3.2 一阶系统的时域分析
- 格式:pdf
- 大小:388.33 KB
- 文档页数:9
3.2 一阶系统的时域分析用一阶微分方程描述的系统,称为一阶系统。
实际控制系统中一阶系统不乏其例。
下面分析一阶系统对单位阶跃函数、单位脉冲函数、单位斜坡函数、单位加速度函数的响应。
在分析过程中,设初始条件等于零。
3.2.1 一阶系统的数学模型图3-3所示RC 滤波电路是一阶系统,其运动微分方程为图3- 3 RC 滤波电路)()()(t r t c dt t dc RC =+ (3-2) 式中c(t)为电路输出电压,r(t)为电路输入电压。
令T=RC ,则一阶系统运动方程具有如下一般形式)()()(t r t c dtt dc T =+ (3-3) 式(3-3)是一阶系统的一般表达式,式中T 为时间常数,r(t)和c(t)分别是系统的输入、输出信号。
若图3-3滤波电路的初始条件为零,一阶系统的传递函数为11)()()(+==ΦTs s R s C s (3-4)其方框图如图3-4或图3-5所示。
图3-4 一阶系统 图3-5 单位反馈一阶系统下面就一阶系统对某些典型输入信号的响应进行分析,在分析过程中,设初始条件为零。
此外,不同的系统如果传递函数相同,则对同一输入信号的响应也是相同的,只是不同系统响应的数学表达式具有不同的物理意义。
3.2.2 一阶系统的单位阶跃响应输入信号r(t)=1(t)时,系统响应c(t)为单位阶跃响应。
将输入信号的拉氏变换s s R 1)(=代入式(3-4),得sTs s R s s C 111)()()(⋅+=Φ= (3-5) 对式(3-5)进行拉氏反变换,得一阶系统的单位阶跃响应为T t e t c /1)(--= (t ≥0) (3-6) 由式(3-6)可以看出,一阶系统单位阶跃响应的初始值为零,终值为1。
根据式(3-6)绘出的响应曲线如图3-6所示,其响应为非周期曲线,具有如下两个特点:(1)当时间t 等于时间常数T 的整数倍,即t=T ,2T ,3T ,4T 时,响应c(t)的数值分别为总变化量的0.632、0.865、0.95、0.982倍,根据这个特点可以判断系统是否为一阶系统。
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。