第六章 光学系统的像差
- 格式:ppt
- 大小:708.01 KB
- 文档页数:80
第六章像差计算6。
1 光学系统的像差这里将提供像差的数值计算。
掌握各种像差的基本概念.特别是初级像差。
以及各种表面和薄透镜的三级像差贡献。
光学计算通常要求6位有效数字的精度,这取决于光学系统的复杂程度、仪器精度和应用的领域。
三角函数应在小数点后面取6位数,这相当于0.2弧秒。
这样的精度基本上满足了绝大多数使用要求。
当然,结构尺寸较大的衍射极限光学系统要求的精度比这还要向些。
光学计算所花费的时间明显地取决于设计者的技巧和所使用的计算设备的先进程度.计算技术发展到今天,就是使用普通的个人计算机,光学计算所需的时间也已经很少了。
但要对一个复杂的系统进行优化设计,特别是全局优化设计时.还是要花费一定的时间的。
关于如何进行光学设计,一直有两种观点。
一种观点主张以像差理论为基础,根据对光学系统的质量要求,用像差表达式,特别是用三级像差表达式来求解光学系统的初始结构,然后计算光线并求出像差,对其结果进行分析。
如果不尽人意,那么就要在像差理论的指导下,利用校正像差的手段(弯曲半径,更换玻璃、改变光焦度分配等),进行像差平衡,直到获得满意的结果。
如果最后得不到满意的结果,那么就要重新利用像差理论求解初始结构,而后再重复上述的过程,直到取得满意的结果。
另一种观点是从现存的光学系统的结构中找寻适合于使用要求的结构,这可从专利或文献中查找,然后计算光线,分析像差,采用弯曲半径,增加或减少透镜个数等校正像差的手段,消除和平衡像差,直到获得满意的结果。
对于常规物镜,如Cooke三片,双高斯、匹兹瓦尔物镜等.常采用这种方法。
这种方法需要计算大量的光线(计算机发展到今天。
这已不成问题),同时需要光学设计者有较丰富的设计经历和经验.以便对设计结果进行评价。
通常我们可以把二者结合起来,以像差理论为指导,进行像差平衡。
特别是计算机发展到今天,光学计算已经不是干扰光学设计者的问题了.对于常规镜头,通常不再需要像以前那样从求解初始结构开始,而是根据技术指标和使用要求、从光学系统数据库或专利目录中找出合适的结构,然后进行计算和分析。