当前位置:文档之家› 算法第四版习题答案

算法第四版习题答案

算法第四版习题答案
算法第四版习题答案

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

贪心算法经典例题

贪心算法经典例题 发布日期:2009-1-8 浏览次数:1180 本资料需要注册并登录后才能下载! ·用户名密码验证码找回密码·您还未注册?请注册 您的账户余额为元,余额已不足,请充值。 您的账户余额为元。此购买将从您的账户中扣除费用0.0元。 内容介绍>> 贪心算法经典例题 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。 从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④ 6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] a.in: 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

算法习题

算法设计与分析试卷 一、填空题(20分,每空2分) 1、算法的性质包括输入、输出、确定性、有限性。 2、动态规划算法的基本思想就将待求问题分解成若干个子问题、先求解子问题,然后 从这些子问题的解得到原问题的解。 3、设计动态规划算法的4个步骤: (1)找出最优解的性质,并刻画其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值得到的信息,构造最优解。 4、流水作业调度问题的johnson算法: (1)令N1={i|ai=bj}; (2)将N1中作业依ai的ai的非减序排序;将N2中作业依bi的非增序排序。 5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}。 6、最优二叉搜索树即是最小平均查找长度的二叉搜索树。 二、综合题(50分) 1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)=20(5分) 2、由流水作业调度问题的最优子结构性质可知,T(N,0)=min{ai+T(N-{i},bi)}(1=sum){ sum=thissum; besti=i; bestj=j;} } return sum; } 4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分) Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w) { for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]= 0;} for(int r=0;r

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

计算方法课后题答案之习题二

习题二 1. 证明方程043 =-+x x 在区间[1,2]内有一个根。如果用二分法求它具有5位有效数字的根,需要 二分多少次。 证明: (1) 不妨令 4)(3-+=x x x f ,求得: 02)1(<-=f 06)2(>=f 又因为4)(3-+=x x x f 在区间[1,2]内是连续的,所以在区间[1,2]内有至少一个根。 又因为 13)(2'+=x x f 在区间[1,2]内013)(2'>+=x x f ,所以4)(3-+=x x x f 单调。 得证,043 =-+x x 在区间[1,2]内仅有一个根。 (2)具有5位有效数字的根,说明根可以表示成 5 4321.a a a a a ,所以绝对误差限应该是 5a 位上的 一半,即: 4105.0-?=ε。由公式: ε≤-+1 2 k a b 可得到, 14=k 迭代次数为151=+k 次。 ---------------------------------------------------------------------------------------------------------------------- 2. 用二分法求方程 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内的近似根(精确到10-3)。 解:043499.05625.099749.0)25.1(5.1sin )5.1(2 >=-=-=f 009070.0190930.0)22(2sin )2(2 <-=-=-=f 所以0)2 (sin )(2 =-=x x x f 在区间[1.5,2]内有根,又 x cos )('-=x x f 在区间[1.5,2]内 0x cos )('<-=x x f 所以 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内有根,且唯一。符合二分条件,可以用二分法,二分的 次数为:

贪心算法概论

贪心算法概论 贪心算法一般来说是解决“最优问题”,具有编程简单、运行效率高、空间 复杂度低等特点。是信息学竞赛中的一个有为武器,受到广大同学们的青睐。本 讲就贪心算法的特点作些概念上的总结。 一、贪心算法与简单枚举和动态规划的运行方式比较 贪心算法一般是求“最优解”这类问题的。最优解问题可描述为:有n个输入,它的解是由这n 个输入的某个子集组成,并且这个子集必须满足事先给定的条 件。这个条件称为约束条件。而把满足约束条件的子集称为该问题的可行解。这 些可行解可能有多个。为了衡量可行解的优劣,事先给了一个关于可行解的函数,称为目标函数。目标函数最大(或最小)的可行解,称为最优解。 a)求“最优解”最原始的方法为搜索枚举方案法(一般为回溯法)。 除了极简单的问题,一般用深度优先搜索或宽度优先搜索。通常优化方法为利用约束条件进行可行性判断剪枝;或利用目标函数下界(或上界),根据当前最 优解进行分枝定界。 b)其次现今竞赛中用的比较普遍的动态规划(需要满足阶段无后效性原则)。 动态规划主要是利用最最优子问题的确定性,从后向前(即从小规模向大规模)得到当前最优策略,从而避免了重复的搜索。 举例说明:求多段图的最短路径。

在图(1)中,我们省略了各线段的长度。 如果用回溯法,搜索树大致如下: 显然,上面的搜索有大量重复性工作。比如节点8、9、10到11的最短路分别被调用了9次,从节点5、6、7到节点11也分别搜索了3次。 如果先算出节点8、9、10到11的最短路,由于它与前面的点无关,因此最优值确定下来,再用它们求定节点5、6、7 到节点11 的最短路径。同理,再用节 点5、6、7 的最优值,来求节点2、3、4 优值。最后从节点2、3、4 推出1 到 11的最优值。显然复杂度大为降低。 当然,如果本题把简单搜索改为搜索+记忆化的方法,则就是得能动态规划的原理,本质上就是动态规划,只是实现的方法不同与传统的表格操作法。搜索+记忆化算法有其特有的特点,以后再讨论。 c)贪心算法则不同,它不是建立在枚举方案的基础上的。它从前向后,根据当前情况,“贪心地”决定出下一步,从而一步一步直接走下去,最终得到解。 假如上面的例子中,我们定下这样的贪心策略:节点号k%3= =1。则有图3:

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

算法分析与设计期末模拟试题

安徽大学2010-2011学年第1学期《算法分析与设计》 期末试题 押宝 (内部交流,非考试试题,学生自发交流创作,版权归作者testfudan@https://www.doczj.com/doc/3812575384.html, 所有) 一、选择题(单选)(10*2’=20’) 1. 选择正确的组合对于 2112n +=( ) ①2()o n ② 2()O n ③2()n θ ④2()n Ω ⑤ 2()n ω A. ①③④ B. ②③④ C.③④⑤ D. ①⑤ 2. ①21()()n i i O n O n ==∑ ②2()()n O n O n = ③(log )()O n O n ? ④ 2.99993 ()n O n = ⑤2/lo g ()n n n ω=其中正确的有( ) A .5组 B.4组 C.3组 D.没有正确的 3. 2/102n n +=( ) A. 2()O n B.(2)n O C.2(2)n n O + D.2 ()o n 4. 211/n += ( )(我认为是比较不错的一道题,考试可能会出现相同的方法,用极限定义来做,最后一节课老师也讲过类似的方法) A. ()O n B.()o n C.()n Ω D.(1)O 5. 310lo g n = ( ) A.(log )O n n B. (log )O n C. 3()O n D. lo g ()n O n 6. 认真完成课后习题P5面的算法分析题1-6,里面也有我不会做的,可是有谁愿意讨论? 如果能够把以上的题目都能做对,应该就是掌握了。给自己一个奖励吧!答案(如有问题,联系我吧):1-5:BBBDB 6.做出来对对答案吧。 二、填空题 1.()2(/2)T n T n n =+????的一个渐进上界为 (答案:(log )O n n ,用迭代法) 2.()(/3)(2/3)()T n T n T n O n =++的一个渐进上界为 (答案:(log )O n n ,用递归树求解,不会的赶快看) 3.()9(/3)T n T n n =+的一个渐进紧致界为 (答案:2 ()n θ,采用迭代法或者采用主方法,不会的赶快看)

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

贪心算法的应用

从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] : 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆; (2)若a[i]

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

贪心算法经典问题:活动安排,背包问题,最优装载,单源最短路径 Dijiksra,找零钱问题,多机调度

活动安排 public static int greedySelector(int [] s, int [] f, boolean a[]) { //s[]开始时间f[]结束时间 int n=s.length-1; a[1]=true; int j=1; int count=1; for (int i=2;i<=n;i++) { if (s[i]>=f[j]) { a[i]=true; j=i; count++; } else a[i]=false; } return count; } 背包问题 void Knapsack(int n,float M,float v[],float w[],float x[]) { Sort(n,v,w); //以每种物品单位重量的价值Vi/Wi从大到小排序 int i; for (i=1;i<=n;i++) x[i]=0; float c=M; for (i=1;i<=n;i++) { if (w[i]>c) break; x[i]=1; c-=w[i]; } if (i<=n) x[i]=c/w[i]; //允许放入一个物品的一部分 } 最优装载 void Loading(int x[], T ype w[], T ype c, int n) { int *t = new int [n+1]; //t[i]要存的是w[j]中重量从小到大的数组下标Sort(w, t, n); //按货箱重量排序 for (int i = 1; i <= n; i++) x[i] = 0; //O(n) for (int i = 1; i <= n && w[t[i]] <= c; i++) {x[t[i]] = 1; c -= w[t[i]];} //调整剩余空间 } 单源最短路径Dijiksra template void Dijikstra(int n, int v, Type dist[], int prev[], Type **c) { //c[i][j]表示边(i,j)的权,dist[i]表示当前从源到顶点i的最短特殊路径bool s[maxint]; for(int i= 1;i<=n; i++) { dist[i]=c[v][i]; s[i]=false;

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

算法分析与设计选修课-贪心算法应用研究

武汉理工大学 算法设计与分析论文题目:贪心算法应用研究 姓名:吴兵 学院:信息工程 专业班级:电子133 学号: 1409721303131 任课教师:张小梅

目录 摘要 (1) 1.绪论 (2) 2贪心算法的基本知识概述 (3) 2.1 贪心算法定义 (3) 2.2 贪心算法的基本思路及实现过程 (3) 2.3贪心算法的核心 (3) 2.4贪心算法的基本要素 (4) 2.5 贪心算法的理论基础 (6) 2.6 贪心算法存在的问题 (7) 3贪心算法经典应用举例 (8) 3.1删数问题 (8) 3.2 汽车加油问题 (10) 3.3会场安排问题 (12) 4.总结 (16) 5.参考文献 (17)

摘要 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。 关键词:贪心算法最小生成树多处最优服务次序问题删数问题

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

相关主题
文本预览
相关文档 最新文档