最优捕鱼策略问题答卷评述
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
最优捕鱼策略问题摘要本文以最优捕鱼策略为主题,在logistic模型基础上建立了可持续发展捕鱼策略模型,并借助计算机Matlab,运用二分法近似求得了模型最优解。
在此基础上提出了灵敏度函数S,并由此判断死亡率w和捕捞强度E的变化对产量变化的影响。
最后根据实际生产需求,分析死亡率w对最大产量Qm的影响。
对于问题1,我们首先考虑不存在捕捞情况下的模型,再加入捕捞强度分析,最后根据问题1的条件(每年开始捕捞时渔场中各种年龄组鱼群条数不变)建立方程组,得到可持续发展捕鱼策略模型,解得方程组后在w=0.8时绘图得到最大产量Qm=3.8871*10^11。
对于问题2,我们引用了灵敏度函数S(ω,Q),起意义为ω变化率与Q变化率的比值,例如S=0.1,即表示当死亡率变化1%的时候,产量Q变化0.1%。
发现在问题1取得最大产量的情况下,死亡率每增加1%,最大产量减少1.743%。
并给出了不同死亡率w和产量下S的函数。
对于问题3,方法与问题2相似,灵敏度函数S(E,Q)在问题1的情况下,捕捞强度系数E每增加1%,产量Q减少0.0010%。
并给出了不同捕捞强度E和产量Q下S的函数。
对于问题4,我们取不同的死亡率w,得到不同的最大产量Q,利用MATLAB用函数拟合的方法得到了相似度很高的4阶拟合函数Qm(w)仿照问题2求解了灵敏度函数S(E,Qm),发现了在问题1求得最大产量的时候,死亡率的波动对最大产量的影响是相对较大的。
现实生产中可表现为一段时间内大量鱼群的死亡对渔民的收获量会造成比较大的损失。
为此我们找到了影响较小的点,当把死亡率控制在0.957附近时,鱼群的突然大数目死亡短时间内对渔民造成的损失最小。
对此我们提出了一些策略。
关键词:可持续发展捕鱼策略模型,灵敏度分析,函数拟合,微分方程。
一、问题重述以鳀鱼为例,制定一种最优的捕鱼策略,要求实现可持续捕捞,并且在此前提下得到最高的年收获量,并进一步考虑自然死亡率和捕捞强度系数,提出相关建议。
最优万义亮 曾龙飞 邓巧云摘要:本文针对渔业这类可再生资源的合理运用问题进行优化设计,在稳定的前提下,讨论如何控制捕捞使持续生产量最大。
最后,运用计算机软件求出捕捞强度和最大的捕捞产量,使该渔业公司可在持续稳定的条件下进行捕捞。
对于问题(一),我们通过1龄鱼和2龄鱼在全年内只受到自然死亡的制约,写出相应的微分方程,而3龄鱼和4龄鱼,其数量在前8个月不仅受自然死亡率影响还受捕捞强度系数的影响,后4个月只受自然死亡率的影响,分阶段写出微分方程及表达式。
假设自然死亡和捕捞都是连续的,则可以建立问题(一)的数学模型,此模型为非线性规划模型,最后通过MATLAB 软件和LINGO 软件分别求解。
对于问题(二),对问题通过分析易知,可以利用问题(一)所得到的迭代方程,可以很容易确定模型中的目标函数和约束条件,也易写出5年得捕捞总量的表达式。
我们以5年捕捞总量最大为目标函数,利用MATLAB 软件可以计算出捕捞强度和最大捕捞总量,并通过模型的验证在此捕捞强度下,不会使5年后鱼群的生产能力有太大的破坏。
我们通过用软件编程计算,得出以下结论:在保持每年开始捕捞中各年龄组鱼群条件不变,得出4龄鱼捕捞强度为17.36292,3龄鱼的捕捞强度为8.68146,总的捕捞量为1110887076.3⨯g ;渔业公司要在5年后鱼群的生产能力不受太大的破坏下,得出捕捞强度在)8.17,5.17(∈k 下,达到最大的捕捞量为12106056.1⨯g 。
关键字:非线性规划 捕捞策略 渔业 优化问题 自然死亡率一、问题的重述(略)二、问题的分析对于如何实现可持续捕捞,即每年开始捕捞时渔场中各年龄组鱼群条数不变,并且在此前提下得到最高的年收获量。
根据题意知,1龄鱼和2龄鱼全年只受自然死亡率的制约,而3龄鱼和4龄鱼在前2/3年除了受自然死亡率的影响还受到捕捞强度系数的制约,而后1/3年只受自然死亡率的制约。
对1龄鱼和2龄鱼可由)()(trxdttdxii-=去分析各龄鱼在t年的数量关系,而对3龄鱼和4龄鱼分析数量关系因考虑到鱼会受到捕捞强度系数的制约,则可得到关系式为:)()42.0()(3txkrdttdxi--=可得到3龄鱼和4龄鱼的数量与时间t的函数关系式,同时也可通过关系式求出各个时刻各龄鱼的数量。
一、一、问题的重述为了保护人类赖以生存的自然环境,可再生资源(如渔业)的开发必须适度。
一种合理简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
假设某种鱼分4个年龄组,称1龄鱼,……,4龄鱼。
各年龄组每条鱼的平均重量分别为5.07,11.55,17086,22.99(克),各年龄组鱼的自然死亡率为0.8,这种鱼为季节性集中产卵反之,平均每条4龄鱼的产卵量为1.109×105(个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率为1龄鱼条数与产卵量之比。
渔业管理部门规定只允许在产卵孵化期前的8个月内进行捕捞作业。
如果每年投入的捕捞能力(如鱼船数等)固定不变,这个单位时间捕捞量将与各年龄组鱼群条数成正比,比例系数称捕捞强度。
常使用一种只能捕捞3龄鱼和4龄鱼的网,并且其捕捞强度系数之比为0.42:1,渔业上称这种方式为固定努力量捕捞。
现在考虑对这种鱼的最优捕捞策略,使得在可持续捕获的前提下年收获量最高。
以及对某承包这种鱼捕捞业务的渔业公司,提出最优捕捞策略。
同时提供了一种可再生资源的开发思路与管理模型。
二、二、问题分析因为通常使用的鱼网只能捕捞3、4龄鱼,所以年收获量(捕捞总重量)是由3、4龄鱼的捕捞条数决定。
由于3、4龄鱼的年捕捞量与其各自的条数成正比(比例系数称为捕捞强度系数k i),同时按照题意要求:实现可持续收获,即每年开始捕捞时渔场中3、、4龄鱼各自的条数应该是一个固定不变的量,那末年收获量实质是由捕捞强度系数决定的量,因此可以把本题就转化为约束极值问题。
通常情况下,渔业管理以一年为一个周期,则称“捕捞——产卵”为一个周期(每年的1到8月“捕捞”,后4月“产卵”),为满足可持续收获这一约束条件,可将问题看作多阶段。
又因为上一年产卵成活1龄鱼的多少直接影响这一年2龄鱼的多少,这一年2龄鱼的多少直接影响下一年3龄鱼的多少……即各个阶段的各年龄组鱼群的数量存在必然联系,所以依据这些关系,我们可以从“离散”入手建立一系列的方程,然后在此基础上,利用微分方程处理“连续”的情况,逐步求得最优解。
最优捕鱼策略(A题)摘要当今世界,可持续地与自然和谐相处已成为了人们的共同意识。
本文主要寻求一种以针对实现鳀鱼种群的可持续收获为前提的最佳捕捞方案,达到最佳效益,同时为渔业部门制定相关规定提出建议。
对于问题一,运用合理的假设将影响鳀鱼种群数量的因素抽象为自然死亡和捕捞两种,并将自然死亡和捕捞过程理解为瞬时影响,由此建立出微分方程,进而得到各年龄组的鳀鱼数量与时间的关系式。
接着,以题干所述“各种年龄组鱼群条数不变”为约束条件,求捕捞总重量的最大值,即建立一非线性规划模型。
最后,利用Matlab软件求得:鳀鱼捕捞总重量的最大值为11,并且3.865510g求得在取得最大值时,3龄鱼、4龄鱼的捕捞强度分别为7.0021和16.6718。
对于问题二和问题三,在假定自然死亡率和捕捞强度系数变化很小的情况下,先运用微分思想和一定的等式变换,再利用捕捞总重量这一多元函数的一阶偏导函数,分别得出年捕鱼总重量对自然死亡率和对捕捞强度系数的灵敏性函数。
通过分析灵敏度函数的函数值大小,得出自然死亡率对模型的灵敏度不高,捕捞强度系数对模型的灵敏度不太高的结论。
同时,还发现了3、4龄鱼的捕捞强度系数对年收获量的影响程度相同的结论。
对于问题四,在充分分析了影响鳀鱼开发利用经济效益的因素的基础上,通过查阅相关学术文献资料,给出了综合开发利用鳀鱼资源的策略。
关键词:微分方程;非线性规划模型;灵敏度分析;多元函数的偏导数;Matlab 软件;Mathematica软件目录一问题重述 (2)二问题分析 (2)三模型假设与符号说明 (3)3.1 模型假设 (3)3.2 符号说明 (3)四模型建立与求解 (4)4.1 问题一的模型建立与求解 (4)4.1.1 模型的推导 (4)4.1.2 运用Matlab求解模型 (7)4.2问题二的模型建立与求解 (9)4.2.1 模型的推导 (9)4.2.2 对模型输出结果的分析 (9)4.3问题三的模型建立与求解 (10)4.3.1 模型的推导 (10)4.3.2 对模型输出结果的分析 (11)4.4问题四的解答 (12)五模型的优缺点 (13)5.1 模型的优点 (13)5.2 模型的缺点 (13)六参考文献 (13)七附录 (14)7.1 求解第一问模型的Matlab源代码 (14)一 问题重述假设鳀鱼分四种年龄组,称为1龄鱼,2龄鱼,3龄鱼,4龄鱼。
最优捕鱼策略优化模型摘要“最优捕鱼策略” 的数学模型通过鱼在单位时间内的死亡率来年调整捕鱼强度系数对现有的鱼进行捕捞并获取最大的产量。
由于鱼的生长具有周期性,每一种鱼的数量的改变对整个循环都有影响,因此必须综合考虑,以使每个种年龄段的鱼的数量不破坏的情况下的到最大产量,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:根据已经掌握的人口模型,将鱼的死亡同人口增长联系起来,每种鱼的死亡也有相应的关系,从开始到一个循环的结束,死亡量由大到小,而死亡率保持不变。
通过对死亡率的分析讨论发现)()(t x k r dtdx+-= 经过不定积分可知tk r t e x x )()0()(+-=在此基础上对死亡和捕获量进行综合分析,从而避开了考虑具体的谁先谁后的问题。
通过使用了非线性等式的约束来实现可持续收获,采用了微分方程和非线性规划方法来解决该优化问题。
利用了MATLAB 软件工具求的每年年初的各年龄组鱼的量、最大捕捞量和捕捞强度系数。
得到了各年龄组鱼群的年初的量分别为111019599.1⨯,1110537395.0⨯,,102414672.011⨯7103959.8⨯(单位为条)。
最优的捕捞强度系数为四龄鱼的捕捞强度系数:()年/136279.174=k ,最大量为111088708.3max ⨯=(克)。
在第二问中,模型中通过对鱼群的循环周期考虑可知四年一个循环但模型中将5年作为一个周期来建立模型,这样可以得到最大捕捞量,综合题目一中的模型最终捕在保证破坏最少的情况下的最大产量,由于捞强度系数为未知量,在实现5年后鱼群的生产能力不受到太大破坏的前提下,通过最后一年的量与初始量相等建立模型并利用MATLAB 软件进行求解,求出最大捕捞量,收获的最大量。
求得的捕捞强度系数分别为18.217266(1/年),总收获量为1210604751.1⨯ 克,即160.4751万吨。
关键词:微分方程. 最大捕捞量. 捕捞强度系数. 死亡率. 非线性规划一.问题的提出(略)二.问题分析该问题是一个涉及到微分方程的优化问题,初步分析为非线性规划问题。
最优捕鱼策略问题捕鱼问题【摘要】当今社会的发展越来越多的依赖于节约资源,保护环境。
而在渔业生产方面,采取何种捕捞生产策略以实现渔业的可持续发展关系重大,因此有必要进一步的研究最优的捕鱼策略既兼顾鱼类的可持续收获又达到最大的经济收益。
针对问题一,由题目给定的条件及查阅的相关资料作出基本假设,并依据假设与已知数据作出微分方程模型,得出描述各龄鱼的数量与时间的关系式,并通过鱼的产卵孵化及生长条件进一步得出鱼在各个时刻的数量。
由以上关系式及积分计算出捕捞量函数。
以捕捞量最大作为优化目标,以各龄鱼的数量关系方程作为约束条件及可得到一个非线性的数学规划模型。
用MATLAB,软件进行编程求解即可得到符合要求的各龄鱼数量以及最大捕捞量。
结果如下表所示:最大捕捞量Q 3.8871×1011捕捞强度系数l17.35X1(0) 1.1961×1011X2(0) 5.3743×1010X3(0) 2.4148×1010X4(0)8.4266×107针对问题二,题目已经给出各个年龄组鱼的数量的初值,只需设出每年的固定捕捞强度,并由问题1的关系式得出相应的鱼群各年龄组的数量等式作为优化问题的约束条件。
以五年间的捕捞量最大和五年后的鱼群年龄分布与可持续捕捞的鱼群的一龄鱼数量最接近作为优化问题的双目标,并赋予两个目标不同的权重,得到了综合效益评价函数。
并利用MATLAB软件编程求解,得出最优的捕捞强度系数。
当权重120.5c c==时,121.604910Q=×。
最后,针对已建立的模型及得到的数值计算结果进行分析检验,并结合模型建立、计算求解等过程中遇到的问题评价模型的优缺点,并提出了模型改进与推广建议。
关键词:微分方程多目标非线性规划年自然生存率年捕捞生存率目录1问题重述 (3)1.1问题背景 (3)1.2待解决的问题 (3)2分析假设 (3)2.1问题分析 (3)2.2模型假设 (3)3符号说明 (4)4模型一的建立与求解 (4)4.1问题一的分析 (4)4.2模型一的建立 (5)4.3模型一的求解 (7)5模型二的建立与求解 (8)5.1问题二的分析 (8)5.2模型二的建立 (8)5.3模型二的求解 (9)6模型的检验 (10)6.1模型一的检验 (10)6.2模型二的检验 (10)7模型的评价 (11)7.1模型的优点 (11)7.2模型的缺点 (12)8模型的改进与推广 (12)8.1模型的改进 (12)8.2模型的推广 (12)9参考文献 (12)10附录 (12)10.1附录1(问题一程序代码) (12)10.2附录2(问题二程序代码1) (13)10.3附录3(问题二程序代码2) (13)1问题重述1.1问题背景为了保护自然环境,使自然资源达到最优配置以实现可持续发展,在给定的条件下研究一种合理的捕鱼策略势在必行。
最优捕鱼策略问题答卷评述
刘来福
资源和环境的合理开发和保护是国民经济发展中的一个十分重要问题,特别是可再生资源的持续开发和利用的问题已经是一个全世界关注热点话题。
渔业的可持续开发的问题是应用数学来研究资源的利用的一个成功的例子。
“最优捕鱼策略”这个问题就是在这个背景下提出来的,意图使大家了解如何把数学应用于探讨资源和环境的合理开发和利用。
最优捕鱼策略问题答卷评述.pdf (271.15 KB)
最佳捕鱼策略的数学模型
黄成涛,张耀新,沈廷虎
本文的数学模型提法清楚.相对于捕捞强度递增的不同予测值,对鱼群变化进行动态模拟,以求得到稳产,这不失为一种有启发性的处理方法。
但由于未能对捕捞量—捕捞强度函数进行更为精确的解析或数值研究,结果未能达到最高产。
最佳捕鱼策略的数学模型.pdf (172.52 KB)
最优捕鱼模型
刘国玲,屈华波,郑群英
本文就渔场捕鱼策略问题建立了一个决策优化模型。
该模型既考虑了鱼群变化的年内连续性,又考虑到年间离散性,在保证“持续捕捞”的前提条件下,使渔获量达到最大。
在分析过程中,我们拓宽了鱼群“死亡率’的含义。
它包括“自然死亡率”和由于捕捞而引起的“死亡率”两个方面,我们把后者定义为“捕捞死亡牢”,这种处理方法给我们解决实际问题带来了极大的方便。
依据群体指数衰减规律,我们提出了实现可持续捕获的条件,得到一个比较稳定的捕捞强度系数,并通过计算机模拟验证。
模型的重要结论是:达到年收获量最高的捕捞强度系数F为17,收获量为3.87×10~8千克/年,渔业公司在5年内的最高总收获量为1.59×10~9 千克。
最优捕鱼模型.pdf (287.83 KB)
持续高产捕鱼策略
杜小勇,张艳凰,郝建国
本文基于鳀鱼产卵、孵化的突变性和死亡、被捕捞的连续性的假设,建立了鳀鱼生态系统的微分——差分模型。
用数值模拟方法,分析了在各种捕捞强度下系统的稳定状态,并最终利用类似Leslie矩阵的方法检验了此时确为种群不变的稳定状态。
在此基础上,对问题1),通过对[0,1]区间所有满足保持稳定状态捕捞强度系数p的搜索,得出使得年产量最高的最优值p=0.037,对应的年产量为
6.44455万吨。
对于问题2)分别讨论了5年中p不变和每年p发生变化的两种情况,用逐步求精的搜索法分别求解,得出两种情况下各自的最优策略,其产量分别为49.0575万吨和49.6284万吨。
本文还进一步考虑了模型的改进,并讨论了以保证最大利润为目标的可持续捕捞策略,数值计算表明我们的模型是相当令人满意的。
持续高产捕鱼策略.pdf (435.99 KB)
最优捕鱼策略问题
朱京义,张纯,廖海润
本文以生态经济着眼,首先用微分方程组建立于基本模型,从理论上完整地描述了各年龄鱼的变化情况,其次,从基本模型出发,我们构造出年度最优模型,得到
了可持续捕获应满足的条件及在此条件下可获得的年最高收获量,在对“鱼的
生产能力不受到太大破坏”进行详细分析和合理描述的基础上,巧妙构思,建立
了承包期总产量模型,给出了公司应采取的捕捞策略及相应的承包期最高收获量。
最优捕鱼策略问题.pdf (379.2 KB)
最优捕鱼策略的设计
石瑞萌,余希晨,周丹
本问题是一个典型的可再生资源开发问题,因此我们以成熟的Scheafer模型为
基础求解,在建模过程中,我们对各年龄组鱼在同一年中的数量变化规律应用微分方程进行分析,建立捕捞期和产卵期两个阶段各组鱼群的数量随时间变化的指数型方程。
此后我们又对各组鱼群之间的数量关系建立按年份变化的离散型方程,最终获得即简单又比较精确的离散型迭代方程组。
在模型求解过程中,我们结合了计算机分析求解的技术,应用Mathematic软件以及WatcomC/C++编译器,通过
编程序求出了问题的解,并以作图的方式给出了模型的直观表示,我们还在数学上对于鱼类分布结构的收敛性给予了严格的证明,从而得出如下结论; 可持续性捕捞的最优捕捞强度系数3龄鱼为7.2924/年,4龄鱼为17.3629/年,相应的年捕捞量为3.88×10~(11)克。
5年连续捕捞的最优捕捞强度系数3龄鱼为7.3836/年,4龄鱼为17.58/年,相应的年捕捞量为2.34401×10~(11)
克,2.14852×10~(11)克,396176×10~(11)A?K#,3.77825×10~(11)克与
3.82216×10~(11)克。
本模型具有较强的适用性和普遍性,建模过...
最优捕鱼策略的设计.pdf (487.96 KB)
最优捕鱼策略模型
罗君,刘鹏,周鸣炜
本文讨论了渔业资源开发项目中在实现可收获的前提下对某种鱼的最优捕捞策略。
针对问题一: 通过对4龄鱼在年末的两种不同状态(全部死亡;仍为4龄鱼)的考虑,得到了两个模型,再进一步考虑鱼的产卵和孵化是一个连续的过程,利用两个离散变量的几何平均来代替连续变量建立第三个模型,最后求解在计算机上实现。
针对问题二: 1.先假设每年捕捞强度相等,建立了一个简单模型; 2.
再假设每年捕捞强度不相等,建立一个复杂模型; 3.最后给出鱼群生产能力破坏不太大的含义(即鱼群减少率的上限),在它的约束之下再建立一个模型。
本文最大的特点是:离散和连续相结合,在本文的后面又将各模型的结果进行了比较,并给出了理论上的解湿,得到令人满意的结果。
最优捕鱼策略模型.pdf (552.91 KB)
最优捕鱼策略
唐进,曾宁,李静
社会经济生活中,我们常遇到商业活动在一段时期内的最大收益问题,如森林管理等。
这时,我们不仅要考虑商业活动的当前经济效益,还要考虑生态效益及由此产生的对整体经济效益的影响。
本文涉及的问题是渔业管理,即对一国定的渔场,在一段时间内,如何实现最大的收益,同时保证渔场能稳定生产,我们的基本思路是:考虑渔场生产过程中的两个相互制约的因素,年捕捞能力和再生产能力,从而确定最优管理策略。
我们用微分方程来描述渔场鱼群数量随时间变化的规律,在此基础上确定整体效益为我们的目标函数,以渔场生产的稳定性要求为约束条件,分别对长期生产和固定期生产两种情况建立了规划模型。
在对长期生产模型的求解中,我们利用约束条件将目标函数化为一元函数,用计算机数值法确定近似的最优解,而在对固定期生产模型求解中,我们则构造一个整体效益函数,
综合考虑年捕捞能力和年再生产能力,用计算机数值解法进行搜索逐年确定各年的最优策略,从而得出五年的总最优策略。
最后,我们对模型的稳定性进行敛定量的分析,并对模型进行了检验,确定模型较好地反映渔场最优捕鱼策略问题。
最优捕鱼策略.pdf (168.08 KB)。