大数据技术发展趋势及灯塔大数据行业应用平台
- 格式:doc
- 大小:22.19 KB
- 文档页数:13
大数据技术发展趋势及前景展望尊敬的读者:随着信息社会的快速发展,大数据已经成为全球范围内热门的话题。
本文将探讨大数据技术的发展趋势以及其前景展望,为您呈现一张大数据技术发展的全景图。
一、大数据技术的发展趋势1. 数据量的爆炸性增长:随着互联网的普及和物联网的发展,全球产生的数据量呈现指数级的增长。
据统计,到2025年,全球数据量将达到175ZB。
这将推动大数据技术的快速发展。
2. 数据多样性:不仅仅是数量的增长,数据的多样性也是大数据技术发展的一个重要趋势。
除了传统的结构化数据外,半结构化和非结构化数据的增加也使得大数据技术需要更强大的分析能力和处理能力。
3. 实时性要求的提升:随着互联网的高速发展,用户对信息的获取速度要求越来越高。
大数据技术需要具备实时处理和分析的能力,以满足用户的需求。
4. 云计算与大数据的融合:云计算技术的快速普及也为大数据技术的发展提供了更多的可能性。
云计算的弹性和高性能使得大数据处理更加灵活高效,提升了大数据技术的可操作性。
二、大数据技术的前景展望1. 商业智能和数据分析的应用:大数据技术的发展将推动商业智能和数据分析的应用。
通过对大数据进行深度分析和挖掘,企业可以更好地理解客户需求和市场趋势,从而制定更准确的营销策略和业务发展方向。
2. 数据安全和隐私保护的挑战:随着数据的增长和应用的广泛,数据安全和隐私保护问题变得愈发重要。
大数据技术发展的前景之一是解决数据安全和隐私保护的挑战,为用户提供更可信赖和安全的数据环境。
3. 人工智能的发展与大数据技术的结合:大数据技术和人工智能的结合将成为未来的重要趋势。
通过对大数据的分析和挖掘,人工智能系统可以获得更准确的数据输入,从而提高自身的学习和决策能力。
4. 跨界融合创新的推动:大数据技术的应用正逐渐涉及到各个领域,推动了不同领域之间的融合创新。
例如医疗领域的大数据分析可以提供更准确的诊断结果,金融领域的大数据应用可以改善风险评估等。
大数据未来发展的七大趋势随着信息技术的快速发展和互联网的普及,大数据正成为当今社会的热门话题。
大数据在各个领域中的应用已经展现出巨大的潜力和影响力。
未来,大数据的发展将呈现出七大趋势,为我们带来更多的机遇和挑战。
一、数据安全与隐私保护随着大数据规模不断扩大,数据安全与隐私保护问题愈发凸显。
未来,数据安全和隐私保护将成为大数据发展的关键所在。
企业和机构需采取更加严格的数据保护机制,确保用户个人信息的安全,以维护用户信任和品牌声誉。
二、人工智能与大数据融合人工智能(AI)和大数据之间的融合将为各行各业带来巨大机遇。
AI技术可以从海量数据中进行分析和学习,提供更加智能化的决策和服务。
未来,大数据与人工智能的融合将在医疗、交通、金融等领域实现突破,为人们带来更多便利和效益。
三、边缘计算的崛起大数据时代需要快速而高效的数据传输和处理能力,边缘计算技术应运而生。
边缘计算将数据的计算和存储功能从云端转移到更靠近数据源的边缘设备上,能够加快数据分析和决策的速度,降低网络延迟。
未来,边缘计算将成为大数据应用的重要组成部分。
四、数据治理与合规随着大数据规模的不断增大,数据治理和合规成为一项重要的任务。
数据治理涉及数据质量控制、数据访问和使用规范等方面,合规则保障组织在数据处理和交换过程中符合法规和道德要求。
未来,数据治理与合规将为大数据应用提供可靠的基础支持,促进行业的健康发展。
五、跨界融合与创新未来,大数据将在各个行业中产生更多的创新应用。
数据的跨界融合将带来更多业务模式的创新和行业结构的变革。
未来,大数据将与云计算、物联网、区块链等新兴技术相融合,为各个行业带来新的商机。
六、数据人才与技能需求大数据需求的快速增长催生了对数据科学家、分析师和工程师等高技能人才的需求。
未来,大数据行业将更加关注数据科学和人工智能等领域的人才培养。
同时,数据技能将成为各行各业从业人员的基本素养。
七、数据伦理与社会责任大数据的应用已经深入到人们的工作和生活中,相关的数据伦理和社会责任问题日益引起关注。
大数据技术的发展现状与未来趋势展望近年来,随着互联网和移动互联网的高速发展,大数据技术逐渐成为各行各业的重要工具。
大数据技术通过对海量数据的收集、分析和运用,为企业和组织提供了全新的决策依据和商业机会。
本文将探讨大数据技术的发展现状,并展望其未来的趋势。
一、大数据技术的发展现状大数据技术在过去十年内取得了巨大的进展。
首先,数据规模呈爆发式增长,各种传感器、社交媒体平台和智能设备不断产生着庞大的数据流。
其次,云计算技术的普及使得数据的存储和处理更加高效和便捷。
再者,机器学习和人工智能的快速发展为大数据的挖掘和分析提供了新的方法和算法。
这些因素的共同促进,大数据技术得以持续创新和升级。
在商业领域,大数据技术被广泛应用于市场研究、用户分析和精准营销等方面。
以电商巨头阿里巴巴为例,其利用大数据技术实现了用户画像和个性化推荐,提高了用户购物体验和精准营销效果。
此外,大数据技术也被应用于证券交易、风险管理和供应链管理等金融和物流领域,为企业提供了全新的商业模式和增长机会。
在城市管理方面,大数据技术能够实现对城市内各种设施设备和人流、交通流的实时监测和调度。
例如,各大城市的智能交通管理系统能够通过大数据分析实现交通拥堵的预测和疏导;而智能电网系统能够通过大数据技术进行电力需求和供应的优化和调控。
大数据技术的应用使得城市变得更加智能、高效和宜居。
二、大数据技术的未来趋势展望1. 数据安全与隐私保护将成为重要关注点随着大数据规模的不断扩大,数据安全和隐私问题将越来越突出。
未来,大数据技术需要更加注重数据的安全存储和传输,采用更加严格的数据权限管理和加密技术,防止数据泄露和滥用。
同时,隐私保护法律和监管政策也需要随之完善,确保个人隐私权益得到有效保护。
2. 边缘计算和智能设备将推动大数据技术的进一步发展边缘计算是指将计算任务从中心服务器下放到数据源附近的网络边缘。
未来,随着物联网的普及和智能设备的智能化,边缘计算将为大数据技术的应用提供更大的便利。
大数据的发展趋势与前景展望随着信息技术的快速发展和互联网的普及,大数据已经成为当今社会的热门话题。
大数据的发展不仅对各行各业产生了深远的影响,也为社会带来了巨大的变革。
本文将探讨大数据的发展趋势以及其前景展望。
一、大数据的发展趋势1. 数据量的爆炸式增长:随着互联网的普及和物联网的兴起,数据量呈现爆炸式增长的趋势。
根据国际数据公司(IDC)的预测,到2025年,全球数据量将达到175ZB(1ZB=1021B),相当于每个人每天产生1.7MB的数据。
2. 数据多样性的增加:除了传统的结构化数据,如数据库中的表格数据,大数据还包括非结构化数据,如文本、图像、音频、视频等。
随着社交媒体、物联网和传感器技术的发展,非结构化数据的增加速度更快,这为大数据的分析和挖掘提供了更多的可能性。
3. 数据处理技术的创新:为了应对海量的数据,数据处理技术也在不断创新。
云计算、分布式计算、并行计算等技术的发展,使得大数据的处理速度大大提高。
同时,机器学习、人工智能等技术的应用,也为大数据的分析和挖掘提供了更多的手段。
4. 数据安全与隐私保护的挑战:大数据的发展也带来了数据安全与隐私保护的挑战。
随着数据泄露和隐私侵犯事件的频发,人们对数据安全和隐私保护的关注度也越来越高。
因此,数据安全和隐私保护将成为大数据发展的重要议题。
二、大数据的前景展望1. 商业应用的广泛拓展:大数据的应用已经渗透到各个行业,包括金融、零售、制造、医疗等。
通过对大数据的分析和挖掘,企业可以更好地了解市场需求、优化产品设计、提高运营效率,从而实现商业价值的最大化。
2. 政府决策的科学化:大数据的应用也为政府决策提供了更科学的依据。
通过对大数据的分析,政府可以更准确地了解社会经济状况、民生需求,从而制定更有针对性的政策和措施,提高政府决策的科学性和精准性。
3. 社会治理的智能化:大数据的应用还可以推动社会治理的智能化。
通过对大数据的分析,可以实现对城市交通、环境污染、公共安全等方面的实时监测和预警,提高社会治理的效率和精确度。
中国大数据产业发展现状与未来趋势分析近年来,大数据技术在全球范围内迅猛发展,成为企业竞争优势的新引擎。
中国大数据产业也在迅速崛起,成为全球产业发展的重要一环。
本文将对中国大数据产业发展现状和未来趋势进行分析。
一、中国大数据产业现状分析1. 观念转变随着“互联网+”的兴起,越来越多的企业意识到大数据对企业发展的重要性。
企业开始从传统的生产效率至上向数据洞察和创新转变,从“做产品”向“做服务”和“创建平台”转变,由此产生了一大批具有创新能力的创业公司。
2. 企业投资近年来,国内外龙头企业在大数据领域投入巨额资金。
BAT(百度、阿里巴巴、腾讯)作为互联网的领军者,对大数据的应用取得了显著成效。
同时,其它的企业如华为、中兴、京东等也相继加入大数据的战团。
可以说,企业对大数据的热情始终如火,投入巨大,让大数据产业得到了迅猛发展。
3. 互联网+政策的推进近几年,中国政府积极推进互联网+政策,鼓励企业加强数字化转型升级。
在这一背景下,大数据迎来了广阔的市场机遇。
政府加大对大数据产业的扶持力度,为产业的发展提供了强大的支撑。
4. 创新能力加强多年来,中国政府一直十分重视创新能力的提升,而大数据产业也不例外。
目前,国内大数据产业纵深拓展,以数据挖掘、人工智能、大数据分析为核心的创新能力正在不断提升。
除此之外,一些高新技术产业也在不断涌现,如5G通信技术、区块链、无人机等等,这些新技术的出现必将推动大数据产业的发展与变革。
二、中国大数据产业未来趋势分析1. 应用范围逐步扩大当前,大数据技术的应用范围已经不再局限于互联网和传统产业,而是逐步拓展到医疗、教育、金融、社交媒体、物流等各个领域。
未来,随着各领域的大数据应用不断深入,大数据产业将实现更广泛的应用。
2. 人工智能技术发展迅速人工智能技术是大数据技术的重要分支,其应用范围将不断扩展。
例如,目前大数据和人工智能的结合已经应用到金融风控、智能家居、智能医疗等众多领域。
大数据技术的应用现状与未来展望分析随着信息时代的到来,大数据技术逐渐成为企业和政府机构重要的战略资源。
大数据技术以其强大的分析能力和广泛的应用领域受到了广泛关注。
本文将从大数据技术的应用现状和未来展望两个方面进行分析。
一、大数据技术的应用现状目前,大数据技术已经广泛应用于各个领域,包括商业、医疗、金融、交通等。
在商业领域,大数据技术可以帮助企业进行市场分析、用户画像和运营优化。
例如,通过分析用户的购物行为和偏好,企业可以有针对性地进行推荐商品,提高销售额和用户满意度。
在医疗领域,大数据技术能够处理和分析海量的病历数据和基因数据,帮助医生进行疾病诊断和治疗方案选择。
例如,通过对大量的病历数据进行深度学习和数据挖掘,可以提高疾病的早期预测和诊断准确性,为患者提供更好的医疗服务。
在金融领域,大数据技术能够进行风险评估和欺诈检测。
通过对历史数据和实时数据的分析,可以识别出潜在的风险和异常行为。
这对于金融机构来说非常重要,可以帮助他们保护客户利益和维护金融市场的稳定。
在交通领域,大数据技术可以分析交通流量和拥堵情况,提供实时的交通信息和路线规划。
例如,通过分析车辆的GPS数据和道路监控视频,可以准确地估计交通状况,并给出最佳的路线选择。
二、大数据技术的未来展望尽管大数据技术已经取得了显著的成果,但仍然存在一些挑战和问题。
首先,大数据的收集和存储需要庞大的计算和存储资源。
其次,对大数据的分析和挖掘需要有一定的专业知识和技术能力。
再次,随着大数据规模的不断增大,数据隐私和安全问题也变得越来越重要。
然而,随着技术的进步和数据产生的不断增多,大数据技术在未来有着广阔的发展前景。
首先,随着云计算和物联网技术的发展,大数据的收集和存储将更加方便和经济。
其次,机器学习和深度学习等人工智能技术的应用使得对大数据的分析和挖掘变得更加高效和准确。
最后,数据隐私和安全问题的解决将使得大数据技术得到更好的应用和发展。
总结起来,大数据技术在各个领域已经显示出了巨大的潜力和应用价值。
引言概述:正文内容:一、实时数据分析变得更加重要1.快速决策:实时数据分析能够帮助企业快速获取关键信息,帮助管理层做出迅速的决策。
2.个性化体验:实时数据分析可以帮助企业为每个用户提供个性化的体验,提高客户满意度和忠诚度。
3.预测分析:实时数据分析可以利用实时数据进行高精度的预测分析,帮助企业准确预测市场趋势和需求。
4.优化运营:实时数据分析可以帮助企业实时监控运营状况,及时发现问题并进行调整和优化。
5.增强安全性:实时数据分析可以帮助企业及时发现异常情况,加强数据安全性和风险管理。
二、边缘计算的兴起1.降低时延:边缘计算可以使数据分析和处理更加接近数据源,从而降低数据传输的时延。
2.提高可靠性:边缘计算可以在本地进行数据处理和分析,减少对云计算的依赖,提高系统的可靠性。
3.节省带宽:边缘计算可以将数据分析和处理的工作在本地完成,减少对带宽的需求。
4.支持离线工作:边缘计算可以在没有网络连接的情况下进行数据处理和分析,保证系统的稳定性。
5.支持物联网发展:边缘计算可以提供更高效的数据处理和分析能力,支持物联网设备的快速发展。
三、深度学习的应用扩展1.图像识别和处理:深度学习可以在图像识别和处理方面取得突破性进展,广泛应用于安防、医疗等领域。
2.自然语言处理:深度学习在自然语言处理方面的应用也越来越广泛,例如智能客服、智能翻译等。
3.个性化推荐:深度学习可以分析用户的行为和偏好,提供精准的个性化推荐服务。
4.智能驾驶:深度学习在智能驾驶领域有着巨大的应用潜力,可以实现车辆的智能感知和决策能力。
5.医学诊断:深度学习可以利用医学图像和大量医疗数据进行医学诊断,提高诊断的准确性和效率。
四、隐私保护和数据安全1.隐私保护法规:随着大数据的不断发展,隐私保护法规也越来越重要,企业需要遵守相关法规来保护用户的隐私。
2.数据加密技术:企业需要采用先进的数据加密技术来保护数据的安全性,防止数据泄露和黑客攻击。
3.访问控制和权限管理:企业需要建立完善的访问控制和权限管理系统,确保只有授权人员能够访问敏感数据。
大数据分析与应用中的行业应用与发展前景展望大数据分析已经逐渐成为现代商业、科研和社会管理的重要工具。
本文将重点探讨大数据在各个行业中的应用现状,以及未来可能的发展趋势。
一、概述大数据分析是指从海量数据中提取有价值信息的过程,涉及数据的收集、存储、管理和分析。
随着数据量的爆炸性增长,传统数据处理方法已经无法满足需求,因此产生了大数据分析技术。
大数据分析可以挖掘出隐藏在数据中的规律和趋势,为企业和个人提供决策支持。
二、行业应用金融行业金融行业是最早应用大数据分析的行业之一。
通过对客户的消费行为、信用记录、社交信息等进行分析,金融机构可以精准地推送个性化金融产品,提高客户转化率和留存率。
此外,大数据分析还可以用于风险控制、反欺诈、股价预测等方面。
零售行业零售行业通过大数据分析可以实现商品推荐、库存管理、顾客细分等功能。
例如,沃尔玛通过分析销售数据,发现了啤酒和尿不湿的销售关联,从而调整了商品摆放策略。
此外,零售商还可以根据消费者需求和购买行为,预测未来趋势,实现供应链优化。
制造业制造业可以通过大数据分析提高生产效率、降低成本和提升产品质量。
在生产过程中,对设备数据进行实时监控和分析,可以预测设备故障,实现预防性维护。
此外,通过对消费者需求的分析,制造业可以实现定制化生产,满足消费者个性化需求。
医疗行业医疗行业的大数据分析应用主要集中在疾病预测、药物研发和医疗资源优化等方面。
通过对海量病历数据的分析,可以发现疾病的早期征兆,实现早期诊断和治疗。
此外,大数据分析还可以用于药物副作用预测,提高药物研发成功率。
交通行业交通行业的大数据分析应用主要集中在拥堵预测、路线规划和安全监管等方面。
通过对交通数据的实时分析,可以预测道路拥堵情况,为出行者提供最优路线建议。
此外,大数据分析还可以用于交通肇事预测,提高道路安全性。
三、发展前景展望未来,随着技术的进步和应用的深入,大数据分析将在更多行业发挥重要作用。
以下是一些发展前景展望:1.与大数据分析的结合:技术将使大数据分析更加智能化,实现自动化、精准化的决策支持。
大数据的应用前景与发展趋势近年来,随着信息技术的迅速发展,大数据在各个领域的应用越来越广泛。
大数据的应用前景非常广阔,不仅能够帮助企业提高运营效率,还可以为政府决策提供有力的支持。
本文将探讨大数据的应用前景以及发展趋势。
一、大数据应用前景1. 商业领域大数据在商业领域的应用已经成为企业提升竞争力的关键。
通过分析海量的数据,企业可以更好地了解消费者需求,优化产品设计和市场营销策略。
同时,大数据还可以帮助企业预测市场趋势,及时调整战略,以迎接市场变化。
2. 健康医疗大数据在健康医疗领域的应用潜力巨大。
通过分析大量的医疗数据,可以提高疾病的早期诊断率,提供个性化的治疗方案。
此外,大数据还可以用于医疗资源的合理配置,优化医疗服务流程,提升医院效率。
3. 城市管理大数据在城市管理方面的应用有助于提升城市的智能化水平。
通过对城市交通、环境、人口等数据的分析,可以优化交通流量,改善环境质量,提供城市规划决策的科学依据。
同时,大数据还可以提供个性化的公共服务,提高城市居民的生活质量。
二、大数据的发展趋势1. 人工智能与大数据的结合人工智能作为大数据的重要应用领域之一,在未来将与大数据紧密结合。
通过智能算法分析大数据,可以实现机器学习、自然语言处理等功能,进一步提高大数据的运用效果。
2. 数据隐私保护与安全随着大数据的广泛应用,数据安全和隐私保护成为亟需解决的问题。
未来的发展趋势将加强对数据的安全管理与隐私保护,采取更加严格的数据加密和访问控制措施,确保用户数据的安全与隐私。
3. 多源数据集成与分析未来大数据的发展趋势将更加关注多源数据集成与分析。
不同领域的数据融合利用将成为大数据应用的重要任务,通过跨领域的数据分析与挖掘,可以发现更多有价值的信息。
4. 边缘计算与大数据的融合边缘计算是一种分布式计算模式,它将计算、存储、网络等资源放置在数据产生源头的边缘,可以有效减少数据传输和处理时延。
未来,边缘计算将与大数据紧密结合,实现数据的实时分析和处理,进一步提升大数据应用的效率。
大数据技术的发展与趋势随着信息时代的到来,大数据技术的发展日益迅猛。
本文将探讨大数据技术的发展背景、应用领域以及未来的趋势。
一、大数据技术的发展背景在过去的几十年里,全球信息的爆炸性增长导致了大数据时代的来临。
大量的数据产生于互联网、社交媒体、传感器等各种来源,这些数据通常被称为结构化和非结构化数据。
然而,传统的数据处理和管理方法已经无法胜任对这些海量数据的整合、分析和挖掘。
为了应对大数据时代的挑战,大数据技术崛起并日益成熟。
大数据技术不仅包括数据的存储和处理能力的提高,还包括数据采集、传输、分析和可视化等各个环节的创新。
它已经成为各行各业中不可或缺的引擎,推动着人类社会的各个方面的变革。
二、大数据技术的应用领域1. 商业领域大数据技术在商业领域的应用越来越广泛。
企业可以通过大数据技术分析消费者的购买行为、喜好和需求,从而提供个性化的产品和服务。
此外,大数据技术也可以用于市场预测、供应链管理、风险评估等方面,帮助企业做出更准确的决策。
2. 医疗保健领域大数据技术在医疗保健领域的应用可以提高患者的医疗质量和医疗效率。
通过对大量的医疗数据进行分析,医疗机构可以预测疾病的爆发和传播,制定更有效的防控措施。
此外,大数据技术还可以用于基因组学研究、药物研发和个性化治疗等方面,推动医学的进步。
3. 城市管理领域城市是大数据的重要应用场景之一。
通过大数据技术,城市可以实现智慧交通、智慧能源、智慧环保等方面的管理和优化。
例如,大数据技术可以通过分析交通流量,优化交通信号灯的控制,减少交通拥堵;可以通过监测能源使用情况,合理调度能源供应,提高能源利用效率;可以通过监测环境数据,及时采取措施减少污染等。
三、大数据技术的未来趋势1. 人工智能的融合随着人工智能技术的飞速发展,大数据技术和人工智能技术的融合将是未来的趋势。
人工智能可以通过深度学习等方法,对大数据进行更加准确的分析和挖掘,从而发现更深层次的规律和模式。
大数据和人工智能的融合将为各行各业带来更多创新和突破。
大数据技术发展趋势及灯塔大数据行业应用平台摘要:指出大数据发展的趋势:混合数据存储是大数据技术的基础;融合数据库架构是大数据发展的趋势;异构数据关联是大数据平台的关键;行业知识库是产业互联网应用发展的要素;深度标签是大数据挖掘的核心技术之一。
介绍了中国电信灯塔大数据行业应用平台的架构,及所采用的关键技术和行业应用,认为该平台的使用可以充分发挥运营商数据与外部数据相结合的优势,加速产业升级和商业模式创新。
关键词:大数据;趋势;灯塔;应用Abstract:In this paper,trends in big data technology are discussed. Mixed data storage is the foundation of big data technology;database schema integration is the trend of the development of big data;heterogeneous data association is key to big data platform;industry knowledge database is the key elements of the application and development of the Internet industry;depth labels is one of the core technologies of data mining. Then,the Dengta big data industry application platform of China Telecom is introduced. This platform can be fully combined with operator data and external data in order toaccelerate industrial upgrading and innovation of business model.big data;trend;Dengta;application大数据是信息时代技术创新的产物,大数据与云计算、物联网等新技术相结合,正日益深刻地改变着人们的生产生活方式。
大数据产业的出现和发展是现代信息技术与互联网时代海量信息发展到一定阶段的必然结果,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻影响。
大数据经历了基础理论研究和产业应用探索,与行业应用结合已成为大数据发展的新机遇。
1 大数据技术发展趋势(1)混合数据存储是大数据技术的基础在大数据环境下,数据量达到了PB级甚至EB级。
大数据存储一方面需要提供超大容量的存储空间,另一方面需要支持对海量数据的智能检索和分析。
为了兼容各种类型的大数据应用,大数据存储需要提供混合的数据存储模型,支持文件、对象、键值、块等多种访问接口,作为大数据技术的基础[1-2]。
(2)融合数据库架构是大数据发展的趋势随着大数据业务的发展,除了面向强关系型的结构化查询语言(SQL)数据库之外,面向各类应用的接口灵活、功能丰富且高效的NoSQL数据库也得到了蓬勃发展。
在应用类型多样、数据种类繁多的大数据平台中,融合关系型数据库、列数据库、内存数据库、图数据库等多种数据库的混合数据库架构,能够满足多种场景下的数据处理需求,是大数据发展的必然趋势。
(3)异构数据关联是大数据平台的关键当前,各行业、企业、系统、平台都累积了海量的数据,这些数据结构不同且相对独立,在没有建立起关联关系的情况下,难以展现出数据的优势。
将这些多源异构数据进行关联和融合,挖掘数据之间的相关性,能够为数据分析奠定坚实的基础,最大限度地发挥数据价值,是大数据平台的关键所在。
(4)行业知识库是产业互联网发展的要素随着“互联网+”战略的实施,各产业尤其是传统产业,纷纷进行互联网化转型。
在“互联网+”的浪潮下,面向多个行业,深挖行业知识详情,构建行业知识库,形成完整的行业知识体系,能有效推动数据应用与价值落地,是产业互联网发展的关键。
(5)深度标签是大数据挖掘的核心技术之一数据挖掘越来越多地应用到各个行业应用领域,使用数据挖掘技术而打造用户深度标签,已经逐渐成为大数据挖掘的热点。
通过针对大数据场景的数据挖掘,深入分析用户行为,打造多层次、多角度的用户深度标签。
深度标签是大数据挖掘的核心技术之一,它使得大数据应用更加精准,业务能够更加贴近用户,更好地满足用户的需求[3]。
2 灯塔大数据行业应用平台总体架构在大数据的发展浪潮下,中国电信股份有限公司北京研究院通过大数据技术创新,自主研发了业内领先的灯塔大数据行业应用平台。
灯塔大数据行业应用平台深入研究大数据平台技术和应用技术,为满足顶层大数据应用需求,自主开发大数据能力,实现电信数据与外部数据相融合的大数据分析挖掘,打造了ID关联模型、用户深度标签、行业知识库、分布式爬虫、数据可视化等平台即服务(PaaS)层能力,并以标准化应用程序编程接口(API)的形式支持顶层数据的相关应用,打造了市场研究、泛义征信、地理洞察等三大领域的6款大数据应用。
灯塔大数据行业应用平台技术架构如图1所示,其底层平台基于开源技术搭建,融合了离线批处理、内存计算、流计算等多种计算模型,以及关系型数据库、列数据库、内存数据库、图数据库等多种数据库模型,向上提供计算和存储能力;在大数据开放能力层,研发了ID图谱、用户标签等多种大数据分析挖掘技术,并结合第三方的地理信息系统(GIS)等能力,面向多个行业领域,向应用层以API的形式提供多种数据服务。
3 灯塔大数据行业应用平台关键技术灯塔大数据行业应用平台主要研发了混合数据库、ID关联模型、用户深度标签、行业知识库、统一数据采集与存储等几项关键技术。
3.1 混合数据库融合关系型数据库、列数据库、内存数据库、图数据库,并提出面向不同存储过程和计算需求的混合数据库模型,可以满足多种场景下的数据处理需求,解决单一数据库模型无法满足大规模数据训练、高频高实时性计算、网状结构计算等不同场景下的数据处理问题。
如图2所示,海量数据计算使用非关系型数据库(NoSQL)来支持;网状结构数据的机器学习训练依靠图数据库(Neo4j)来支持;高频高实时性计算对接内存数据库(Redis);小规模顶层数据查询与展现对接关系型数据库(SQL)。
具体来说,包含4点内容:(1)能够实现有一定实时性需求的、传统千万级及以下的数据查询与展现业务,并基于传统关系型数据库MySQL 来构建。
通过加载数据预读取算法,MySQL的单机处理能力可以达到秒级访问5 000万条多维数据的水平,能够满足一般的数据查询业务需求。
(2)对于千万级以上的数据查询业务,已超出单台MySQL的支持水平,更适宜转化成离线查询业务,直接使用非关系型数据库HBase来支持。
此时数据查询的范围可扩展至数十亿甚至上百亿,系统仍可平稳输出查询结果,前提是付出分布式离线计算的延时代价。
(3)对于在深度包检测技术(DPI)数据的K-V查询过程中需同步完成标签数据在灯塔本地服务器的ETL工作的场景,任何传统磁盘输入输出(IO)基本都无法支持该高频数据存取操作,则借助内存数据库Redis来完成。
Redis可在典型的单台计算资源下支持100毫秒级的数据ETL操作,并且可以与K-V查询进行无缝衔接,轻松应对每日2亿条标签数据入库。
(4)对于图状数据结构,如灯塔平台中典型的ID知识体系,则适合从边和节点的角度进行数据存储、表达和计算,无论行数据库还是列数据库都不再适合,因此采用图数据库Neo4j来支持。
目前,灯塔大数据行业应用平台支持1 000万级多维数据的秒级查询展现,10亿级多维数据的24 h内基础演算,100毫秒级的数据流处理,并可秒级完成10亿级边、1 000万级节点的子图查询运算。
3.2 ID关联模型基于图计算技术构建ID关联模型,采用图数据库进行数据存储和模型计算,实现DPI数据内的多种用户ID关联,解决了电信数据与外部数据有效关联和拼接的问题。
ID关联模型建立设备标识―场景的图模型,通过图数据库、图计算得到隐性变量用户唯一标识,打通用户各个设备,实现全面的用户画像。
ID关联模型对内实现数据融合,将DPI数据内的多种用户ID关联,实现多场景、多屏幕信息打通,从而实现更全面和精准的用户描述;对外实现数据开放,借助从DPI中挖掘出的外部ID,实现运营商数据与外部数据的打通,从而打破了电信数据开放的壁垒。
目前,灯塔大数据行业应用平台已积累超过100类ID数据,ID总量超5 000万。
3.3 用户深度标签根据用户上网行为、使用机器学习和模式识别等算法,如树状增强型朴素贝叶斯(TAN)分类算法等,推断用户的性别、年龄等基础人口属性,并打造消费偏好、消费能力等其他深度标签,用于支持用户行为分析的大数据应用。
目前,灯塔大数据行业应用平台已构建超过10个行业的总计6 000余类用户深度标签。
3.4 行业知识库通过整合数据采集、数据存储、数据形式化、数据表达等环节,打造完善的行业知识库,为运营商网络大数据的解析提供必要的支持。
其中,行业知识库的构建包含以下环节:(1)基于分布式爬虫进行数据采集。
如图3所示,分布式爬虫DTSpider基于开源技术WebMagic与内存数据库技术Redis而研发,搭建在云主机上,提供行业知识库数据采集解决方案。
(2)面向垂直行业构建知识体系。
如图4所示,行业知识库面向如电商、新闻、影视等不同的垂直行业,分别构建树状知识体系,能够直接对接标签能力应用。
例如,电商行业的树状知识体系,可按照商品类别进行构建,如图书、服饰、运动健康等。
(3)深挖垂直行业知识详情。
基于从页面抓取的标题和正文,经自然语言处理得到知识详情,例如电商库存量单位(SKU)名称、价格、参数、评论等。
目前,灯塔大数据行业应用平台的行业知识库整体字典规模超过2亿,其中电商和视频分别占1.2亿和6 000万。
3.5 统一数据采集与存储面向电信管道数据、互联网公开数据和企业自有数据等多种数据类型,分别构建数据采集能力,并定义了统一的数据采集接口与存储接口,解决了多源异构数据的采集与存储的相关问题。
(1)电信网络大数据采集电信网络大数据采集包含以下环节:DPI分光采集、数据清洗、数据脱敏、规则匹配预处理、业务数据传输、数据入库等环节,如图5所示。
在基层分局进行一次采集与清洗,在业务平台进行二次采集与存储。
具体来说,在基层分局分光设备采集(一次采集)得到固网/移动DPI数据,然后采用通用清洗规则与白名单规则相结合的方式,过滤掉DPI数据中无效及重复请求,并保证各类业务的数据需求。