知识总结平均数中位数与众数
- 格式:doc
- 大小:22.00 KB
- 文档页数:3
人教版初二上册数学知识点归纳:平均数中位数众数(第六章)
3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
通过对人教版初二上册数学知识点归纳:平均数中位数众数(第六章)的学习,是否已经掌握了本文知识点,更多参考资料尽在查字典数学网!。
平均数、中位数、众数的区别
与联系
平均数、中位数、众数三者都可以用来表示一组数据的总体水平。
1、当数据都比较均匀时,用平均数表示比较合适。
如:7、8、7、8.5、7.
2、6、9,这组数据用平均数表示比较合适。
平均数表示一般水平,受每一个数据的影响,当一组数据出现个别偏大或偏小的数据时,用平均数表示就不合适。
生活中往往去掉最高或最低的数据再进行求平均数。
2、当数据个别不均匀,出现偏大或偏小时,往往用中位数来代表这组数据的中等水平。
如:30、8、7、8.5、7.2、6、9。
求中位数时,将数据有序排列,奇数个取中间数,偶数个取中间两数的平均数。
3、当数据较多部分出现偏大或偏小时,就要用到众数来表示多数水平。
如较多偏大:27、28、27、8.5、27、7.2、6、9,27。
众数是27
较多偏小:2、3、2、35、2、34、2、3、2、20、2、众数是2
一组数据,众数可能有一个、两个、多个,或者没有众数。
如1、2、3、4、5、便没有众数。
2、3、2、15、6、3、2、3,众数是2和3。
中位数平均数众数之间的关系中位数、平均数、众数是描述数据集的重要统计量,它们在数据分析、数据挖掘、机器学习等领域中都具有重要的作用。
那么,中位数、平均数、众数之间究竟有什么联系与区别呢?本文将从三种统计量的概念、求法、使用场景等方面探讨它们之间的关系,并指出它们的优劣与互补性。
一、中位数:把一组数据从小到大排列,位置处于中间的数即为该组数据的中位数,如果数据总个数为奇数,则中位数就是该组数据中间的那个数,反之,如果数据总个数为偶数,则中位数就是中间两个数的平均数。
中位数适用于数据分布不均匀或存在极端值的情况,它可以有效地减少异常值的影响,具有很强的稳定性和代表性。
二、平均数:一组数据的平均数就是所有数据之和除以数据的个数。
如果样本是随机且均匀的,那么样本平均值应该能够代表该组数据的中心点。
平均数在数据分布比较均匀的情况下能够体现数据的大小关系,并且在某些场景中能够更好地评估相关变量的趋势和大小。
三、众数:一组数据中出现最频繁的数即为该组数据的众数,一个数据集可以有一个或多个众数,也有可能不存在众数。
众数在数据分布比较集中和单峰的情况下具有最好的代表性,能够体现数据分布的最高峰位置和分布密度的峰度,通常用于分类型变量的数据分析,如性别、年级、工作岗位等。
通过以上对中位数、平均数、众数的概念描述,我们可以发现它们有一些相同的特点,特别是在一些基础统计分析场景中它们也是在数据描述和分析中最容易想到的统计量;还有一些存在明显的差异,它们有各自的适用范围、含义和统计意义。
同时它们之间也存在着某些联系与互补性。
在数据集的分布比较对称或数据相对均匀的情况下,中位数和平均数比较接近;在数据分布比较集中和单峰的情况下,众数和中位数比较接近。
所以,只有综合分析这三种统计量,才能更加全面地了解数据分布的情况,避免由某一种统计量的缺陷导致的误解和错误分析。
总之,中位数、平均数、众数三者之间既有相似性又有差异性,在实际应用时需要根据具体情况综合选择。
一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
简述众数中位数和平均数的特点众数、中位数和平均数是统计学中常用的描述数据集中趋势的统计量。
它们的特点如下:
1. 众数:众数是数据中出现次数最多的数值,可以是一个数值,也可以是多个数值。
众数的特点是能够反映数据的最常见取值,常用于描述数据集中的典型值。
例如,对于数据集{1,2,2,3,4,4,4,5},众数为4。
2. 中位数:中位数是把数据按照大小顺序排列后,位于中间位置的数值。
如果数据集中的数据个数为奇数,那么中位数就是唯一的中间数;如果数据集中的数据个数为偶数,那么中位数是中间两个数的平均值。
中位数的特点是不受极端值的影响,所以比平均数更能反映数据集的整体情况。
例如,对于数据集{1,2,2,3,4,4,4,5},中位数为。
3. 平均数:平均数是数据集中所有数值的总和除以数据的个数。
平均数的特点是能够反映数据的总体水平,常用于描述数据的集中程度。
然而,平均数容易受极端值的影响,因此在有偏数据或异常值较多的情况下,平均数可能不太准确。
例如,对于数据集{1,2,2,3,4,4,4,5},平均数为3.125。
- 1 -。
平均数、中位数、众数三者的联系与区别赵湾镇中心学校周云忠六年级数学总复习时,对小学阶段认识的统计量平均数、中位数、众数三种统计量进行了对比,平均数、中位数、众数三种统计量的运用如下:一组数据中如果有特别大的数或特别小的数时,一般用中位数。
一组数据比较多(20个以上),范围比较集中,一般用众数。
其余情况一般还是平均数比较精确。
一、联系与区别:1、平均数是通过(挖高补低)计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,中位数在一组数据的数值排序中处中间的位置,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和众数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点平均数:(1)需要全组所有数据来计算(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我的理解是:⒈众数一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
个人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
4.中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
个人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
4.中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
平均数中位数和众数的特点及适用场合平均数、中位数和众数是统计学中常用的三种描述数据集中趋势的指标。
它们各自具有不同的特点和适用场合,下面将对它们进行详细的解释和比较。
1. 平均数(Mean):平均数是最常用的描述数据集中趋势的指标,它是将所有观测值相加后除以观测值的总个数得到的值。
平均数对于大部分数据集都是一个较好的衡量指标,特别是当数据集中没有明显的极端值或离群值时。
平均数具有以下特点:- 平均数受极端值的影响较大。
如果数据集中存在极端值,平均数会被拉向极端值的一侧。
- 平均数对数据集中的每个观测值都有贡献,因此平均数可以用来表示整个数据集的集中趋势。
- 平均数可以进行加减运算,因此可以用来计算数据集之间的差异和比较。
适用场合:平均数适用于大部分数据集,尤其是在数据分布相对均匀的情况下。
它能够描述数据集的集中趋势,并且可以进行加减运算,方便进行比较和计算。
2. 中位数(Median):中位数是将一组数据按照从小到大的顺序排列后,位于中间位置的数值。
如果数据集的个数为奇数,则中位数就是中间的那个数;如果数据集的个数为偶数,则中位数是中间两个数的平均值。
中位数具有以下特点:- 中位数不受极端值的影响。
即使数据集中存在极端值,中位数也不会受到拉动。
- 中位数对于不满足正态分布的数据集也比较稳健,能够较好地描述数据集的集中趋势。
- 中位数适用于有序数据集,能够反映数据的中间位置。
适用场合:中位数适用于数据集中存在极端值或离群值的情况。
由于中位数不受极端值的影响,它可以更好地反映数据集的集中趋势,特别是在数据集不满足正态分布的情况下。
3. 众数(Mode):众数是指在一组数据中出现次数最多的数值。
一个数据集可以有一个或多个众数,也可以没有众数。
众数具有以下特点:- 众数可以是离散值或连续值。
- 众数对于有序数据集没有定义,它只关注数据的频率。
- 众数可以用来表示数据集中的典型值。
适用场合:众数适用于描述数据集中的典型值,特别是对于离散型数据集,众数可以更好地反映数据的特征。
一、相共面之阳早格格创做仄衡数、中位数战寡数那三个统计量的相共之处主要表示正在:皆是去形貌数据集结趋势的统计量;皆可用去反映数据的普遍火仄;皆可用去动做一组数据的代表.二、分歧面它们之间的辨别,主要表示正在以下圆里.1、定义分歧仄衡数:一组数据的总战除以那组数据个数所得到的商喊那组数据的仄衡数.中位数:将一组数据按大小程序排列,处正在最中间位子的一个数喊干那组数据的中位数 .寡数:正在一组数据中出现次数最多的数喊干那组数据的寡数.2、供法分歧仄衡数:用所罕见据相加的总战除以数据的个数,需要估计才得供出.中位数:将数据依照从小到大或者从大到小的程序排列,如果数据个数是奇数,则处于最中间位子的数便是那组数据的中位数;如果数据的个数是奇数,则中间二个数据的仄衡数是那组数据的中位数.它的供出不需或者只需简朴的估计.寡数:一组数据中出现次数最多的那个数,不必估计便可供出.3、个数分歧正在一组数据中,仄衡数战中位数皆具备惟一性,但是寡数奇尔不具备惟一性.正在一组数据中,大概不只一个寡数,也大概不寡数.4、浮现分歧仄衡数:是一个“假造”的数,是通过估计得到的,它不是数据中的本初数据.中位数:是一个不真足“假造”的数.当一组数据有奇数个时,它便是该组数据排序后最中间的那个数据,是那组数据中真正在存留的一个数据;但是正在数据个数为奇数的情况下,中位数是最中间二个数据的仄衡数,它纷歧定取那组数据中的某个数据相等,此时的中位数便是一个假造的数.寡数:是一组数据中的本数据,它是真正在存留的.5、代表分歧仄衡数:反映了一组数据的仄衡大小,时常使用去一代表数据的总体“仄衡火仄”.中位数:像一条分界线,将数据分成前半部分战后半部分,果此用去代表一组数据的“中等火仄”.寡数:反映了出现次数最多的数据,用去代表一组数据的“普遍火仄”.那三个统计量虽反映有所分歧,但是皆可表示数据的集结趋势,皆可动做数据普遍火仄的代表.6、特性分歧仄衡数:取每一个数据皆有闭,其中所罕见据的变动皆市相映引起仄衡数的变动.主要缺面是易受极度值的效率,那里的极度值是指偏偏大或者偏偏小数,当出现偏偏大数时,仄衡数将会被抬下,当出现偏偏小数时,仄衡数会落矮.中位数:取数据的排列位子有闭,某些数据的变动对于它不效率;它是一组数据中间位子上的代表值,不受数据极度值的效率.寡数:取数据出现的次数有闭,着眼于对于各数据出现的频次的观察,其大小只取那组数据中的部分数据有闭,不受极度值的效率,其缺面是具备不唯一性,一组数据中大概会有一个寡数,也大概会有多个或者不 .7、效率分歧仄衡数:是统计中最时常使用的数据代表值,比较稳当战宁静,果为它取每一个数据皆有闭,反映出去的疑息最充分.仄衡数既不妨形貌一组数据自己的真足仄衡情况,也不妨用去动做分歧组数据比较的一个尺度.果此,它正在死计中应用最广大,比圆咱们时常所道的仄衡结果、仄衡身下、仄衡体沉等.中位数:动做一组数据的代表,稳当性比较好,果为它只利用了部分数据.但是当一组数据的各别数据偏偏大或者偏偏小时,用中位数去形貌该组数据的集结趋势便比较符合.寡数:动做一组数据的代表,稳当性也比较好,果为它也只利用了部分数据..正在一组数据中,如果各别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即寡数)表示那组数据的“集结趋势”便比较符合.。
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
众数,中位数,算数平均数的关系众数、中位数、算术平均数是统计学中常用的描述数据集中趋势的三种指标,它们之间存在一定的关系。
下面将分别介绍这三种指标及它们之间的关系。
一、众数(Mode)是数据集中出现频率最高的数值,也就是数据集中出现次数最多的数。
众数可以用来描述一个数据集的最典型特征,它对极端值不敏感。
如果数据集有一个众数,那么众数就是唯一确定的;如果数据集有多个众数,那么众数就是多个。
例如,数据集{1,2,3,3,4,5}的众数是3,因为3出现了两次,而其他数只出现了一次。
二、中位数(Median)是将一组数据从小到大排列后,处于中间位置的数。
如果数据集的个数为奇数,那么中位数就是中间的那个数;如果数据集的个数为偶数,那么中位数就是中间两个数的平均值。
中位数能够很好地反映数据集的中间水平,对极端值不敏感。
例如,数据集{1,2,3,4,5}的中位数是3,因为3正好是中间一个数;数据集{1,2,3,4,5,6}的中位数是(3+4)/2=3.5,因为3和4分别是中间两个数。
三、算术平均数(Arithmetic Mean)是指将一组数据的总和除以数据的个数所得到的结果。
它是最常见的,也是最直观的一种描述数据集集中趋势的方法。
算术平均数对数据集的每个数都有贡献,但对极端值比较敏感。
例如,数据集{1,2,3,3,4,5}的算术平均数是(1+2+3+3+4+5)/6=3,将所有数加起来再除以个数就得到了平均数。
这三种指标之间有以下关系:1. 如果一个数据集只有一个众数,那么这个众数一定是唯一的中位数和算术平均数。
2. 如果一个数据集没有众数,那么它可能有一个或多个中位数,而算术平均数一定存在。
3. 如果一个数据集中有多个众数,那么它可能有一个或多个中位数,而算术平均数则可能不存在。
4. 当数据集符合对称分布(例如正态分布)时,众数、中位数和算术平均数是相等的。
这是因为对称分布的数据集中心位置和平均位置是一致的。
一、相同点之阿布丰王创作平均数、中位数和众数这三个统计量的相同之处主要暗示在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表.二、分歧点它们之间的区别,主要暗示在以下方面.1、界说分歧平均数:一组数据的总和除以这组数据个数所获得的商叫这组数据的平均数.中位数:将一组数据按年夜小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 .众数:在一组数据中呈现次数最多的数叫做这组数据的众数.2、求法分歧平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出.中位数:将数据依照从小到年夜或从年夜到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数.它的求出不需或只需简单的计算.众数:一组数据中呈现次数最多的那个数,不用计算就可求出.3、个数分歧在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性.在一组数据中,可能不止一个众数,也可能没有众数.4、呈现分歧平均数:是一个“虚拟”的数,是通过计算获得的,它不是数据中的原始数据.中位数:是一个不完全“虚拟”的数.当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它纷歧定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数.众数:是一组数据中的原数据 ,它是真实存在的.5、代表分歧平均数:反映了一组数据的平均年夜小,经常使用来一代表数据的总体“平均水平”.中位数:像一条分界线,将数据分成前半部份和后半部份,因此用来代表一组数据的“中等水平”.众数:反映了呈现次数最多的数据,用来代表一组数据的“大都水平”.这三个统计量虽反映有所分歧,但都可暗示数据的集中趋势,都可作为数据一般水平的代表.6、特点分歧平均数:与每一个数据都有关,其中任何数据的变更城市相应引起平均数的变更.主要缺点是易受极端值的影响,这里的极端值是指偏年夜或偏小数,当呈现偏年夜数时,平均数将会被抬高,当呈现偏小数时,平均数会降低.中位数:与数据的排列位置有关,某些数据的变更对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响.众数:与数据呈现的次数有关,着眼于对各数据呈现的频率的考察,其年夜小只与这组数据中的部份数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 .7、作用分歧平均数:是统计中最经常使用的数据代表值,比力可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充沛.平均数既可以描述一组数据自己的整体平均情况,也可以用来作为分歧组数据比力的一个标准.因此,它在生活中应用最广泛,比如我们经常所说的平均成果、平均身高、平均体重等.中位数:作为一组数据的代表,可靠性比力差,因为它只利用了部份数据.但当一组数据的个别数据偏年夜或偏小时,用中位数来描述该组数据的集中趋势就比力合适.众数:作为一组数据的代表,可靠性也比力差,因为它也只利用了部份数据..在一组数据中,如果个别数据有很年夜的变更,且某个数据呈现的次数最多,此时用该数据(即众数)暗示这组数据的“集中趋势”就比力适合.。
平均数、中位数与众数
描述一组数据的“平均水平”的特征数最基本、最常用的是平均数、中位数和众数。
现对它们的各自的特征作如下分析:
【平均数】平均数的大小与一组数据里每个数据都有关系,其中任何数据的变动都会相应引起平均数的变动。
因此,表明平均数能较充分地反映一组数据的“平均水平”,但它容易受极端值的影响。
【中位数】中位数的大小仅与数据的排列位置有关,将一组数据按从小到大的顺序排列后,最中间的数据或最中间两个数据的平均数为中位数。
因此,部分数据变动对中位数没有影响,当一组数据中的个别数据变动较大时,一般用中位数来描述“平均水平”。
【众数】众数着眼于各数据出现的次数,其大小与该组的部分数据有关,求一组数据的众数既不需要计算,也不需要排列,只要找出该数据中出现次数最多数据即为众数。
因此,当一组数据中有不少数据重复出现时,一般用众数来描述“平均水平”.
注意:(1)平均数、中位数和众数描述的角度和适用范围不同。
(2)一组数据中平均数和中位数是惟一的,而众数则不一定惟一。
在特殊情况下,三个数可能是同一个数据。
(3)在实际问题中三者都有单位。
(4)在具体问题中采用哪个特征数来描述一组数据的“平均水平”,就要看数据的特点和我们所关系问题而定。
例1 某班有7名同学参加校“综合素质只能竞赛”,成绩(单位:分)分别是87,92,87,89,91,88,76.则它们成绩的众数是分,中位数是分。
解析:本题的这组数据已按从大到小的顺序排列好,即76,87,87,88,89,91,92。
出现次数最多的数是87,所以众数是87;由于排在中间的数据为88,所以中位数是88。
例2 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:
年龄组 13岁 14岁 15岁 16岁
参赛人数 5 19 12 14
(1)求全体参赛选手年龄的众数、中位数;
(2)小明说,他所在年龄组的参赛人数占全体参赛人数的。
你认为小明是哪个年龄组的选手?请说明理由。
解析:(1)出现次数最多的数是14,所以众数是14岁;这组数据有50个数,将这组数按从小到大的顺序排列,第25、26个数都是15,所以中位数是15岁。
(2)全体参赛选手的人数为:5+19+12+14=50名
50×=14(名)
小明是16岁年龄组的选手。
例3 现有7名同学测得某大厦的高度如下:(单位:m)
(1)在这组数据中,中位数是,众数是,平均数是;
(2)凭经验,你觉得此大厦大概有多高?请简要说明理由。
解析:(1)将这组数据按从小到大的顺序排列,即,,,,,,,由于排在中间的数据有一个,即,所以中位数是;出现次数最多的数有一个,即出现了4次,所以众数是。
这组数据的平均数:
(++++++)÷7= ;
(2)凭经验,大厦高约m。
原因是数据44.0误差太大或测量错误,从而导致平均数的数值偏大,因此按照中位数和众数而定。