小学四年级奥数-算式谜(二)
- 格式:doc
- 大小:51.50 KB
- 文档页数:8
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□ 7 6×□□18 □□□□□□3 1 □□ 0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□ 2 □□(3) 2 8 5 × 3 5 ×□ 6 ×□□3 3 □□□ 04 1 □ 2 □1 □ 8 □□ 7 0 □□□□□□□□□□□□□ 9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d× 9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d 和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
5-1-1-2.算式谜(二)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.模块一、填横式数字谜【例1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.【例2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【例3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□模块二、填横式数字谜综合【例4】将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.例题精讲【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 将1~8这八个数字分别填入下面算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每个算式都成立.【例8】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则=_________+++++===+ dcba+++++===+ 1287546213+===+++++【例 9】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中a ,b ,c ,d 四个数的乘积为多少?a +b =+++cd+=+=【例 10】 请将1~12这12个自然数分别填入到右图的方框中,每个数只出现1次,使得每个等式都成立.那么乘积A B C D ⨯⨯⨯=____________()2008||||||126+÷=+-÷--=----⨯=-+÷+÷=模块三、数字谜与逻辑推理【例 11】 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A 、B 、C 处填的数各是多少?【例 12】 自然数M N 满足:.410-=-=-N N M M 则=+N M ( )【例 13】 用下图的3张卡片,能组成29的倍数的数是【例14】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。
四年级数学思维训练:算式谜专题简析:“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
算式谜(一)例1:在下面算式的括号里填上合适的数。
能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
小试牛刀1:试一试,你能行的例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
小试牛刀2:试一试,你能行的例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?分析:这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
小试牛刀3:试一试,你能行的例4:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。
○×○=□=○÷○分析:要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数。
六算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□7 6×□□18 □□□□□□3 1 □□0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□ 2 □□(3) 2 8 5×3 5 ×□ 6 ×□□3 3 □□□04 1 □ 2 □1 □8 □□7 0 □□□□□□□□□□□□□9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d×9d c b a练习三求下列各题中每个汉字所代表的数字。
(1)花红柳绿×9柳绿花红花= 红= 柳= 绿=(2) 1 华罗庚金杯× 3 华= 罗= 庚=华罗庚金杯 1 金= 杯=(3)盼望祖国早日统一×一盼= 望= 祖= 国= 盼盼盼盼盼盼盼盼盼早= 日= 统= 一=例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□ 7 6×□□18 □□□□□□3 1 □□ 0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□ 2 □□(3) 2 8 5 × 3 5 ×□ 6 ×□□3 3 □□□ 04 1 □ 2 □1 □ 8 □□ 7 0 □□□□□□□□□□□□□ 9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d× 9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d 和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
第6讲算式谜(二)一、知识要点解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
二、精讲精练【例题1】在下面的方框中填上合适的数字。
练习1:在□里填上适当的数。
【例题2】在下面方框中填上适合的数字。
练习2:在□内填入适当的数字,使下列除法竖式成立。
【例题3】下面算式中的a、b、c、d这四个字母各代表什么数字?练习3:求下列各题中每个汉字所代表的数字。
1 华罗庚金杯× 3华罗庚金杯 1花红柳绿× 9柳绿花红盼望祖国早日统一×一盼盼盼盼盼盼盼盼盼【例题4】在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
1 2 3 4 5 6 7 8 9 = 100练习4:(1)在下面等号左边的数字之间添上一些加号,使其结果等于99(数字的顺序不能改变)。
9 8 7 6 5 4 3 2 1 = 99(2)一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100(数字的顺序不能改变)。
1 2 3 4 5 6 7 8 9 = 100(3)添上适当的运算符号和括号,使下列等式成立。
1 2 3 4 5 = 100【例题5】在下面的式子里添上括号,使等式成立。
7×9+12÷3-2 = 23练习5:1.在下面的式子里添上括号,使等式成立。
(1)7×9+12÷3-2 = 75(2)7×9+12÷3-2 = 47(3)88+33-11÷11×2 = 52.在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
第6讲算式谜(二)一、知识要点解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
二、精讲精练【例题1】在下面的方框中填上合适的数字。
【思路导航】由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习1:在□里填上适当的数。
【例题2】在下面方框中填上适合的数字。
【思路导航】由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习2:在□内填入适当的数字,使下列除法竖式成立。
【例题3】下面算式中的a 、b 、c 、d 这四个字母各代表什么数字?【思路导航】因为四位数abcd 乘9的积是四位数,可知a 是1;d和9相乘的积的个位是1,可知d 只能是9;因为第二个因数9与第一个因数百位上的数b 相乘的积不能进位,所以b 只能是0(1已经用过);再由b=0,可推知c=8。
练习3:求下列各题中每个汉字所代表的数字。
【例题4】在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
2 3 4 5 6 7 8 9 = 100【思路导航】先凑出与100比较接近的数,再根据需要把相邻的几个数组成一个数。
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□ 7 6×□□18 □□□□□□3 1 □□ 0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□ 2 □□(3) 2 8 5 × 3 5 ×□ 6 ×□□3 3 □□□ 04 1 □ 2 □1 □ 8 □□ 7 0 □□□□□□□□□□□□□ 9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d× 9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□7 6×□□18 □□□□□□3 1 □□0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□2 □□(3) 2 8 5 ×3 5 ×□ 6 ×□□3 3 □□□04 1 □ 2 □1 □8 □□7 0 □□□□□□□□□□□□□9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d×9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
(1)花红柳绿×9柳绿花红花= 红= 柳= 绿=(2)1 华罗庚金杯× 3 华= 罗= 庚=华罗庚金杯 1 金= 杯=(3)盼望祖国早日统一×一盼= 望= 祖= 国= 盼盼盼盼盼盼盼盼盼早= 日= 统= 一=例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
年级四年级学科奥数版本通用版课程标题乘除数字谜(二)一般来说,算式都是由一些数字和运算符号组成的,可有些算式却由汉字或英文字母组成,我们称它为文字算式。
文字算式也是一种数字谜,解答时要注意在同一道题中,相同的文字或英文字母应表示相同的数字,不同的文字或英文字母应表示不同的数字。
解文字算式谜与添运算符号、填竖式的步骤与方法基本是一样的,都要仔细观察算式的特征,认真分析,正确选择解题的突破口,最后通过尝试找寻正确答案。
例1下面算式中的a、b、c、d四个字母各代表什么数字?(各个数字不重复)分析与解:因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
故a=1,b=0,c=8,d=9。
例2下列算式中不同的汉字代表不同的数字,相同的汉字代表相同的数字。
它们各代表什么数字时算式成立?分析与解:(1)由积的个位是2,一个因数是3,推出另一个因数的个位数“杯”是4。
(2)4×3=12,在积的个位上写2,向十位进1,因为积的十位数“杯”为4,所以“金”×3的积的个位数是3,由此“金”是1。
(3)“金”是1,积的百位数为1,所以“庚”×3的积的末位数应是1,由此“庚”是7。
(4)7×3=21,在积的百位上写1,向千位进2,因为积的千位数为7,所以“罗”×3的积的末位数应是5,由此“罗”是5。
(5)由积的万位数“罗”是5,可推得“华”为8。
华=8,罗=5,庚=7,金=1,杯=4。
例3 下图的除法竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么被除数DEFGF 是多少?分析与解:显然1D =,由AB A IF ⨯=可知,A 不会超过3,否则得到的乘积应该是3位数,如果3A =,那么B 也不能超过3,所以B 只能是2,这样的64232=⨯=⨯B AB 与AAH 矛盾,所以3A ≠,所以2A =,根据AB B AAH ⨯=,可以尝试得出8B =时,等式成立,得到这些条件即可依次求得:5I =,6F =,9G =,0E =,所以被除数DEFGF 是10696。
第二讲算式谜姓名:一、知识要点解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。
○×○=□=○÷○【思路导航】要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数。
显然,方格中的数和被除数是两位数,其他是一位数。
0和1不能填入乘法算式,也不能做除数。
由于2×6=12(2将出现两次),2×5=10(经试验不合题意),2×4=8(7个数字中没有8),2×3=6(6不能成为商)。
算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□7 6×□□18 □□□□□□3 1 □□0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□2 □□(3) 2 8 5 ×3 5 ×□ 6 ×□□3 3 □□□04 1 □ 2 □1 □8 □□7 0 □□□□□□□□□□□□□9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d×9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
(1)花红柳绿×9柳绿花红花= 红= 柳= 绿=(2)1 华罗庚金杯× 3 华= 罗= 庚=华罗庚金杯 1 金= 杯=(3)盼望祖国早日统一×一盼= 望= 祖= 国= 盼盼盼盼盼盼盼盼盼早= 日= 统= 一=例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
第六周算式谜(二)专题简析:解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
例1:在下面的方框中填上合适的数字。
□7 6×□□18 □□□□□□3 1 □□0分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一在□里填上适当的数。
(1) 6 □(2)□2 □□(3) 2 8 5 ×3 5 ×□ 6 ×□□3 3 □□□04 1 □ 2 □1 □8 □□7 0 □□□□□□□□□□□□□9 □□例2:在下面方框中填上适合的数字。
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:练习二在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?a b c d×9d c b a分析:因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三求下列各题中每个汉字所代表的数字。
(1)花红柳绿×9柳绿花红花= 红= 柳= 绿=(2)1 华罗庚金杯× 3 华= 罗= 庚=华罗庚金杯 1 金= 杯=(3)盼望祖国早日统一×一盼= 望= 祖= 国= 盼盼盼盼盼盼盼盼盼早= 日= 统= 一=例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
第5讲算式谜(一)算式谜是一种有趣的数学问题,它的特点是在算术运算的式子中,使一些数字或运算符号“残缺”,要我们根据运算法则,进行判断推理,从而把“残缺”的算式补充完整。
研究和解决算式谜问题,有利于培养我们观察、分析、归纳、推理等思维能力。
从这个意义上讲,算式谜问题是一种很好的锻炼思维的“体操”。
例1.在下面算式的括号里填上合适的数。
(1)()6()()(2)()0()()+ 2()1 5 - 3() 1 68 0 9 1 4 8 5 7例2.A、B、C、D分别代表4个不同的数字,相同的字母代表相同的数字,求使得下面算式成立A、B、C、D各自代表的数字。
A B C DA C D+ C D1 9 8 9例3.A、B、C、D分别代表不同的数字,它们各是什么数字时同上面的算式成立?A B C D- C D CA B C例4.下面的算式中的“数”、“学”、“俱”、“乐”、“部”这五个汉字各应代表什么数字?1 数学俱乐部× 3数学俱乐部 1例5.下面算式中不同的字母所找表的数字均不同,当这些字母代表什么数时,算式成立?A B C× D CB E AF AG HF IG A A例6.在括号里填数,使下面的竖式成立。
1()()())1()21()7 ()()()例7.下面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。
新新×春春=新年年新练习与思考1.在□里填上适当的数,使等式成立。
(1)□ 6 4 (2)□ □ 37 □ 3 - □ □+ 4 8 □ 8□ 0 4 22.下面算式中不同的图形代表不同的数,不同的字母代表不同的数,请将算式中的图形或字母还原成数字。
(1) 1 ○ 2 □ (2) A B C D- □ 1 △ + A B E D3 ○ ○ E D C A D3.在( )里填上适当的数,使算式成立。
4.下面算式中汉字或字母分别代表不同的数字,请将汉字或字母还原成数字。
小学四年级奥数-算式谜(二)
第六周算式谜(二)
专题简析:
解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;
2.利用列举和筛选相结合的方法,逐步排除不合理的数字;
3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;
4.算式谜解出后,要验算一遍。
□7 6
×□□
18 □□
□□□□
3 1 □□0
分析:由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。
题中别的数字就容易填了。
练习一
在□里填上适当的数。
(1) 6 □(2)□ 2 □□(3) 2 8 5 × 3 5 ×□ 6 ×□□
3 3 □□□0
4 1 □ 2 □
1 □8 □□7 0 □□□
□□□□□□□□□□9 □□
分析由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1。
由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9。
如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。
完整的竖式是:
练习二
在□内填入适当的数字,使下列除法竖式成立。
例3:下面算式中的a、b、c、d这四个字母各代表什么数字?
a b c d
×9
d c b a
分析:因为四位数abcd乘9的积是四位数,可知a是1;d 和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。
练习三
求下列各题中每个汉字所代表的数字。
(1)花红柳绿
×9
柳绿花红花= 红= 柳= 绿=
(2) 1 华罗庚金杯
× 3 华= 罗= 庚=
华罗庚金杯 1 金= 杯=
(3)盼望祖国早日统一
×一盼= 望= 祖= 国= 盼盼盼盼盼盼盼盼盼早= 日= 统= 一=
例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。
1 2 3 4 5 6 7 8 9 = 100
分析:先凑出与100比较接近的数,再根据需要把相邻的几个数组成一个数。
比如:123与100比较接近,所以把前三个数字组成123,后面的数字凑出23就行。
因为45与67相差22,8与9相差1,所以得到一种解法:123+45-67+8-9=100
再比如:89与100比较接近,78与67正好相差11,所此可得另一种解法:123+45-67+8-9=100
练习四:
(1)在下面等号左边的数字之间添上一些加号,使其结果等于99(数字的顺序不能改变)。
98 7 6 5 4 3 2 1 = 99
(2)一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100(数字的顺序不能改变)。
1 2 3 4 5 6 7 8 9 = 100
(3)添上适当的运算符号和括号,使下列等式成立。
1 2 3 4 5 = 100
例5:在下面的式子里添上括号,使等式成立。
7×9+12÷3-2 = 23
分析:采用逆推法,从最后一步运算开始考虑。
假如最后一步是用前面计算的结果减2,那么前面式子的运算结果应等25,又因为25×3=75,而前面7×9+12又正好等于75,所以,应给前面两步运算加括号。
(7×9+12)÷3-2 = 23
练习五
在下面的式子里添上括号,使等式成立。
(1)7×9+12÷3-2 = 75
(2)7×9+12÷3-2 = 47
(3)88+33-11÷11×2 = 5。