第5章固溶体
- 格式:ppt
- 大小:592.50 KB
- 文档页数:33
第4章,固溶体(Solid Solution)掺杂通常不改变(被掺杂)材料的结构类型。
因此掺杂即“固溶”(固溶体——原子水平均匀分散的固态溶液。
掺杂有间隙掺杂(间隙固溶体)和取代掺杂(代位固溶体),有原子掺杂(原子固溶体)和离子掺杂(离子固溶体)。
本章重点讨论形成固溶体的条件及规律。
“固溶体”科学,尚处于“经验总结”的发展阶段。
因此,对于相关“结论”/“总结”,不能绝对化。
杂质原子导入引起晶格畸变,一定区域内的原子拉或压应力,系统能量增加。
当能量增加到一定程度,主体结构不再稳定,这就是固溶极限。
“15%规律”的不严格性:掺杂导致晶格畸变和能量升高,从而限制了极限掺杂量。
晶格畸变和能量升高,不但与尺寸差(ΔR)有关,同时与掺杂原子或离子的性质有关(例如可变形性),以及主结构的键合力(材料的理论弹性模量E)有关。
材料的E 越大,掺杂原子的尺寸限制就越严格,这时ΔR可能降低到8~10%。
相反,若主体结构较为开放,E较小,ΔR可能增大到21%。
一般而言:ΔR<15%:形成连续固溶体(必要条件,而非充要条件);15%~30%:形成有限固溶体;ΔR>30%,固溶度很低或不能形成固溶体。
b) 电负性因素:掺杂原子和主结构原子的Pauling 电负性差别越大,元素周期表中距离越远,元素间易形成化合物(ΔE > 0.4),而不易形成固溶体。
另一较普遍的规律:当掺杂原子在体系中可以多种状态存在是,它的固溶度将发生改变。
物种越稳定,固溶度越小。
例如,Fe-C固溶体中,碳可有两种形态——FeC3或石墨,石墨远比FeC3稳定,因此,FeC3在Fe中的固溶度远大于C。
二元合金体系:掺杂金属原子的价电子数与主体金属 原子的价电子数差别越大,固溶度越低。
例如:Zn (二价)、Ga(三价)、Ge(四价)、As(五价)在 一价金属(Cu、Ag、Au)中的固溶度分别为38.5 at%、 19.5 at%、11.8 at%、7 at%。