二重积分的分部积分公式
- 格式:doc
- 大小:88.01 KB
- 文档页数:2
第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
二重积分的分部积分公式二重积分是微积分中的重要内容,用于计算平面内一些区域上的二元函数的积分。
分部积分是一种常用的积分技巧,其本质是将一个复杂的积分问题分解为几个较简单的求积分问题。
本文将介绍二重积分的分部积分公式及其应用。
1.二重积分的定义及性质在平面直角坐标系中,设函数f(x,y)在一个有界闭区域D上有定义,我们可以将D分成无穷多个小面积ΔS的小块,其中每一个小块的面积趋近于0。
则二重积分的定义为:∬_(D)▒f(x,y)dxdy=lim┬(ΔS→0)〖∑_(i=1)^(n)▒∑_(j=1)^(m)▒f(x_i^*,y_j^*)ΔS〗其中,(x_i^*,y_j^*)是小块ΔS的内部任意一点,ΔS是小块的面积,n,m分别是D在x和y方向上的划分数。
二重积分具有以下性质:(1)线性性质:如果f(x,y)和g(x,y)都在D上有定义且可积,则对于任意实数a和b,有:∬_(D)▒(af(x,y)+bg(x,y))dxdy=a∬_(D)▒f(x,y)dxdy+b∬_(D)▒g(x,y)dxdy(2)可加性:如果D可以分成两个没有公共部分的区域D_1和D_2,则有:∬_(D)▒f(x,y)dxdy=∬_(D_1)▒f(x,y)dxdy+∬_(D_2)▒f(x,y)dxdy∬_(D)▒(∂u/∂x+∂v/∂y)dxdy=∫(□)〖v(□,y)dy-u(□,y)∣_a^b 〗其中,∂u/∂x和∂v/∂y是函数u(x,y)和v(x,y)的偏导数,(□,y)表示固定y的值,a和b是D在y轴上的两个边界值。
需要注意的是,二重积分的分部积分公式中的边界值是指在y轴上的取值,而不是在D区域上的边界。
3.二重积分的应用举例(1)计算二重积分∬_(D)▒xydxdy,其中D是区域y=x^2,x=y^2所围成的区域。
解:根据分部积分公式,令u=x,v=1/2y^2,则∂u/∂x=1,∂v/∂y=y,代入公式可得:∬_(D)▒xydxdy=∫(□)〖1/2y^2(□,y)dy-x(□,y)∣_0^1 〗先计算边界值,在D区域上y的取值范围是[0,1],所以x的取值范围是[0,1]。
高数积分总结一、不定积分1、不定积分的概念也性质定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有F`(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。
定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作⎰dx x f )(。
性质1:设函数f(x)及g(x)的原函数存在,则⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([。
性质2:设函数f(x)的原函数存在,k 为非零常数,则⎰⎰=dx x f k dx x kf )()(。
2、换元积分法 (1)第一类换元法:定理1:设f(u)具有原函数,)(x ϕμ=可导,则有换元公式)(])([)(')]([x d f dx x x f ϕμμμϕϕ=⎰⎰=。
例:求⎰xdx 2cos 2解 ⎰⎰⎰⎰=•=•=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得⎰+=C x xdx 2sin 2cos 2(2)第二类换元法:定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设)(')]([t t f ψψ具有原函数,则有换元公式,])(')]([[)()(1x t dt t t f dx x f -=⎰⎰=ψψψ其中)(1x -ψ是)(t x ψ=的反函数。
例:求⎰>+)0(22a ax dx解 ∵t t 22sec tan 1=+,设⎪⎭⎫ ⎝⎛<<-=22tan ππαt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+,于是⎰⎰⎰==+tdt dt t a ta a x dxsec sec sec 222 ∴C t t ax dx ++=+⎰tan sec ln 22∵aa x t 22sec +=,且0tan sec >+t t ∴1222222)ln(ln C a x x C a ax a x a x dx+++=+⎪⎪⎭⎫⎝⎛++=+⎰,a C C ln 1-=3、分部积分法定义:设函数)(x μμ=及)(x υυ=具有连续导数。
二重积分一.二重积分定义:设D 为xy 平面上的有界闭区域,(,)f x y 为定义在D 上的函数。
用任意的曲线把D 分成n 个小区域12,,.n σσσ 以i σ∆表示小区域的面积,这些小区域构成D 的一个分割T , 以i d 表示小区域i σ的直径,称1max i i nT d ≤≤=为分割T 的细度。
在每个i σ上任取一点(,)i i ξη,作和式1(,)ni i i i f ξησ=∆∑,称它为函数(,)f x y 在D 上属于分割T 的一个积分和。
如果1lim(,)niiiT i f ξησ→=∆∑存在,则称(,)f x y 在D 上可积,此极限值就称为(,)f x y 在D 上的积分,记为(,)Df x y d σ⎰⎰,即1(,)lim (,)ni i i DT i f x y d f σξησ→==∆∑⎰⎰。
定理:有界闭区域上的连续函数必可积。
性质:1. 若(,)f x y 在区域D 上可积,k 为常数,则(,)kf x y 在D 上也可积,且(,)(,).DDkf x y d k f x y d σσ=⎰⎰⎰⎰2. 若(,),(,)f x y g x y 在D 上都可积,则(,)(,)f x y g x y ±在D 上也可积,且[(,)(,)](,)(,).DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰3. 若(,)f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(,)f x y 在12D D ⋃上也可积,且1212(,)(,)(,).D D D D f x y d f x y d g x y d σσσ⋃=+⎰⎰⎰⎰⎰⎰4. 若(,),(,)f x y g x y 在D 上都可积,且(,)(,)f x y g x y ≤,(,),x y D ∈ 则(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰5. 若(,)f x y 在区域D 上可积,则函数(,)f x y 在区域D 上也可积,且(,)(,).DDf x y d f x y d σσ≤⎰⎰⎰⎰6. 若(,)f x y 在区域D 上可积,且(,),(,),m f x y M x y D ≤≤∈ 则 (,),D D DmS f x y d MS σ≤≤⎰⎰这里D S 是积分区域D 的面积。