3y x x y y ---=-, 所以2112121333y y y x y x y y --+=- 212213y y x y y -=- 2122143x x x x x --=- 2222112431k x k x x -+=-. 由于2122631k x x k =-+,所以2222221243126231k x k x k x k -+==-+. 故直线BD 过点(2,0).综上所述,直线BD 恒过x 轴上的定点(2,0). ………….14分20. (本小题满分13分)解:(Ⅰ)若集合{}0,1,2A =, 则{}()()0,1,2,3,4S A T A ==. ….3分(Ⅱ)令12{,,}n A x x x =.不妨设12n x x x <<<.充分性:设{}k x 是公差为d ()0d ≠的等差数列.则111(1)(1)2(2)(1,)i j x x x i d x j d x i j d i j n +=+-++-=++-≤≤且22i j n ≤+≤.所以i j x x +共有21n -个不同的值.即(())21d S A n =-.必要性:若(())21d S A n =-.因为1122i i i i x x x x ++<+<,(1,2,,1)i n =-.所以()S A 中有21n -个不同的元素:12122312,2,,2,,,,n n n x x x x x x x x x -+++.任意i j x x +(1,i j n ≤≤) 的值都与上述某一项相等.又1212i i i i i i x x x x x x +++++<+<+,且11122i i i i i x x x x x +++++<<+,1,2,,2i n =-. 所以212i i i x x x +++=,所以{}k x 是等差数列,且公差不为0.….8分(Ⅲ)首先证明: 1A ∈. 假设1A ∈/, A 中的元素均大于1, 从而1()S A ∈/, 因此1()T A ∈/, 1(())S T A ∈/, 故1(())T T A ∈/, 与{}1,2,3,...,25,26(())T T A ⊆矛盾, 因此1A ∈.设A 的元素个数为n , ()S A 的元素个数至多为2n C n +, 从而()T A 的元素个数至多为2(3)2n n n C n n +++=. 若2n =, 则()T A 元素个数至多为5, 从而(())T T A 的元素个数至多为58202⨯=, 而(())T T A 中元素至少为26, 因此3n ≥. 假设A 有三个元素, 设23{1,,}A a a =, 且2318a a <<≤, 则223322331,2,,1,,1,2,,2(),a a a a a a a a T A +++∈从而1,2,3,4(())T T A ∈.若25a >, (())T T A 中比4大的最小数为2a ,则5(())T T A ∈/, 与题意矛盾, 故25a ≤.集合(())T T A 中最大数为34a , 由于26(())T T A ∈, 故3426a ≥, 从而37a ≥. (i)若2{1,,7}A a =且25a ≤. 此时, 22221,2,,1,7,8,2,7,14()a a a a T A ++∈, 则有81422,21428(T T A +=⨯=∈, 在22与28之间可能的数为2214+2,21a a +.此时23,24,25,26不能全在(())T T A 中, 不满足题意.(ii)若2{1,,8}A a =且25a ≤. 此时, 22221,2,,1,8,9,2,8,16()a a a a T A ++∈, 则有16925(()T T A +=∈, 若26(())T T A ∈, 则216226a +=或216(8)26,a ++=解得25a =或22a =.当{1,2,8}A =时, 15,21,22,23(())T T A ∈/, 不满足题意.当{1,5,8}A =时,(()){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,29,32},T T A = 满足题意.故元素个数最少的集合A 为{}1,5,8 ………….13分。
北京市朝阳区高三年级第二次综合练习数学测试题(理工类)2019.5(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)注意事项:1.答第一部分前,考生必将自己的姓名、考试科目涂写在答题卡上。
考试结束时,将试题卷和答题卡一并交回。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项。
(1)已知全集U=R,集合A={x︱0<2x<1},B={x︱log3x>0},则A∩(C U B)=(A){x︱x>1} (B){x︱x>0} (C){x︱0<x<1} (D){x︱x<0}(2)设x,y∈R那么“x>y>0”是“xy>1”的(A)必要不充分条件(B)充分不必要条件(C)充分必要条件(D)既不充分又不必要条件(3)三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为(A)8 (B)4 (C)43(D)3(4)已知随机变量X服从正态分布N(a,4),且P(X>1)=0.5,则实数a的值为(A)1 (B)3(C)2 (D)4(5)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”。
现从1,2,3, 4,5, 6 这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有(A)120个(B)80个(C)40个(D)20个(6)点P是抛物线y2=4x上一动点,则点P到点A(0,–1)的距离与到直线x=–1的距离和最小值是(A)5(B)3(C)2 (D)2(7)已知棱长为1的正方体ABCD–A1 B1 C1 D1中,点E,F分别是棱BB1 ,DD1上的动点,且BE=D1 F=λ(0<λ≤12)。
数学答案(理工类) .5一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案ABBCDADC二、填空题:(满分30分) 题号 91011121314答案33y x =±,4 3,16 6(,2][0,1)-∞-21960n n -+-,5221+(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ) 因为21cos 212sin 3A A =-=-,且 0A <<π,所以6sin 3A =. 因为3,sin 6sin c A C ==,由正弦定理sin sin a cA C=,得66332a c =⋅=⨯=.…………………6分 (Ⅱ) 由6sin ,032A A π=<<得3cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负). 所以152sin 22ABC S bc A ∆==. …………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==; (50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1A O BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点, 图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE , 所以11,A O BE A O OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知13OA OC ==所以1(003),(100),(03(100)A B C E -,,,,,,,,, 所以111(103),(033),(103)A B AC A E =-=-=-,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n 得330, 30.y z x z =-=⎪⎩ 即0, 30. y z x z -=⎧⎪⎨+=⎪⎩ECDBA图1A 1xyz FOB CDE PCBFODA 1E取1z =,得(3,1,1)=-n .设直线1A B 与平面1A CE 所成角为θ, 则133315sin cos ,255A B θ--=〈〉===⨯n 所以直线1A B 与平面1A CE 15. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF . 设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+, 所以(103)(033)(333)BP λλλ=-+=-,,,. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF . 所以(1,3,0)CE =-为平面1A OF 的一个法向量.由(333)(1,3,0)130BP CE λλλ⋅=-⋅-=-=,得1[0,1]3λ=∈. 所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-.则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤.(2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知2a =211c =-=,所以椭圆C 离心率为222e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===.因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=. 所以200200122x y x y =+≥0022x y ≤,则0012x y ≥ 所以001122OAB S OA OB x y ∆==≥ 当且仅当22002x y =,即0021,2x y =±=±时,OAB ∆2. … 9分(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩ 解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++. 又因为200(1,)F P x y =-,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++, 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =, 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分(Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉.②若,x y T '∈,可设3,3nnx s y r =+=+,,r s T ∈,且3112n r s -≤<≤,此时31(3)(3)132n nnn x y s r s r --=+-+=-≤-<.所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉.③若y T ∈, 3nx s T '=+∈,s T ∈,则313331(3)()3(1)3222n n n nnnx y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n nx y s y s y T '-=+-=-+∉.所以'x y T T -∉.综上,对于,'x y TT ∀∈,x y >,都有'x y TT -∉. …………… 8分11 / 11 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==, 且(1,,)i j S S i j n i j =∅≤≤≠,,(1,2,,),i x y S i k x y ∀∈=>,都有i x y S -∉. 那么 当1n k =+时,记{3|}k i i S s s S '=+∈,, 并构造如下 k +1个集合:111S S S '''=,222S S S '''=,,k k kS S S '''=, 1313131{1,2,,21}222k k k k S +---''=++⨯+, 显然()i j S S i j ''''=∅≠. 又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''=. 下面证明 ¢¢S i 中任意两个元素之差不等于 ¢¢S i 中的任一元素(1,2,,1)i k =+.①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''=(1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+. 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
北京市朝阳区高三年级第二次综合练习数学学科测试(理工类) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|log 1A x x =>,{}|1B x x =≥,则A B =U ( ) A .(12], B .(1)+∞, C .(12), D .[1)+∞,2.在ABC △中,1AB =,2AC =,6C π∠=,则B ∠=( )A .4π B .4π或2π C .34π D .4π或34π3.执行如图所示的程序框图,则输出的S 值为( )A .10B .13C .40D .1214.在极坐标系中,直线l :cos sin 2ρθρθ+=与圆C :2cos ρθ=的位置关系为( ) A .相交且过圆心 B .相交但不过圆心 C.相切 D .相离5.如图,角α,β均以Ox 为始边,终边与单位圆O 分别交于点A ,B ,则OA OB ⋅=u u u r u u u r( )A .sin()αβ-B .sin()αβ+ C.cos()αβ- D .cos()αβ+6.已知函数22()x x a f x x x a ⎧⎪=⎨<⎪⎩,,,≥则“0a ≤”是“函数()f x 在[0)+∞,上单调递增”的( )A .充分而不必要条件B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4 B .5 C.6 D .78.若三个非零且互不相等的实数1x ,2x ,3x 成等差数列且满足123112x x x +=,则称1x ,2x ,3x 成一个“β等差数列”.已知集合{}|100M x x x =∈Z ,≤,则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( )A .25B .50 C.51 D .100第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上) 9.计算21(1)i =+ . 10.双曲线22x y λ-=(0λ≠)的离心率是 ;该双曲线的两条渐近线的夹角是 . 11.若31()n x x -展开式的二次项系数之和为8,则n = ;其展开式中含31x项的系数为 .(用数字作答)12.已知某三棱锥的三视图如图所示,则该三棱锥的底面和三个侧面中,直角三角形的个数是 .13.已知不等式组21(1) yx yy k x⎧⎪+⎨⎪++⎩≥≤≥在平面直角坐标系xOy中所表示的平面区域为D,D的面积S,则下面结论:①当0k>时,D为三角形;②当0k<时,D为四边形;③当13k=时,4S=;④当13k<≤时,S为定值.其中正确的序号是.14.如图,已知四面体ABCD的棱AB∥平面α,且2AB=,其余的棱长均为1.四面体ABCD以AB 所在的直线为轴旋转x弧度,且始终在水平放置的平面α上方.如果将四面体ABCD在平面α内正投影面积看成关于x的函数,记为()S x,则函数()S x的最小值为;()S x的最小正周期为.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数()2sin(sin cos)f x x x x a=+-的图象经过点(1)2π,,a∈R.(1)求a的值,并求函数()f x的单调递增区间;(2)若当[0]2xπ∈,时,不等式()f x m≥恒成立,求实数m的取值范围.16.某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分.每项评分最低分0分,最高分100分.每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:请根据图中所提供的信息,完成下列问题:(1)若从交通得分排名前5名的景点中任取1个,求其安全得分大于90分的概率;(2)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为ξ,求随机变量ξ的分布列和数学期望;(3)记该市26个景点的交通平均得分为1x ,安全平均得分为2x ,写出1x 和2x 的大小关系.(只写结果)17. 如图,在四棱锥P ABCD -中,平面PBC ⊥平面ABCD .PBC △是等腰三角形,且3PB PC ==.在梯形ABCD 中,AB DC ∥,AD DC ⊥,5AB =,4AD =,3DC =(1)求证:AB ∥平面PDC ; (2)求二面角A PB C --的余弦值;(3)在线段AP 上是否存在点H ,使得BH ⊥平面ADP ?请说明理由. 18. 已知函数2()2x f x xe ax ax =++(a ∈R )(1)若曲线()y f x =在点(0(0))f ,处的切线方程为30x y +=,求a 的值; (2)当102a -<≤时,讨论函数()f x 的零点个数.19. 已知抛物线2:2C y x =.(1)写出抛物线C 的直线方程,并求出抛物线C 的焦点到准线的距离;(2)过点(20),且斜率存在的直线l 与抛物线C 交于不同的两点A ,B ,且点B 关于x 轴的对称点为D ,直线AD 与x 轴交于点M . 1)求点M 的坐标;2)求OAM △与OAB △面积之和的最小值.20. 若无穷数列{}a 满足:存在p q a a =(p ,*q ∈Ν,p q >),并且只要p q a a =,就有p i q I a ta ++=(t 为常数,123i =L ,,,),则成{}n a 具有性质T . (1)若{}n a 具有性质T ,且3t =,14a =,25a =,41a =,55a =,78936a a a ++=,求3a ; (2)若无穷数列{}n a 的前n 项和为n S ,且2n n S b =+(b ∈R ),证明存在无穷多个b 的不同取值,使得数列{}n a 具有性质T ;(3)设{}n b 是一个无穷数列,数列{}n a 中存在p q a a =(p ,*q ∈N ,p q >),且1cos n n n a b a +=(*n ∈N ),求证:“{}n b 为常数列”是“对任意正整数1a ,{}n a 都具有性质T ”的充分不必要条件.。
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!北京市朝阳区2019届高三数学第二次(5月)综合练习(二模)试题理(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则A B =UA.{|0}x x >B.{|12}x x <<C.{|12}x x ≤<D.{|0x x >且1}x ≠ 2. 复数i(1+i)的虚部为A.1 C. 0 D. 1-3.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算.根据德国数学家莱布尼茨在1674年给出的求π的方法绘制 的程序框图如图所示.执行该程序框图,输出s 的值为 A.4B.83C.5215D.3041054.在△ABC 中,6B π=,4c =,cos C =,则b =A. 3 C.32 D. 435. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. 已知函数2,,(),.x x a f x x x a ⎧≥=⎨-<⎩若函数()f x 存在零点,则实数a 的取值范围是A.(),0-∞B.(),1-∞C. ()1,+∞D. ()0,+∞7. 在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和A. 有最小值32B.有最大值52C. 为定值3D. 为定值28.在同一平面内,已知A 为动点,,B C 为定点,且3BAC π∠=, 2ACB π∠≠,1BC =,P 为BC 中点.过点P 作PQ BC ⊥交AC 所在直线于Q ,则AQ uuu r 在BC uuur 方向上投影的最大值是A. 13B. 12C. 33D.23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知3log e a =,ln3b =,3log 2c =,则a ,b ,c 中最小的是 .10.已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则点M 到抛物线C 焦点的距离是 . 11.圆cos ,:1sin x C y θθ=⎧⎨=+⎩(θ为参数)上的点P 到直线12,:1x t l y t=+⎧⎨=-+⎩(t 为参数)的距离最小值是 .12. 已知实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若z x y =+的最大值为4,则1,3x y ==”为假命题的一组(,)x y 值是 .ED 1C 1B DAF13.由数字1,2,3,4,5,6组成没有重复数字的三位数,偶数共有 个,其中个位数字比十位数字大的偶数共有 个.14. 如图,在平面直角坐标系xOy 中,已知点(0,0),(4,0),(4,0),(0,2),(0,2)O M N P Q --,(4,2)H .线段OM 上的动点A 满足((0,1))OA OM λλ=∈u u u r u u u u r;线段HN 上的动点B 满足HB HN λ=u u u r u u u r.直线PA 与直线QB 交于点L ,设直线PA 的斜率记为k ,直线QB 的斜率记为k ',则k k '⋅的值为_______;当λ变化时,动点L 一定在__________(填“圆、椭圆、双曲线、抛物线”之中的一个)上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()2sin cos 23cos 3f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当[,]312x ππ∈-时,求证:()3f x ≥-. 16.(本小题满分13分)某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如下表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如下:专家 A[ B C D E评分 9.9.9.8.9.0.5a0.2频率 组距N M H FEQy xLGPO BA[](Ⅰ)求a 的值,并用频率估计概率,估计某场外观众评分不小于9的概率;(Ⅱ)从5名专家中随机选取3人,X 表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y 表示评分不小于9分的人数;试求()E X 与()E Y 的值; (Ⅲ)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数x 作为该选手的最终得分. 方案二:分别计算专家评分的平均数1x 和观众评分的平均数2x ,用122x x +作为该选手最终得分. 请直接写出x 与122x x +的大小关系.17.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC 的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ; (Ⅱ) 求证:1BC ⊥平面1AB D ; (Ⅲ) 求二面角1A B C B --的余弦值.18. (本小题满分13分)已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()f x的极小值为1a,试求a 的值. B 1B[Z,X,X,K]19. (本小题满分14分)已知椭圆:C 2221x y a+=(>1)a 的离心率为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 过点(1,0)M 且与椭圆C 相交于,A B 两点.过点A 作直线3x =的垂线,垂足为D .证明:直线BD 过x 轴上的定点.20.(本小题满分13分)对于由有限个自然数组成的集合A ,定义集合(){,}S A a ba Ab A =+∈∈∣, 记集合()S A 的元素个数为(())d S A . 定义变换T ,变换T 将集合A 变换为集合()()T A A S A =U . (Ⅰ)若{}0,1,2A =, 求(),()S A T A ;(Ⅱ)若集合A 有n 个元素,证明:“(())21d S A n =-”的充要条件是“集合A 中的所有元素能组成公差不为0的等差数列”;[](Ⅲ)若{1,2,3,4,5,6,7,8}A ⊆且{1,2,3,,25,26}(())T T A ⊆L ,求元素个数最少的集合A .北京市朝阳区高三年级第二次综合练习数学(理)答案2019.5一、选择题:(本题满分40分) 题号 1 2 3 4 5 6 7 8 答案ABCBCDDC题号 91011121314答案c251-(2,2)(答案不唯一)60 3614双曲线三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)2()2sin cos 23cos 3f x x x x =+-sin 23cos2x x =+2sin(2)3x π=+所以()f x 的最小正周期2T ωπ==π. ………….6分(II )因为[,]312x ππ∈-,即2+[,]332x πππ∈-, 所以()f x 在[,]312ππ-上单调递增.当2+=33x ππ-时,即=3x π-时,min ()= 3.f x -所以当[,]312x ππ∈-时, ()3f x ≥-. ………….13分16.(本小题满分13分)解:(Ⅰ)由图知0.3a =,某场外观众评分不小于9的概率是12. ………….3分 (Ⅱ)X 的可能取值为2,3.2141353(X 2)5C C P C ===;34352(X 3)5C P C ===. 所以X 的分布列为所以3212()23555E X =⨯+⨯=. 由题意可知,1~(3,)2Y B ,所以3()2E Y np ==. ………….10分(Ⅲ)122x x x +<. ………….13分 17.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D, 所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D ,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -,[] 则(0,0,0)D ,A ,(0,2,0)B -,1(0,B -,1C,E ,(0,2,0)C .所以1(0,DB =-u u u u r ,DA =u u u r ,1BC =u u uu r.又因为100400BC DA ⋅=+⨯+⨯=u u u u r u u u r, 1100(2)40BC DB ⋅=⨯+-⨯+=u u u u r u u u u r,所以111,BC DA BC DB ⊥⊥.又因为1DA DBD =I ,所以1BC ⊥平面1AB D . ………….9分(Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,又(AC =-u u u r ,1(0,4,B C =-u u u r,B由2210,0,AC B C ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 得2320,4220.x y y z ⎧-+=⎪⎨-=⎪⎩ 设1x =,则3y =,6z =,则2(1,3,6)=n . 所以121212110cos 1010,⋅<>===n n n n n n . 设二面角1A B C B --的平面角为θ,由图可知此二面角为锐二面角, 所以10cos 10θ=. ………….14分 18. (本小题满分13分)解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()y f x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分 (Ⅱ)①当1a <-时,x 变化时(),()f x f x '变化情况如下表:x1(0,)a - 1a -1(,1)a- 1(1,)+∞()f x ' -+-()f x ↘极小值 ↗ 极大值 ↘此时1()ln()f a a a a a -=+-=,解得1ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减. 此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时(),()f x f x '变化情况如下表:x(0,1)11(1,)a-1a -1(,)a-+∞ ()f x ' -+-()f x↘极小值↗极大值↘此时极小值(1)4f a =--,由题意可得4a a--=,解得23a =-+或23a =--. 因为10a -<<,所以32a =-.④当0a >时,x 变化时(),()f x f x '变化情况如下表:x(0,1)1(1,)+∞()f x '-+()f x↘极小值↗此时极小值(1)4f a =--,由题意可得4a a--=, 解得23a =-+23a =--.综上所述23a =-+………….13分 19. (本小题满分14分)(Ⅰ)由题意可得2221,6,3.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩解得1,3.b a =⎧⎪⎨=⎪⎩ 所以椭圆C 的方程为2213x y +=. ………….4分(Ⅱ)直线BD 恒过x 轴上的定点(2,0).证明如下 (1) 当直线l 斜率不存在时,直线l 的方程为1x =,不妨设6(1,3A ,6(1,3B -,6(3,3D . 此时,直线BD 的方程为:6(2)3y x =-,所以直线BD 过点(2,0). (2)当直线l 的斜率存在时,设:(1)l y k x =-,1122(,),(,)A x y B x y ,1(3,)D y .由22(1),33y k x x y =-⎧⎨+=⎩得2222(31)6330k x k x k +-+-=. 所以22121222633,3131k k x x x x k k -+==++.直线2112:(3)3y y BD y y x x --=--,令0y =,得1221(3)3y x x y y ---=-, 所以2112121333y y y x y x y y --+=-212213y y x y y -=-2122143x x x x x --=-2222112431k x k x x -+=-. 由于2122631k x x k =-+,所以2222221243126231k x k x k x k -+==-+.故直线BD 过点(2,0).综上所述,直线BD 恒过x 轴上的定点(2,0). ………….14分20. (本小题满分13分)解:(Ⅰ)若集合{}0,1,2A =, 则{}()()0,1,2,3,4S A T A ==. ….3分(Ⅱ)令12{,,}n A x x x =L .不妨设12n x x x <<<L .充分性:设{}k x 是公差为d ()0d ≠的等差数列.则111(1)(1)2(2)(1,)i j x x x i d x j d x i j d i j n +=+-++-=++-≤≤且22i j n ≤+≤.所以i j x x +共有21n -个不同的值.即(())21d S A n =-.必要性:若(())21d S A n =-.因为1122i i i i x x x x ++<+<,(1,2,,1)i n =-L .所以()S A 中有21n -个不同的元素:12122312,2,,2,,,,n n n x x x x x x x x x -+++L L .任意i j x x +(1,i j n ≤≤) 的值都与上述某一项相等.又1212i i i i i i x x x x x x +++++<+<+,且11122i i i i i x x x x x +++++<<+,1,2,,2i n =-L . 所以212i i i x x x +++=,所以{}k x 是等差数列,且公差不为0.….8分(Ⅲ)首先证明: 1A ∈. 假设1A ∈/, A 中的元素均大于1, 从而1()S A ∈/, 因此1()T A ∈/, 1(())S T A ∈/, 故1(())T T A ∈/, 与{}1,2,3,...,25,26(())T T A ⊆矛盾, 因此1A ∈.设A 的元素个数为n , ()S A 的元素个数至多为2n C n +, 从而()T A 的元素个数至多为2(3)2n n n C n n +++=. 若2n =, 则()T A 元素个数至多为5, 从而(())T T A 的元素个数至多为58202⨯=, 而(())T T A 中元素至少为26, 因此3n ≥. 假设A 有三个元素, 设23{1,,}A a a =, 且2318a a <<≤, 则223322331,2,,1,,1,2,,2(),a a a a a a a a T A +++∈从而1,2,3,4(())T T A ∈.若25a >, (())T T A 中比4大的最小数为2a ,则5(())T T A ∈/, 与题意矛盾, 故25a ≤.集合(())T T A 中最大数为34a , 由于26(())T T A ∈, 故3426a ≥, 从而37a ≥. (i)若2{1,,7}A a =且25a ≤. 此时, 22221,2,,1,7,8,2,7,14()a a a a T A ++∈, 则有81422,21428(())T T A +=⨯=∈, 在22与28之间可能的数为2214+2,21a a +.此时23,24,25,26不能全在(())T T A 中, 不满足题意.(ii)若2{1,,8}A a =且25a ≤. 此时, 22221,2,,1,8,9,2,8,16()a a a a T A ++∈, 则有16925(())T T A +=∈,若26(())T T A ∈, 则216226a +=或216(8)26,a ++=解得25a =或22a =.当{1,2,8}A =时, 15,21,22,23(())T T A ∈/, 不满足题意.当{1,5,8}A =时,(()){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,29,32},T T A = 满足题意.故元素个数最少的集合A 为{}1,5,8 ………….13分。
1北京市朝阳区高三年级第二次综合练习数学(理)2019.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则AB =A.{|0}x x >B.{|12}x x <<C.{|12}x x ≤<D.{|0x x >且1}x ≠ 答案:A2. 复数i(1+i)的虚部为A. B. 1 C. 0 D. 1-答案:B3.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算. 根据德国数学家莱布尼茨在1674年给出的求π的方法绘制 的程序框图如图所示.执行该程序框图,输出s 的值为 A.4B.83C.5215D.304105答案:C4.在△ABC 中,6B π=,4c =,cos 3C =,则b =A. B. 3 C. 32 D. 43答案:2sin 3=C ,由正弦定理sin sin =a bA B得3=b ,选B25. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 答案:C6. 已知函数2,,(),.x x a f x x x a ⎧≥=⎨-<⎩若函数()f x 存在零点,则实数a 的取值范围是A.(),0-∞B.(),1-∞C. ()1,+∞D. ()0,+∞ 答案:根据图像,若有零点,则函数与x 轴必有交点,答案选D7. 在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和A. 有最小值32 B.有最大值52C. 为定值3D. 为定值2 答案:左视图 主视图 俯视图计算面积答案选D8.在同一平面内,已知A 为动点,,B C 为定点,且3BAC π∠=,1BC =,2ACB π∠≠,P 为BC 中点.过点P 作PQ BC ⊥交AC 边所在直线于Q ,则AQ 在BC 方向上投影的最大值是A.13B. 12C. D.23答案:由题知,BC的圆的一条弦,点A 在圆弧上运动,点A 按逆时针运动到如图位置时,AQ 投影为BP 长,继续运动,AQ 的投影先增大后减小,减小到BP 长,由于圆弧的对称性,当运动到'A 时AQ在BC 投影最大;此时90'∠=PIA ,AQ 在BC 上的投影长度为'IA ,即为半径长度,答案选CB3第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知3log e a =,ln3b =,3log 2c =,则a ,b ,c 中最小的是 . 答案:331log e >c =log 2>=a ,ln31=>b ,综上最小的为c10.已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则点M 到抛物线C 焦点的距离是 .答案:由题知2=p ,所以准线为1=-x ,抛物线上的点到交点距离为211.圆cos ,:1sin x C y θθ=⎧⎨=+⎩(θ为参数)上的点P 到直线12,:1x t l y t =+⎧⎨=-+⎩(t 为参数)的距离最小值是 .答案:()22:11+-=C x y ,:230--=l x y,最小距离为11=-=d12. 已知实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若=+z x y 的最大值为4,则1,3x y ==”为假命题的一组(,)x y 值是 .答案:直线4+=x y 上BC 之间任意一点均可以,(2,2)13.由数字1,2,3,4,5,6组成没有重复数字的三位数,偶数共有 个,其中个位数字比十位数字大的偶数共有 个.答案:123560=C A ;111114345436++=C C C C C14. 如图,在平面直角坐标系xOy 中,已知点(0,0),(4,0),(4,0),(0,2),(0,2)O M N P Q --,(4,2)H .线段OM 上的动点A 满足((0,1))OA OM λλ=∈;线段HN 的动点B 满足4HB HN λ=.直线PA 与直线QB 交于点L ,设直线PA 的斜率记为k ,直线QB 的斜率记为k ',则k k '⋅的值为_______;当λ变化时,动点L 一定在__________(填“圆、椭圆、双曲线、抛物线”之中的一个)上.答案:'422142λλλλλ=-=-=-=-=-=-=-BH HN k QH OP OP k OA OM ,所以14'⋅=k k ;2222:2:241416'-=+='∴-=∴-=QB y k x AP y kxy kk x y x 所以L 的轨迹为双曲线。
朝阳区2019届高三数学第二次(5月)综合练习(二模)试题 理(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则AB =A.{|0}x x >B.{|12}x x <<C.{|12}x x ≤<D.{|0x x >且1}x ≠ 2. 复数i(1+i)的虚部为A.1 C. 0 D. 1-3.在数学史上,中外数学家使用不同的方法对圆周率π进行了估算.根据德国数学家莱布尼茨在1674年给出的求π的方法绘制 的程序框图如图所示.执行该程序框图,输出s 的值为 A.4B.83C.5215D.3041054.在△ABC 中,6B π=,4c =,cos C =,则b =A. 3 C.32 D. 435. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件6. 已知函数2,,(),.x x a f x x x a ⎧≥=⎨-<⎩若函数()f x 存在零点,则实数a 的取值范围是A.(),0-∞B.(),1-∞C. ()1,+∞D. ()0,+∞7. 在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和A. 有最小值32B.有最大值52C. 为定值3D. 为定值28.在同一平面内,已知A 为动点,,B C 为定点,且3BAC π∠=, 2ACB π∠≠,1BC =,P 为BC 中点.过点P 作PQ BC ⊥交AC 所在直线于Q ,则AQ 在BC 方向上投影的最大值是A. 13B. 12D.23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知3log e a =,ln3b =,3log 2c =,则a ,b ,c 中最小的是 .10.已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则点M 到抛物线C 焦点的距离是 . 11.圆cos ,:1sin x C y θθ=⎧⎨=+⎩(θ为参数)上的点P 到直线12,:1x t l y t =+⎧⎨=-+⎩(t 为参数)的距离最小值是 .12. 已知实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若z x y =+的最大值为4,则1,3x y ==”为假命题的一组(,)x y 值是 .13.由数字1,2,3,4,5,6组成没有重复数字的三位数,偶数共有 个,其中个位数字比十位数字大的偶数共有 个.B14. 如图,在平面直角坐标系xOy 中,已知点(0,0),(4,0),(4,0),(0,2),(0,2)O M N P Q --,(4,2)H .线段OM 上的动点A 满足((0,1))OA OM λλ=∈;线段HN 上的动点B 满足HB HN λ=.直线PA 与直线QB 交于点L ,设直线PA 的斜率记为k ,直线QB 的斜率记为k ',则k k '⋅的值为_______;当λ变化时,动点L 一定在__________(填“圆、椭圆、双曲线、抛物线”之中的一个)上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()2sin cos f x x x x =+-(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当[,]312x ππ∈-时,求证:()f x ≥16.(本小题满分13分)某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如下表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如下:0.5a 0.27 8 9 10 评分O频率 组距[](Ⅰ)求a 的值,并用频率估计概率,估计某场外观众评分不小于9的概率;(Ⅱ)从5名专家中随机选取3人,X 表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y 表示评分不小于9分的人数;试求()E X 与()E Y 的值; (Ⅲ)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数x 作为该选手的最终得分. 方案二:分别计算专家评分的平均数1x 和观众评分的平均数2x ,用122x x +作为该选手最终得分. 请直接写出x 与122x x +的大小关系.17.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC 的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ; (Ⅱ) 求证:1BC ⊥平面1AB D ; (Ⅲ) 求二面角1A B C B --的余弦值.18. (本小题满分13分)已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()f x 的极小值为1a,试求a 的值.[Z,X,X,K]B 1B19. (本小题满分14分)已知椭圆:C 2221x y a+=(>1)a 的离心率为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 过点(1,0)M 且与椭圆C 相交于,A B 两点.过点A 作直线3x =的垂线,垂足为D .证明:直线BD 过x 轴上的定点.20.(本小题满分13分)对于由有限个自然数组成的集合A ,定义集合(){,}S A a ba Ab A =+∈∈∣, 记集合()S A 的元素个数为(())d S A . 定义变换T ,变换T 将集合A 变换为集合()()T A A S A =.(Ⅰ)若{}0,1,2A =, 求(),()S A T A ;(Ⅱ)若集合A 有n 个元素,证明:“(())21d S A n =-”的充要条件是“集合A 中的所有元素能组成公差不为0的等差数列”;[] (Ⅲ)若{1,2,3,4,5,6,7,8}A ⊆且{1,2,3,,25,26}(())T T A ⊆,求元素个数最少的集合A .北京市朝阳区高三年级第二次综合练习数学(理)答案2019.5一、选择题:(本题满分40分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)2()2sin cos f x x x x =+-sin 2x x =+2sin(2)3x π=+所以()f x 的最小正周期2T ωπ==π. ………….6分(II )因为[,]312x ππ∈-,即2+[,]332x πππ∈-, 所以()f x 在[,]312ππ-上单调递增.当2+=33x ππ-时,即=3x π-时,min ()=f x所以当[,]312x ππ∈-时, ()f x ≥………….13分16.(本小题满分13分)解:(Ⅰ)由图知0.3a =,某场外观众评分不小于9的概率是12. ………….3分 (Ⅱ)X 的可能取值为2,3.2141353(X 2)5C C P C ===;34352(X 3)5C P C ===. 所以X 的分布列为所以3212()23555E X =⨯+⨯=. 由题意可知,1~(3,)2Y B ,所以3()2E Y np ==. ………….10分(Ⅲ)122x x x +<. ………….13分 17.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D, 所以//EG 平面1AB D . ………….4分 (Ⅱ) 取11B C 的中点1D ,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -,[] 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C ,E ,(0,2,0)C.所以1(0,DB =-,DA =,1BC =. 又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥. 又因为1DADB D =,所以1BC ⊥平面1AB D . ………….9分(Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n , 又(AC =-,1(0,4,B C =-,B由2210,0,AC B C ⎧⋅=⎪⎨⋅=⎪⎩n n得20,40.y y ⎧-+=⎪⎨-=⎪⎩ 设1x =,则y =,z =,则2=n .所以121212cos 10,⋅<>===n n n n n n . 设二面角1A B C B --的平面角为θ,由图可知此二面角为锐二面角,所以cos θ=. ………….14分 18. (本小题满分13分)解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()y f x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分 (Ⅱ)①当1a <-时,x 变化时(),()f x f x '变化情况如下表:此时1()ln()f a a a a a -=+-=,解得1ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减. 此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+或2a =-因为10a -<<,所以2a =.④当0a >时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+2a =--.综上所述2a =-+………….13分 19. (本小题满分14分)(Ⅰ)由题意可得2221,,3.b ca ab c=⎧⎪⎪=⎨⎪⎪=+⎩解得1,b a =⎧⎪⎨=⎪⎩ 所以椭圆C 的方程为2213x y +=. ………….4分(Ⅱ)直线BD 恒过x 轴上的定点(2,0).证明如下 (1) 当直线l 斜率不存在时,直线l 的方程为1x =,不妨设A ,(1,B ,D . 此时,直线BD 的方程为:(2)3y x =-,所以直线BD 过点(2,0). (2)当直线l 的斜率存在时,设:(1)l y k x =-,1122(,),(,)A x y B x y ,1(3,)D y .由22(1),33y k x x y =-⎧⎨+=⎩得2222(31)6330k x k x k +-+-=. 所以22121222633,3131k k x x x x k k -+==++.直线2112:(3)3y y BD y y x x --=--,令0y =,得1221(3)3y x x y y ---=-, 所以2112121333y y y x y x y y --+=-212213y y x y y -=-2122143x x x x x --=-2222112431k x k x x -+=-. 由于2122631k x x k =-+,所以2222221243126231k x k x k x k -+==-+. 故直线BD 过点(2,0).综上所述,直线BD 恒过x 轴上的定点(2,0). ………….14分 20. (本小题满分13分)解:(Ⅰ)若集合{}0,1,2A =, 则{}()()0,1,2,3,4S A T A ==. ….3分 (Ⅱ)令12{,,}n A x x x =.不妨设12n x x x <<<.充分性:设{}k x 是公差为d ()0d ≠的等差数列.则111(1)(1)2(2)(1,)i j x x x i d x j d x i j d i j n +=+-++-=++-≤≤ 且22i j n ≤+≤.所以i j x x +共有21n -个不同的值.即(())21d S A n =-. 必要性:若(())21d S A n =-. 因为1122i i i i x x x x ++<+<,(1,2,,1)i n =-.所以()S A 中有21n -个不同的元素:12122312,2,,2,,,,n n n x x x x x x x x x -+++.任意i j x x +(1,i j n ≤≤) 的值都与上述某一项相等.又1212i i i i i i x x x x x x +++++<+<+,且11122i i i i i x x x x x +++++<<+,1,2,,2i n =-. 所以212i i i x x x +++=,所以{}k x 是等差数列,且公差不为0.….8分(Ⅲ)首先证明: 1A ∈. 假设1A ∈/, A 中的元素均大于1, 从而1()S A ∈/, 因此1()T A ∈/, 1(())S T A ∈/, 故1(())T T A ∈/, 与{}1,2,3,...,25,26(())T T A ⊆矛盾, 因此1A ∈.设A 的元素个数为n , ()S A 的元素个数至多为2n C n +, 从而()T A 的元素个数至多为2(3)2n n n C n n +++=. 若2n =, 则()T A 元素个数至多为5, 从而(())T T A 的元素个数至多为58202⨯=, 而(())T T A 中元素至少为26, 因此3n ≥. 假设A 有三个元素, 设23{1,,}A a a =, 且2318a a <<≤, 则223322331,2,,1,,1,2,,2(),a a a a a a a a T A +++∈从而1,2,3,4(())T T A ∈.若25a >, (())T T A 中比4大的最小数为2a ,则5(())T T A ∈/, 与题意矛盾, 故25a ≤.集合(())T T A 中最大数为34a , 由于26(())T T A ∈, 故3426a ≥, 从而37a ≥. (i)若2{1,,7}A a =且25a ≤. 此时, 22221,2,,1,7,8,2,7,14()a a a a T A ++∈, 则有81422,21428((T T A +=⨯=∈, 在22与28之间可能的数为2214+2,21a a +.此时23,24,25,26不能全在(())T T A 中, 不满足题意.(ii)若2{1,,8}A a =且25a ≤. 此时, 22221,2,,1,8,9,2,8,16()a a a a T A ++∈, 则有16925(()T T A +=∈, 若26(())T T A ∈, 则216226a +=或216(8)26,a ++=解得25a =或22a =.当{1,2,8}A =时, 15,21,22,23(())T T A ∈/, 不满足题意.当{1,5,8}A =时,(()){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,29,32},T T A = 满足题意.故元素个数最少的集合A 为{}1,5,8 ………….13分。