运算放大器四种负反馈
- 格式:pdf
- 大小:365.14 KB
- 文档页数:2
集成运算放大器中反馈的类型和判别方法作者:周庆华来源:《硅谷》2014年第10期摘要在电子电路中,反馈的应用是极为广泛的,而集成运算放大器(简称集成运放)中引入的负反馈更对其电路的性能有着十分重要的影响。
文章就集成运算放大器中反馈的类型进行了描述,并对反馈的几种不同判别方法进行了研究和总结。
关键词集成运算放大器;反馈;反馈类型;判别方法中图分类号:TN722 文献标识码:A 文章编号:1671-7597(2014)10-0132-021 反馈的分类(类型)将电路输出端输出的电压或者电流的全部或者其中的一部分,通过反馈电路引回到输入端(如图1)称为反馈。
图1反馈根据对输入端信号的增强或者削弱情况,又可以分为正反馈和负反馈两种不同的类型。
若Xd(净输入信号)>Xi(输入信号),即Xf(反馈信号)对集成运算放大器的输入端Xi(输入信号)起到了增强的作用,则此种反馈被称之为正反馈;若Xd(净输入信号)负反馈根据从集成运算放大器输出端引出的方式不同又可以分为电压反馈(或者电流反馈);根据引回到集成运算放大器的输入端形式的不同又可以分为串联反馈(或者并联反馈),最后再根据输出端和输入端不同的引出引入方式组合成四种类型的负反馈,即:电压-并联-负反馈、电流-并联-负反馈、电压-串联-负反馈、电流-串联-负反馈。
2 反馈的判别方法针对集成运算放大器而言,反馈的判别是有一定的步骤的。
首先判断有无反馈;接着判断是正反馈还是负反馈;如果是负反馈,最后再判断负反馈的类型。
2.1 有无反馈的判别方法如果集成运算放大器的输出端和输入端有电路连接,并且反馈电路将输出端的电压或电流引入到输入端,则说明此时的电路有反馈(如图2)。
图2但有一种集成运算放大器的电路需要特别注意,虽然看似有反馈,但实际电路是直接接地的,输出端的信号没有引回到输入端,此时的集成运算放大器电路是没有反馈的(如图3)。
图32.2 正反馈和负反馈的两种判别方法方法一:集成运算放大器正反馈和负反馈的通用判别方法一般采用的是瞬时极性法,具体的判别分成以下三个步骤:①先任意假设集成运算放大器的两个输入端的任一输入端在某一瞬间的极性(假设时可以假设极性为“+”,也可以假设极性为“-”);②根据反相输入端电位的瞬时极性与同相输入端电位的瞬时极性相反;输出端电位的瞬时极性与反相输入端电位的瞬时极性相反;输出端电位的瞬时极性与同相输入端电位的瞬时极性相同的三个标准(或者直接看集成运算放大器图形的符号,标示“+”相同符号的端口极性相同,标示“+”、“-”不同符号的端口极性相反),标出集成运算放大器另外一个输入端和输出端电位的瞬时极性;③根据反馈电路上所标示出的极性,与输入端标示的极性进行对比,即可以确定反馈类型。
输入信号反馈信号净输入信号反馈放大器反馈过程:在电子系统中把输出回路的电量(电压或电流)以一定的方式(串联、并联)馈送到输入回路的过程。
输入信号、反馈信号、净输入信号−−−−−−−−↓←↓←↑↑→↑→↑→BE B B E E C B V I V V I I I 不变因V B I e+V e -+V BE -正反馈正反馈+-负反馈负反馈可以改善放大电路的性能。
be Lv r RA 'β−=Vo 与Vi 反相若Vi 瞬时极性为正,则Vo 瞬时极性为负+-+-+-_+A电流串联正反馈负反馈类型负反馈类型电压串联负反馈电压串联负反馈电压并联负反馈电压并联负反馈电流串联负反馈电流串联负反馈电流并联负反馈电流并联负反馈电压反馈基本放大器反馈网络i V 'i V fV oI gR LR +−+−+−.AF A F♁♁♁♁v i v id v f v o电压负反馈稳定输出电压串联反馈考虑电压间♁♁♁♁○+v f-反馈信号和输入信号加于输入回路两点时,○○♁♁○♁AFoI gR LR V .+−gI i I 'i I fI ...AF♁v oI i I id I f○负反馈。
iI fI 'i I 反馈信号和输入信号同一点时,为正反馈。
AFoI gR LR iI 'i I f I ...♁i i i idi f○A F○反馈信号和输入信号加于输入回路同一点时,i o电流负反馈稳定输出电流iI •iI•'○○♁♁♁fI •○AF i V 'i V f V o I gR L R +−+−+−A F ♁♁v i v id v f ♁反馈信号和输入信号两点时,为负反馈。
i o电流串联负反馈−−−−−−−−↓←↓←↑↑→↑→BE B B E C B V I V V I I 不变因输入端:串联反馈和并联反馈反馈信号与输入信号加在输入回路的同一个电极上,则为并联反馈;反之,加在放大电路输入回路的两个电极,则为串联反馈。
集成运算放大器中反馈的类型和判别方法作者:周庆华来源:《硅谷》2014年第10期摘要在电子电路中,反馈的应用是极为广泛的,而集成运算放大器(简称集成运放)中引入的负反馈更对其电路的性能有着十分重要的影响。
文章就集成运算放大器中反馈的类型进行了描述,并对反馈的几种不同判别方法进行了研究和总结。
关键词集成运算放大器;反馈;反馈类型;判别方法中图分类号:TN722 文献标识码:A 文章编号:1671-7597(2014)10-0132-021 反馈的分类(类型)将电路输出端输出的电压或者电流的全部或者其中的一部分,通过反馈电路引回到输入端(如图1)称为反馈。
图1反馈根据对输入端信号的增强或者削弱情况,又可以分为正反馈和负反馈两种不同的类型。
若Xd(净输入信号)>Xi(输入信号),即Xf(反馈信号)对集成运算放大器的输入端Xi(输入信号)起到了增强的作用,则此种反馈被称之为正反馈;若Xd(净输入信号)负反馈根据从集成运算放大器输出端引出的方式不同又可以分为电压反馈(或者电流反馈);根据引回到集成运算放大器的输入端形式的不同又可以分为串联反馈(或者并联反馈),最后再根据输出端和输入端不同的引出引入方式组合成四种类型的负反馈,即:电压-并联-负反馈、电流-并联-负反馈、电压-串联-负反馈、电流-串联-负反馈。
2 反馈的判别方法针对集成运算放大器而言,反馈的判别是有一定的步骤的。
首先判断有无反馈;接着判断是正反馈还是负反馈;如果是负反馈,最后再判断负反馈的类型。
2.1 有无反馈的判别方法如果集成运算放大器的输出端和输入端有电路连接,并且反馈电路将输出端的电压或电流引入到输入端,则说明此时的电路有反馈(如图2)。
图2但有一种集成运算放大器的电路需要特别注意,虽然看似有反馈,但实际电路是直接接地的,输出端的信号没有引回到输入端,此时的集成运算放大器电路是没有反馈的(如图3)。
图32.2 正反馈和负反馈的两种判别方法方法一:集成运算放大器正反馈和负反馈的通用判别方法一般采用的是瞬时极性法,具体的判别分成以下三个步骤:①先任意假设集成运算放大器的两个输入端的任一输入端在某一瞬间的极性(假设时可以假设极性为“+”,也可以假设极性为“-”);②根据反相输入端电位的瞬时极性与同相输入端电位的瞬时极性相反;输出端电位的瞬时极性与反相输入端电位的瞬时极性相反;输出端电位的瞬时极性与同相输入端电位的瞬时极性相同的三个标准(或者直接看集成运算放大器图形的符号,标示“+”相同符号的端口极性相同,标示“+”、“-”不同符号的端口极性相反),标出集成运算放大器另外一个输入端和输出端电位的瞬时极性;③根据反馈电路上所标示出的极性,与输入端标示的极性进行对比,即可以确定反馈类型。
运放反馈判断方法
负反馈放大器可组合成四种类型,即:电流串联、电流并联、电压串联、电压并联四种负反馈类型。
正负反馈的判断
正负反馈的判断使用瞬时极性法。
瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。
这个信号通过放大电路和反馈回路回到输入端。
反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。
(运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反)
共射极放大器:集电极与基极电位反相;
共基极放大器:集电极与发射极电位同相;
共集极放大器:发射极与基极电位同相;
正反馈:输入极性和反馈极性相同。
实验二 晶体管共射极单管放大器一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。
图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E ) 电压放大倍数beLC V r R R βA // -= 输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。
运算放大器四种负反馈
一、分类
按输出端采样方式分为:电压负反馈、电流负反馈。
按输入端接入电路方式分为:串联反馈、并联反馈。
即组合为四种方式:并联电压负反馈(图1)、
串联电压负反馈(图2)、
并联电流负反馈(图3)、
串联电流负反馈(图4)。
二、区分
电压/电流反馈区分方法:输出端的反馈取样点与输出点在同一点时,则为电压反馈,反之
为电流反馈。
并联/串联反馈区分方法:反馈信号引回信号输入同一端,则为并联反馈;反之为串联反馈。
三、示图
图1 并联电压负反馈
图2 串联电压负反馈
图3并联电流负反馈
图4串联电流负反馈
四、图解
图1并联电压负反馈是反相比例运算电路。
反馈电流取自输出电压(即负载电压),并与之成正比,故为电压反馈。
反馈信号与输入信号在输人端以电流的形式作比较,两者并联,故为并联反馈。
因此,反相比例运算电路是引入并联电压负反馈的电路。
由前面讨论可知,电压负反馈的作用是稳定输出电压,并联反馈电路则降低输入电阻。
反馈系数F由定义式得出:其中XF为反馈电流,所以反馈系数 。
可见,反馈系数具有电导(电阻的倒数)的量纲,称为互导反馈系数。
图2串联电压负反馈是同相比例运算电路。
反馈电压取自输出电压,并与之成正比,故为电压反馈。
反馈信号与输入信号在输入端以电压的形式作比较.两者串联,故为串联反馈。
因此,同相比例运算电路是引入串联电压负反馈的电路。
反馈系数F由定义式 得 电压负反馈的作用是稳定输出电压,串联反馈电路则有很高的输入电阻。
图3并联电流负反馈是反相输入恒流源电路。
反馈电流取自输出电流,并与之成正比,故为电流反馈。
反馈信号与输入信号在输入端以电流的形式作比较,两者并联,故为并联反馈,因此,反相输入恒流源电路是引入并联电流负反馈的电路。
图4串联电流负反馈是同比例运算电路。
反馈电压取自输出电流(即负载电流)并与之成正比,故为电流反馈。
反馈信号与输入信号在输入端以电压形式作比较,两者串联,故为串联反馈。
因此,同相输入恒流源电路是引入串联电流负反馈的电路。
反馈系数F具有电阻的量纲,称为互阻反馈系数。
五、各方式特征说明
电压反馈,输出电阻小,输出电压稳定,低噪声,DC特性良好,反馈回路不受限制。
电流反馈,输出电阻大,输出电流稳定,具有更快的压摆率,失真小,反馈回路受限制。
串联反馈,输入电阻大,适合采样弱点压信号。
并联反馈,输入电阻小,输出电压纹波小。