非线性转子轴承系统的动力学降维分析与试验研究
- 格式:pdf
- 大小:348.77 KB
- 文档页数:4
转⼦系统的⾮线性动⼒学分析(⼋)轴承—转⼦系统的⾮线性研究⽅法主要有理论分析法和实验验证法。
理论分析法主要包括理论研究和数值计算两个⽅⾯,理论分析法和实验验证法已经被⼴泛应⽤到了轴承—转⼦系统的⾮线性分析中,下⾯将分别从理论分析、数值计算和实验研究三个⽅⾯阐述轴承—转⼦系统⾮线性分析的研究现状。
轴承—转⼦系统的理论分析理论分析⼀直是轴承—转⼦系统⾮线性研究的基础,由于多⾃由度⾮线性微分⽅程的复杂性特点,在⾮线性动⼒学理论中还没有适⽤于求解⾼维⾮线性转⼦系统动⼒学⽅程的通⽤解析⽅法。
为揭⽰轴承—转⼦系统的⾮线性特性,许多专家针对⾮线性微分⽅程提出了⼀些近似的解析⽅法,如多尺度法、摄动法和平均法等。
随着对⾮线性理论的逐渐深⼊研究,⼀些新的⽅法如⼴义谐波平衡法、⼴义平均法等被⽤来求解多⾃由度强⾮线性系统。
上世纪年代后国外学者开始研究轴承—转⼦系统的⾮线性动⼒学特性,和在轴承—转⼦系统的稳定性研究⽅⾯做了⼤量⼯作。
等⼈则采⽤多尺度法分析了转⼦系统在基于长轴承和短轴承假设下的弱⾮线性运动,研究了在平衡点失稳后系统的超临界和亚临界分岔。
研究了在⾮线性弹簧⽀承下的刚性转⼦的动⼒学响应,发现在相邻的次谐波响应区域之间的动⼒学响应具有混沌特性。
分别基于长轴承和短轴承油膜⼒模型研究了两⾃由度的具有刚度对称特性的转⼦系统在失稳点附近的分岔⾏为。
和计算了转⼦—轴承系统在混沌运动时的关联维问题。
和采⽤分岔理论分析了考虑湍流哈尔滨⼯业⼤学⼯学博⼠学位论⽂效应影响的滑动轴承—刚性转⼦的稳态响应。
和采⽤谐波平衡法求解了基于⾮线性油膜⼒模型下的刚性转⼦动⼒学响应,并给出了转⼦系统的稳定域和发⽣混沌时的不平衡条件。
国内的专家学者⾃上世纪年代后在转⼦动⼒学的⾮线性研究⽅⾯开展了⼤量研究⼯作。
孟泉和陈予恕采⽤奇异性理论和中⼼流形研究了基于短轴承⽀承下的刚性转⼦—轴承系统的分岔特性研究,并对参数范围较宽的分岔⾏为进⾏了深⼊研究,指出刚性转⼦系统具有倍周期分岔和分岔。
非线性转子动力学研究综述X 黄文虎 武新华 焦映厚 夏松波 陈照波(哈尔滨工业大学航天工程与力学系 哈尔滨,150001)摘要 综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。
关键词:非线性动力学;分岔;混沌;稳定性中图分类号:O 322;T H 133引 言由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。
过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。
例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。
对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景[1~4]。
随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。
但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国内外的热门研究课题。
含故障滚动轴承-转子系统的非线性动力学分析含故障滚动轴承-转子系统的非线性动力学分析摘要:滚动轴承在转子系统中起着重要的支撑和传动作用。
然而,由于操作条件不良或材料疲劳等原因,滚动轴承可能出现故障,导致转子系统的性能下降甚至发生严重事故。
本文通过对含故障滚动轴承-转子系统的非线性动力学分析,探讨了故障对系统稳定性和振动响应的影响,并提出了相应的改进措施。
1. 引言滚动轴承是一种常见的机械传动元件,广泛应用于各种机械设备中。
在转子系统中,滚动轴承承担着支撑和传动的作用,对系统的性能和可靠性有着重要的影响。
然而,由于工作条件的变化和材料疲劳等原因,滚动轴承可能会出现故障,如疲劳裂纹、卡滞、磨损等,从而导致转子系统的性能下降。
2. 故障滚动轴承的动力学模型故障滚动轴承的动力学模型需要考虑轴承几何形状、材料特性和故障类型等因素。
在本文中,我们以单个滚动轴承为研究对象,将其建模为多自由度系统,考虑了转子和轴承的非线性特性。
3. 故障对转子系统稳定性的影响故障滚动轴承会引起转子系统的不稳定振动,影响系统的稳定性和可靠性。
通过分析系统的特征根和相平面图,可以得到故障滚动轴承的振动特性和稳定性边界。
4. 故障对转子系统振动响应的影响故障滚动轴承的存在将引起转子系统的非线性振动响应。
通过数值仿真和实验分析,可以研究故障滚动轴承对系统振动频谱、幅值和相位的影响。
5. 改进措施为了提高含故障滚动轴承-转子系统的稳定性和可靠性,可以采取以下改进措施:①改善润滑条件,减少摩擦和磨损;②使用可调节补偿机构,自动调整轴承间隙;③监测和检测系统的工作状态,及时发现和处理轴承故障。
6. 结论通过对含故障滚动轴承-转子系统的非线性动力学分析,可以得到故障对系统稳定性和振动响应的影响规律。
在实际应用中,我们应该重视滚动轴承的工作状态和健康监测,及时采取合理的预防和维护措施,以确保系统的安全稳定运行。
7.综上所述,故障滚动轴承对转子系统的稳定性和振动响应产生重要影响。
高速旋转机械系统齿轮轴承非线性动力学浅析摘要:文中围绕圆柱齿轮系统非线性动力学问题,说明了齿轮系统啮合过程非线性振动的基本概念,包括基本的力学模型、数学模型、不同类型的分析系统和求解方法;然后分别介绍了齿轮啮合刚度参数振动问题和齿侧间隙非线性振动问题。
关键词:齿轮传动;非线性振动;间隙非线性振动Nonlinear dynamics around the cylindrical gear system Abstract: This paper explains the basic concepts of nonlinear vibration of gear system engagement process, including basic mechanics models, mathematical models, different types of systems and solving method; then introduced gear meshing stiffness parameter vibration problems and tooth the side clearance nonlinear vibration problems.Keywords: gear; nonlinear vibration; gap nonlinear vibration1前言齿轮传动系统是各类机械系统和机械装备的主要传动系统,齿轮系统振动特性直接影响机械系统和机械装备的性能和工作可靠性。
因此,长期以来人们对齿轮系统的振动特性进行了大量的理论分析和试验研究,取得了许多重要的研究成果。
透平压缩机中的齿轮传动系统有几个特点:一是系统转速高, 有时转速高达几万转, 会产生非常明显的振动。
齿轮传动系统的振动及稳定性问题一直是重点。
二是系统复杂, 所涉及到的机械零件有齿轮副、转子(轴) 和轴承(支承) 等, 从传动结构上分有原动机、齿轮箱和压缩机转子等, 从力学特性上来看有齿轮间隙、轴承油膜力等非线性因素。
非线性转子-轴承系统动力学分叉及稳定性分析
非线性转子-轴承系统动力学分叉及稳定性分析
应用精度高、速度快的非线性油膜力数据库方法及非线性动力系统的稳定性和分叉理论对转子-轴承系统进行了分析.数值计算得到了转子-轴承系统发生倍周期分叉时的分叉点及分叉图.揭示了不平衡转子-轴承系统从同步周期运动分叉发生一系列倍周期运动、最后导致混沌运动的过程.采用Floquet理论对转子-轴承系统周期运动的稳定性进行了分析,并给出了某些转速下的轴心轨迹和Poincare映射图.结果表明:系统在特定参数范围内存在1-T周期运动、2-T倍周期运动、K-T周期解及混沌运动;当系统发生倍周期分叉时至少有一个Floquet乘子经过点(-1,0)穿出单位圆.该分析方法为进一步对多自由度非线性转子-轴承系统的动力学特性进行研究打下了基础.
作者:陈照波焦映厚陈明夏松波黄文虎作者单位:陈照波,焦映厚,陈明(哈尔滨工业大学机电工程学院,黑龙江,哈尔滨,150001) 夏松波(哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨,150001)
黄文虎(哈尔滨工业大学航天学院,黑龙江,哈尔滨,150001)
刊名:哈尔滨工业大学学报 ISTIC EI PKU英文刊名:JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY 年,卷(期):2002 34(5) 分类号:O322 TH133 关键词:非线性动力学转子稳定性分叉。
转子—轴承系统非线性振动及分岔特性研究转子-轴承系统非线性振动及分岔特性研究摘要:转子-轴承系统是工业中非常常见且重要的机械系统之一。
在该系统中,转子通过轴承得到支撑并旋转,以实现机械设备的正常运转。
然而,由于传动链的非线性、摩擦、失衡等因素的存在,转子-轴承系统常常会出现非线性振动。
本文通过理论分析和数值模拟的方法研究了转子-轴承系统的非线性振动机理及其分岔特性。
一、引言转子-轴承系统广泛应用于工业生产中的各个领域,如船舶、飞机、机床等。
然而,由于系统自身的非线性特性,该系统常常会发生非线性振动,给机械设备的正常运行带来不利影响。
因此,研究转子-轴承系统的非线性振动特性对系统的安全运行和性能提升具有重要意义。
二、转子-轴承系统的非线性振动机理转子-轴承系统的非线性振动主要由以下因素引起:轴承的摩擦力、传动链的非线性特性、转子的失衡等。
其中,轴承的摩擦力是主要因素之一。
当转子在摩擦力的作用下旋转时,摩擦力会导致转子-轴承系统产生非线性振动。
同时,传动链的非线性特性也会对系统的振动特性产生显著影响。
另外,转子的失衡也是导致系统振动非线性的重要因素之一。
三、转子-轴承系统的数值模拟为了研究转子-轴承系统的非线性振动特性,本文利用数值模拟的方法对系统进行仿真分析。
首先,建立了转子-轴承系统的数学模型,并将其转化为一组非线性常微分方程。
然后,利用数值求解方法求解该方程组,得到系统的时间-位移响应曲线和频谱图。
通过对比不同参数条件下的模拟结果,研究了转子-轴承系统的非线性振动特性及其分岔现象。
四、转子-轴承系统的非线性振动分岔特性研究表明,转子-轴承系统在一定条件下会产生分岔现象。
分岔是指系统的振动模态在某些特定参数下发生突变的现象。
在转子-轴承系统中,通过改变参数,如失衡量、摩擦力大小等,我们发现系统的振动模态会发生突变,从而产生新的振动模态。
这一现象说明了转子-轴承系统具有丰富的非线性振动特性和动力学行为。