安徽省合肥市蜀山区2019-2020学年八年级上学期期末数学试题
- 格式:docx
- 大小:734.85 KB
- 文档页数:20
合肥市2019-2020学年八年级上学期期末数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.2 . 关于的分式方程的解是正数,则字母的取值范围是()A.B.C.,且D.,且3 . 下列分式中,与的值相等的是()A.B.C.D.4 . 计算的结果是()A.62500B.1000C.500D.2505 . 正多边形的一个外角的度数为36°,则这个正多边形的边数为()A.6B.8C.10D.126 . 如图,在△ABC中,∠A=∠BCA,CD平分∠ACB,CE⊥AB交AB延长线于点E,若∠DCE=54°,则∠A的度数为()A.49°B.36°C.24°D.41°7 . 若x2+kx + 4是一个完全平方式,则k的值是()A.4B.±4C.8D.±88 . 细菌半径是0.000047米,用科学记数法表示为()A.0.47×10-5米B.4.7×10-5米C.-4.7×10-6米D.0.47×10-4米9 . 如图,等边三角形ABC中,D、E分别为AB,BC边上的点,且 AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为()A.B.C.D.10 . 一家工艺品厂按计件方式结算工资.暑假里,大学生小华去这家工艺品厂打工,第一天得到工资60元,第二天比第一天多做了10件,得到工资75元.如果设小华第一天做了件,依题意列方程正确的是()A.B.C.D.二、填空题11 . 如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).12 . 定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转角度,这样的图形运动叫作图形的变换如图,等边的边长为1,点A在第一象限,点B与原点0重合,点C在x轴的正半轴上就是经变换后所得的图形,则点的坐标是______.13 . 在边长为的正方形中剪掉一个边长为的小正方形,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.14 . 若分式的值为0,则x的值为___________.15 . 方程=-1的解是____.16 . 如果分式有意义,那么x的取值范围是 ___________.分式的最简公分母是_______________.17 . 如果2x÷16y=8,那么2x-8y=______.18 . 已知三角形的两边长分别为2和6,第三边的长是偶数,则此三角形的第三边长是__________.三、解答题19 . 已知:如图,BC,AD分别垂直于OA,OB,BC和AD相交于点E,且OE平分∠AOB,已知CE=3 cm,∠A=30°,试求EB的长.20 . 已知,求代数式的值.21 . 先化简,再从0,-2,-1,1中选择一个合适的数代入并求值.22 . 某品牌罐装饮料每箱价格为24元,某商店对该罐装饮料进行“买一送一”促销活动,若整箱购买,则买一箱送一箱,这相当于每罐比原价便宜了2元.问该品牌饮料一箱有多少罐?23 . 解方程:.24 . 因式分解(1)(2)。
合肥市2019-2020学年八年级上学期期末数学试题B卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,OC平分∠AOB,CM⊥OB于点M,CM=3,则点C到射线OA的距离为()A.5B.4C.3D.22 . 下列各式中最简分式是A.B.C.D.3 . 如图,在正方形ABCD中,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,若PD+PE 的最小值为5,则正方形的面积为()A.16B.6.25C.9D.254 . 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.79.59.59.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁5 . 如图,已知∠1=∠2,则不一定能使△ABC≌△DAD的条件是()A.∠C=∠D B.AD=BC C.AC=BD D.∠3=∠46 . 组由正整数组成的数据:2、3、4、5、a、b,若这组数据的平均数为3,众数为2,则a为()A.1B.2C.3D.47 . 下列命题是假命题的是()A.直线 a、b、c 在同一平面内,若a⊥b,b⊥c,则a∥c.B.直线外一点与已知直线上各点连接的所有线段中,垂线段最短 .C.点 P(—5,3)与点 Q(—5,—3)关于 x 轴对称.D.以 3 和 5 为边的等腰三角形的周长为 11.8 . 如图,直线a∥b,c∥d,∠1=56°40′,则∠2等于()A.56°40′B.123°40′C.123°20′D.124°20′9 . 课本上运用尺规作图:作一个角等于已知角,其作图的依据是()A.B.C.D.10 . 若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣11 . 如图,在△ABC中,CD是∠ACB的平分线,∠A = 80°,∠ACB = 60°,那么∠BDC =()A.80°B.90°C.100°D.110°12 . 在“创文明城,迎省运会”合唱比赛中,10位评委给某队的评分如下表所示,则下列说法正确的是()成绩(分)9.29.39.49.59.6人数32311A.中位数是9.4分B.中位数是9.35分C.众数是3和1D.众数是9.4分二、填空题13 . 如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.14 . 命题:如果a=b,那么|a|=|b|,其逆命题是______.15 . 若关于x的方程的解为正数,则a的取值范围是________.16 . 如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是___cm.17 . 已知,则代数式(x-1)(y-1)的值为_______________三、解答题18 . 如图,A(0,﹣2),B(2,﹣3),C(4,﹣1);(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)求出△ABC的面积.19 . 解方程:(1)(2)20 . (1)分解因式:;(2)化简:.21 . 化简:(-)•(x-y)2.22 . 课本“目标与评定”中有这样一道思考题:如图钢架中∠A=20°,焊上等边的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架,若P1A=P1P2,问这样的钢条至多需要多少根?(1)请将下列解答过程补充完整:答案:∵∠A=20°,P1A=P1P2,∴∠P1P2A=.又P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°,同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3=,∴∠BP4P5=∠CP5P4=100°>90°,∴对于射线P4B上任意一点P6(点P4除外),P4P5<P5P6,∴这样的钢架至多需要根.(2)继续探究:当∠A=15°时,这样的钢条至多需要多少根?(3)当这样的钢条至多需要8根时,探究∠A的取值范围.23 . 某工厂有15名工人,某月这15名工人加工的零件数统计如下表:求这15名工人该月加工的零件数的平均数.24 . 如图,OC平分∠MON,A、B分别为OM、ON上的点,且BO>AO,AC=BC,求证:∠OAC+∠OBC=180°.25 . 小强老师为了今年的升中考试,他先用120元买了若干本数学复习资料,后来又用240元买同样的数学复习资料:这次比上次多20本,而且店家给予优惠,每本降价4元.请问第一次他买了多少本复习资料?。
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √16B. πC. √-1D. 0.1010010001…2. 已知a,b是实数,且a + b = 0,则下列说法正确的是()A. a和b都是正数B. a和b都是负数C. a和b中至少有一个是0D. a和b互为相反数3. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 在平面直角坐标系中,点A(-3,2)关于y轴的对称点是()A. (3,2)B. (-3,-2)C. (3,-2)D. (-3,2)5. 已知函数y = 2x - 3,当x = 4时,y的值为()A. 5B. 7C. 9D. 116. 若一个等腰三角形的底边长为10cm,腰长为12cm,则该三角形的周长为()A. 32cmB. 34cmC. 36cmD. 38cm7. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √-18. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为()A. x₁ = 2,x₂ = 3B. x₁ = 3,x₂ = 2C. x₁ = 1,x₂ = 6D. x₁ = 6,x₂ = 19. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)10. 下列各式中,正确的是()A. (a + b)(a - b) = a² - b²B. (a + b)(a + b) = a² + b²C. (a - b)(a + b) = a² - b²D. (a + b)(a - b) = a² + b²二、填空题(每题3分,共30分)11. 若a² = 25,则a的值为_________。
合肥市2019-2020学年八年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的表的时间如图所示,那么实际的时间是()A . 12∶51B . 15∶21C . 21∶15D . 21∶512. (2分) (2020八上·苍南期末) 在直角坐标系中,点(-1,2)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2018八下·北海期末) 下列图象中,表示y是x的函数的是()A .B .C .D .4. (2分) (2018八上·太原期中) 如图,点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为()A . (1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (2,﹣1)5. (2分)下列命题,其中真命题是()A . 方程x2=x的解是x=1B . 6的平方根是±3C . 有两边和一个角分别对应相等的两个三角形全等D . 连接任意四边形各边中点的四边形是平行四边形6. (2分) (2019八下·香洲期末) 如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A .B .C .D .7. (2分)(2019·滨城模拟) 一次函数y=kx+b的图象如图所示,则方程kx+b>0的解为()A . x>2B . x<2C . x>-1D . x<-18. (2分)已知点P(x,y)在第四象限,且,,则P点的坐标是()A . (-3,-5)B . (5,-3)9. (2分)下列命题中,宜用反证法证明的是()A . 等腰三角形两腰上的高相等B . 有一个外角是120°的等腰三角形是等边三角形C . 两条直线都与第三条直线平行,则这两条直线互相平行D . 全等三角形的面积相等10. (2分)以下列各组线段为三角形的边,能组成三角形的是()A . 1cm,2cm,4cmB . 3cm,3cm,6cmC . 7cm,7cm,12cmD . 3cm,6cm,10cm11. (2分)已知,如图,长方形ABCD中。
合肥市2019-2020学年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共12分)1. (1分) (2017七下·永春期中) 下列长度的各组线段能组成三角形的是()A . 3 、8 、5 ;B . 12 、5 、6 ;C . 5 、5 、10 ;D . 15 、10 、7 .2. (1分)(2019·兰州) 剪纸是中国特有的民间艺术.在如涂所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (1分)下面运算正确的是()A . (x+2)2=x2+4B . (x﹣1)(﹣1﹣x)=x2﹣1C . (﹣2x+1)2=4x2+4x+1D . (x﹣1)(x﹣2)=x2﹣3x+24. (1分) (2015八上·番禺期末) 要时分式有意义,则x应满足的条件为()A . x≠2B . x≠0C . x≠±2D . x≠﹣25. (1分) (2020九下·重庆月考) 如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于 BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F。
若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为()A . 54°B . 60°C . 66°D . 72°6. (1分)如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。
其中正确的结论有()A . 4个B . 3个C . 2个D . 1个7. (1分)下列平面图形中,不能镶嵌平面的图形是()A . 任意一种三角形B . 任意一种四边形C . 任意一种正五边形D . 任意一种正六边形8. (1分)如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°9. (1分)下列运算正确的是().A . a+b=abB . a2·a3=a5C . a2+2ab-b2=(a-b)2D . 3a-2a=110. (1分) (2015八下·扬州期中) 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A . 每天比原计划多铺设10米,结果延期15天才完成B . 每天比原计划少铺设10米,结果延期15天才完成C . 每天比原计划多铺设10米,结果提前15天才完成D . 每天比原计划少铺设10米,结果提前15天才完成11. (1分)在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A . (a-b)2=a2-2ab+b2B . (a+b)2=a2+2ab+b2C . a2-b2=(a+b)(a-b)D . a2+ab=a(a+b)12. (1分) (2017七下·南京期末) 如图,、BD、CD分别平分的外角、内角、外角.以下结论:① :② :③ :④ .其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分)计算:(﹣a3)2•a4=________。
12019-2020学年初二上学期期末考试真题汇编数学【考点1】平面直角坐标系1.(2018年蜀山区初二上期末考)在平面直角坐标系中,点(2018,2017)A -在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(2018年蜀山区初二上期末考) 在平面直角坐标系中,已知A B 、两点的坐标分别为(1,1),(3,2)A B -,若点M 为x 轴上一点,且MA MB +最小,则点M 的坐标为__________. 3.(2018年蜀山区初二上期末考)如图在平面直角坐标系中,ABC ∆的顶点A 的坐标为3,5(-),顶点B 的坐标为4,2(-),顶点C 的坐标为1,3(-).(1)请你在所给的平面直角坐标系中,画出ABC ∆关于y 轴对称的111A B C ∆; (2)将(1)中得到的111A B C ∆向下移动4个单位得到222A B C ∆,画出222A B C ∆;(3)在ABC ∆中有一点,P a b (),直接写出经过以上两次图形变换后222A B C ∆中对应点2P 的坐标.4.(2019年庐阳区初二上期末考)点A (﹣3,4)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2019年庐阳区初二上期末考)△ABC 在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b 的值.6.(2019年庐阳区初二上期末考)在平面直角坐标系中,O是坐标原点,A(2,2),B (4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.7.(2018年瑶海区初二上期末考)在平面直角坐标系中,点所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限238.(2018年瑶海区初二上期末考)如图,在平面直角坐标系中, 的顶点坐标为 , , .在图中作出 关于y 轴对称的 ,其中点 的坐标为______; 将 向下平移4个单位得到 ,请画出 ,其中点 的坐标为______.【考点2】一次函数1. (2018年蜀山区初二上期末考)一次函数2y x m =+的图像上有两点123(,)(2,)2A yB y 、,则1y 与2y 的大小关系是( ) A .12y y >B. 12y y <C. 12y y =D. 无法确定2.(2018年蜀山区初二上期末考)已知n m >,在同一平面直角坐标系内画出一次函数y nx m =+与y mx n =+的图像,则有一组m n 、的取值,使得下列4个图中的一个为正确的是( )A. B. C. D.3.(2018年蜀山区初二上期末考)请写出一个一次函数的解析式,需满足y 随x 的增大而减小,你写出的解析式为 __________.4.(2018年蜀山区初二上期末考)一次函数y kx b =+(k b 、为常数,0k ≠)的图像如图所示,则关于x 的不等式0kx b +>的解集为__________.47.(2018年蜀山区初二上期末考)某校在学习贯彻十九大精神“我学习,我践行”的活动中,计划组织全校1300名师生到林业部门规划的林区植树,经研究,决定租用当地出租车公司提供的A B 、两种型号的客车共50辆作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量与租车信息:注:载客量指的是每辆车客车最多可载该校师生的人数(1)设租用A型号客车x辆,租车总费用y元,求y与x的函数解析式,并直接写出x的取值范围;(2)若要使租车总费用不超过13980元,一共有几种租车方案?哪种租车方案最省钱?8.(2019年庐阳区初二上期末考)一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限9.(2019年庐阳区初二上期末考)已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b 上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定10.(2019年庐阳区初二上期末考)把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9 B.y=3x﹣6 C.y=3x﹣5 D.y=3x﹣1 11.(2019年庐阳区初二上期末考)一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给56出下列说法,其中错误的是( )A .每分钟进水5升B .每分钟放水1.25升C .若12分钟后只放水,不进水,还要8分钟可以把水放完D .若从一开始进出水管同时打开需要24分钟可以将容器灌满12.(2019年庐阳区初二上期末考)函数y =中,自变量x的取值范围是 .13.(2019年庐阳区初二上期末考)若点(a ,3)在函数y =2x ﹣3的图象上,a 的值是 .14.(2019年庐阳区初二上期末考)已知一次函数的图象经过A (﹣1,4),B (1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.15.(2019年庐阳区初二上期末考)如图,一次函数图象经过点A (0,2),且与正比例函数y =﹣x 的图象交于点B ,B 点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.16.(2019年庐阳区初二上期末考)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.17.(2019年庐阳区初二上期末考)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.7(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.18.(2018年瑶海区初二上期末考)某一次函数的图象经过点,且y随x的增大而减小,则这个函数的表达式可能是A. B. C.D.19.(2018年瑶海区初二上期末考)已知方程的解是,则函数的图象可能是A. B. C.D.8920.(2018年瑶海区初二上期末考)如图,把直线L 沿x 轴正方向向右平移2个单位得到直线 ′,则直线 ′的解析式为 A. B. C. D.21.(2018年瑶海区初二上期末考)如图,函数 的图象经过点 ,则不等式 的解集为______.22.(2018年瑶海区初二上期末考)点C 坐标为 ,当k 变化时点C 的位置也随之变化,不论k 取何值时,所得点C 都在一条直线上,则这条直线的解析式是______.23.(2018年瑶海区初二上期末考)已知正比例函数 图象经过点 ,求: 这个函数的解析式;判断点 是否在这个函数图象上;图象上两点 、 ,如果 ,比较 , 的大小.24.(2018年瑶海区初二上期末考)某地旱情严重,乙水库的蓄水量以每天相同的速度持续减少为缓解旱情,甲水库立即以管道运输的方式给予支援,如图是两水库的蓄水量 万米 与时间 天 之间的函数图象在单位时间内,甲水库的放水量与乙水库的进水量相同水在排放、接收以及输送过程中的损耗不计通过分析图象回答下列问题:甲水库每天的放水量是多少万立方米?在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?求点D的坐标.25(2018年瑶海区初二上期末考)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元斤,加工销售是130元斤不计损耗已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.若基地一天的总销售收入为y元,求y与x的函数关系式;试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【考点3】三角形中的边角关系10111.(2018年蜀山区初二上期末考)若三角形三个内角度数之比为1:3:5,则这个三角形一定是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.(2018年蜀山区初二上期末考)如图,15DAE ADE ∠=∠=,//DE AB ,DF AB ⊥,若6AE =,则DF 等于( ) A. 2B. 3C. 4D. 63. (2018年蜀山区初二上期末考)下列命题的逆命题是假命题的是( ) A. 对顶角相等B. 若1x = ,则31x =C. 两直线平行,同位角相等D.若0x = ,则20x =4.(2018年蜀山区初二上期末考)如图,ABC ∆中,DG 垂直平分AB 交AB 于点D ,交BC 于点M ,EF 垂直平分AC 交AC 于点E ,交BC 于点N ,且点M 在点N 的左侧,连接AM AN 、,若12BC cm =,则AMN ∆的周长是( ) A. 10cmB. 12cmC. 14cmD. 16cm5.(2018年蜀山区初二上期末考) 如图,在ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,若70A ∠=,则BOC ∠=__________.126.(2018年蜀山区初二上期末考)如图,在ABC ∆中,AB AC =, D 为BC 上一点,且,DA DC BD BA ==,则B ∠=__________.7.(2018年蜀山区初二上期末考)如图,ABC ∆中, 90ACB ∠=,AC BC <,将ABC ∆沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB AC 、边分别交于点E F 、,如果折叠后CDF ∆与BDE ∆均为等腰三角形,那么B ∠=__________.8.(2018年蜀山区初二上期末考)如图,E F 、分别是等边ABC ∆的边AB AC 、上的点,且BE AF CE BF =,、交于点P .(1)求证:CE BF =; (2)求BPC ∠的度数.9.(2018年蜀山区初二上期末考)如图,ABC=,DAB∆中,AB AC∆的一个外角,∠是ABC根据要求进行尺规作图,并在图中标明相应的字母(保留作图痕迹,不写作法)(1)作DAB∠的平分线AM.(2)作线段AB的垂直平分线,与AM交于点F,与BC边交于点E,判断线段EF是否也被AB垂直平分,并说明理由.10.(2019年庐阳区初二上期末考)一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形11.(2019年庐阳区初二上期末考)下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等12.(2019年庐阳区初二上期末考)如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()1314A .40°B .45°C .55°D .35°13(2018年瑶海区初二上期末考)若一个三角形的两边长分别为5和8,则第三边长可能是A. 14B. 10C. 3D. 214(2018年瑶海区初二上期末考)把一副学生用三角板如图叠放在一起,已知∠ ,∠ ,∠ ,则∠ 的度数是A. B. C. D.15(2018年瑶海区初二上期末考)对于命题“若 ,则 ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是A. ,B. ,C. ,D.,16(2018年瑶海区初二上期末考)命题“两组对边分别平行的四边形是平行四边形”的逆命题______,是______命题 填“真”或“假”17(2018年瑶海区初二上期末考)如图,D 是 的BC 边上的一点,且∠ ∠ ,∠ ∠,15∠ ,求∠ 的度数.18(2018年瑶海区初二上期末考)已知:如图,P 是OC 上一点, 于D , 于E ,F 、G 分别是OA 、OB 上的点,且 , . 求证:OC 是∠ 的平分线.若 ,且 ,∠ ,求PE 的长.19(2018年瑶海区初二上期末考)我们知道,在三角形中,相等的边所对的角相等,简称“等边对等角” 请证明:大边对大角 请结合给出的图形,写出已知、求证,并证明.【考点4】全等三角形161.(2018年蜀山区初二上期末考)如图,A B ∠=∠,AE BE =,点D 在边AC 边上,12∠=∠,AE 和BD 交于点O ,若1=38∠,则BDE ∠的度数为( ) A. 71B. 76C. 78D. 802.(2019年庐阳区初二上期末考)如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )A .1个B .2个C .3个D .4个3.(2019年庐阳区初二上期末考)如图,CA ⊥AB ,垂足为点A ,AB =24,AC =12,射线BM ⊥AB ,垂足为点B ,一动点E 从A 点出发以3厘米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 经过 秒时,△DEB 与△BCA 全等.4.(2019年庐阳区初二上期末考)如图,在△ABC 中,点D 在AB 上,点E 在BC 上,BD =BE .17(1)请你再添加一个条件,使得△BEA ≌△BDC ,并给出证明.你添加的条件是 .(2)根据你添加的条件,再写出图中的一对全等三角形 .(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)5.(2018年瑶海区初二上期末考)如图,已知∠ ∠ , ,增加下列条件:其中不能使 ≌ 的条件A. B. C. ∠ ∠ D. ∠ ∠6.(2018年瑶海区初二上期末考)如图,在 中, ,∠ ,直角∠ 的顶点P 是BC 的中点,两边PE 、PF 于点E ,F ,当∠ 在 内绕点P 旋转时,下列结论错误的是A. B. 为等腰直角三角形 C.D.四边形187.(2018年瑶海区初二上期末考)已知:如图, , , ,且点B 、E 、C 、F 都在一条直线上,求证: .【考点5】轴对称图形与等腰三角形1.(2018年蜀山区初二上期末考)第24届冬季奥运会,将于2022年由北京市和张家口市联合举办,下列四个图案是历届会徽图案的一部分图形,其中不是轴对称图形的是( )A. B. C. D.2.(2018年蜀山区初二上期末考)已知等腰ABC ∆的两边长分别为2和5,则等腰ABC ∆的周长为( ) A. 9B. 12C. 9或12D. 无法确定3.(2018年蜀山区初二上期末考)如图,在等腰ABC ∆中,20AB AC cm ==,16BC cm =,AD BD =.(1)如果点M 在底边BC 上且以6/cm s 的速度由B 点向C 点运动,同时点N 在腰CA 上由C 向A 点运动.①如果点N 与点M 的运动速度相等,求经过多少秒后BM D CNM ∆≅∆;②如果点N 与点M 的运动速度不相等,当点N 的运动速度为多少时,能够使BMD ∆与CNM ∆全等?(2)若点N 以②中的运动速度从点C 出发,点M 以6/cm s 速度从点B同时出发,都逆时针19沿ABC 三边运动,直接写出当点M 与点N 第一次相遇时M 的运动的路程.4.(2019年庐阳区初二上期末考)等腰三角形的底边长为4,则其腰长x 的取值范国是( )A .x >4B .x >2C .0<x <2D .2<x <45.(2019年庐阳区初二上期末考)已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为 .6.(2019年庐阳区初二上期末考)如图,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,求∠ABC 的度数.7.(2019年庐阳区初二上期末考)P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA =CQ ,连PQ 交AC 边于D .(1)证明:PD =DQ .(2)如图2,过P 作PE ⊥AC 于E ,若AB =6,求DE 的长.208.(2018年瑶海区初二上期末考)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是A. B. C. D.9. (2018年瑶海区初二上期末考)已知:如图 中,∠ ,∠ ,在射线BA 上找一点D ,使 为等腰三角形,则∠ 的度数为______.10.(2018年瑶海区初二上期末考)如图1,AD 和AE 分别是 的BC 边上的高和中线,点D 是垂足,点E 是BC 的中点,规定:特别地,当点D 、E 重合时,规定: 另外,对 , 作类似的规定.①当 中, 时,则 ______;②当 中, 时,则 的形状是______; 请直接写出答案如图2,在 中,∠ ,∠ ,求 ;如图3,在每个小正方形边长均为1的 的方格中,画一个 ,使其顶点在格点 格点即每个小正方形的顶点 上,且 ,面积也为2.21参考答案【考点1】平面直角坐标系1.B2.1 (,0) 33.【解析】(1)图略,(2)图略,(3)2(,4)P a b--4.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.22【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.6.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:2324∴直线AB :y =﹣x +7当﹣x +7=0时,得:x =∴P 点坐标为(,0)(2)①作点A (2,2)关于x 轴的对称点A '(2,﹣2)根据轴对称性质有∠APO =∠A 'PO∵∠APO =∠BPO∴∠A 'PO =∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC=4,BD=2∴S△PAB=S△PAA'+S△BAA'=设BQ与直线AA'(即直线x=2)的交点为E(如图4)25∵S△QAB=S△PAB则S△QAB==2AE=12∴AE=6∴E的坐标为(2,8)或(2,﹣4)设直线BQ解析式为:y=ax+q或解得:或∴直线BQ:y=或y=∴Q点坐标为(0,19)或(0,﹣5)法二:∵S△QAB=S△PAB∴△QAB与△PAB以AB为底时,高相等即点Q到直线AB的距离=点P到直线AB的距离26i)若点Q在直线AB下方,则PQ∥AB设直线PQ:y=x+c,把点P(﹣2,0)代入解得c=﹣5,y=﹣x﹣5即Q(0,﹣5)ii)若点Q在直线AB上方,∵直线y=﹣x﹣5向上平移12个单位得直线AB:y=﹣x+7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.7.【解析】解:点的横坐标,纵坐标,点在第四象限.故选:D.8.【解析】解:关于y轴对称的,如图所示,其中点的坐标为;2728故答案为 ;向下平移4个单位得到 , ; 故答案为【考点2】一次函数1. B2.B3.1y x =-+4.2x <6.【解析】(1)1b =-; (2)457.【解析】(1)6012000y x =+, 3050x ≤≤且x为整数.(2)一共有4种租车方案,当租用A 型号30辆,B 型号20辆时最省钱.8.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.9.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.10.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.29【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.11.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.12.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;30(3)当函数表达式是二次根式时,被开方数非负.13.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.14.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).15【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),31∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.16.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分17【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得32,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,∴m=75时,W最小=1125.∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.18.【解析】解:设一次函数关系式为,图象经过点,33;随x增大而减小,.即k取负数,满足的k、b的取值都可以.故选:D.19.【解析】解:方程的解是,经过点.故选:C.20.【解析】解:可从直线L上找两点:这两个点向右平移2个单位得到的点是,那么再把直线L沿x轴正方向向右平移2个单位得到直线′的解析式上,则解得:,.函数解析式为:.故选:C.21.【解析】解:由图象可得:当时,,所以不等式的解集为,故答案为:22.【答案】【解析】解:点C坐标为,34可以假设:,,,代入,,,故答案为.23.【答案】解:正比例函数经过点,,解得:,这个正比例函数的解析式为:;将代入得:,点不在这个函数图象上;,随x的增大而减小,,.24.【答案】解:甲水库每天的放水量为万米天;甲水库输出的水第10天时开始注入乙水库,设直线AB的解析式为:,,,解得,直线AB的解析式为:,35当时,,此时乙水库的蓄水量为万米答:在第10天时甲水库输出的水开始注入乙水库,此时乙水库的蓄水量为300万立方米.甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计,乙水库的进水时间为5天,乙水库15天后的蓄水量为:万米.25.【答案】解:根据题意得:.答:y与x的函数关系式为.,.为正整数,且,.中,的值随x的值增大而减小,当时,y取最大值,最大值为.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.3637【考点3】三角形中的边角关系1. C2.B3.A4.B5. 1256. 367. 45或30【解析】∵CDF ∆中, 90C ∠=,且CDF ∆是等腰三角形,∴CF CD =,∴45CFD CDF ∠=∠=, 设DAE x ∠=,由对称性可知,AF FD AE DE ==,,∴122.5,22FDA CFD DEB x ∠=∠=∠=, 分类如下:①当DE DB =时, 2B DEB x ∠=∠=,由C D E D E B B ∠=∠+∠,得4522.54x x ++=,解得:22.5.x =此时245B x ∠==;见图形(1),说明:图中AD 应平分CAB ∠.②当BD BE =时,则180)4(B x ∠=-,由CDE DEB B ∠=∠+∠得:4522.521804x x x ++=+-, 解得37.5x =,此时180430()B x ∠=-=.图形(2)说明:60,22.5.CAB CAD ∠=∠= ③DE BE =时,则1802()902x B x -=∠-=,由CDE DEB B ∠=∠+∠得, 452902.52x x x +-+=+, 此方程无解。
合肥市2019-2020学年八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·秀洲模拟) 下列关于的说法中,错误的是()A . 是8的算术平方根B . 2<<3C . =D . 是无理数2. (2分) (2016八下·石城期中) 计算(﹣)÷ 的结果是()A . ﹣1B . ﹣C .D . 13. (2分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A . 4.2B . 4.75C . 5D . 4.84. (2分)(2017·双桥模拟) 估计5﹣介于()A . 4与1之间B . 1与2之间C . 2与3之间D . 3与4之间5. (2分)已知点P1(-4,3)和P2(-4,-3),则P1和P2()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 不存在对称关系6. (2分) (2017七下·乌海期末) |3a+b+5|+|2a-2b-2|=0,则2a2-3ab的值是()A . 14B . 2C . -2D . -47. (2分)在因此女子体操比赛中,8名运动员的年龄(单位:岁)分别为:14,12,12,15,14,15,14,16.这组数据的中位数和方差分别为()A . 14和2B . 14.5和1.75C . 14和1.75D . 15和28. (2分)(2020·遵化模拟) 下列说法正确的是()A . “367人中有2人同月同日生”为必然事件B . 检测某批次灯泡的使用寿命,适宜用全面调查C . 可能性是1%的事件在一次试验中一定不会发生D . 数据3,5,4,1,-2的中位数是49. (2分) (2018八上·宁城期末) 将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A . 45°B . 60°C . 75°D . 85°10. (2分)如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .11. (2分)(2012·梧州) 直线y=kx+k(k为正整数)与坐标轴所构成的直角三角形的面积为Sk ,当k分别为1,2,3,…,199,200时,则S1+S2+S3+…+S199+S200=()A . 10000B . 10050C . 10100D . 1015012. (2分)如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1 ,则a,b的值分别为()A . 1,3B . 1,2C . 2,1D . 1,1二、填空题 (共4题;共4分)13. (1分) (2018九上·阜宁期末) 已知这五个数据,其中、是方程的两个根,则这五个数据的极差是________.14. (1分)(2017·洪泽模拟) 如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=________.15. (1分)如图,y=kx+b的图象,则kx+b=0的解为x=________16. (1分)(2017·河南模拟) 正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为________.三、解答题 (共7题;共86分)17. (5分) (2019八下·东莞月考) 计算: .18. (20分) (2015七下·龙海期中) 解下列方程(组)(1) 3x=1+2(x﹣2)(2)(3)(4).19. (15分)一次函数的图象经过点(﹣2,12)和(3,﹣3).(1)求这个一次函数的表达式.(2)画出这条直线的图象.(3)设这条直线与两坐标轴的交点分别为A、B,求△AOB的面积.20. (10分)(2011·义乌) 如图,已知E、F是▱ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.(1)求证:△ABE≌△CDF;(2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).21. (15分)(2018·金华模拟) 如图,已知反比例函数与一次函数的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是求:(1)一次函数的解析式;(2)的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.22. (10分)某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0<x≤200a200<x≤400bx>4000.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?23. (11分)(2016·江汉模拟) 如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)顶点为P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO分别与x轴、抛物线交于点B、C,连接BC,将△PBC绕点P逆时针旋转得△PB′C′,使点C′正好落在抛物线上.(1)该抛物线的解析式为________(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段B C′上,求此时m的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共86分) 17-1、18-1、18-2、18-3、18-4、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
合肥市2019-2020学年八年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列图形中具有稳定性的是()A . 梯形B . 菱形C . 三角形D . 正方形2. (2分)(2018·盘锦) 下列运算正确的是()A . 3x+4y=7xyB . (﹣a)3•a2=a5C . (x3y)5=x8y5D . m10÷m7=m33. (2分) (2016八上·罗田期中) 已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A . ﹣1B . ﹣7C . 7D . 14. (2分)用科学记数法表示的数6.18×10﹣3 ,其原数为()A . 0.618B . 0.0618C . 0.00618D . 0.0006185. (2分)九边形的内角和为()A . 1260°B . 1440°C . 1620°D . 1800°6. (2分) (2018九下·鄞州月考) 如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A . 3-B . 3-C . 4-D . 4-二、填空题 (共8题;共9分)7. (1分) (2016八上·驻马店期末) 计算:3﹣2+(π﹣3)0﹣(﹣)2=________.8. (1分) (2019八上·天山期中) 如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=________.9. (1分)计算: =________, (-2ab+3)2 =________.10. (1分)因式分解:9x﹣3x3=________ .11. (1分)一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD=________.12. (1分) (2018九上·滨州期中) 如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A´B´C´,其中点B的运动路径为,则图中阴影部分的面积为________.13. (2分)如图,H是△ABC的边BC的中点,AG平分∠BAC,点D是AC上一点,且AG⊥B D于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为________.14. (1分) (2017八下·乌鲁木齐期末) 如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为________.三、解答题 (共12题;共78分)15. (5分)(2017·玉环模拟) 先化简再求值:(x﹣1)2﹣x(x+2)﹣,其中x= .16. (5分)计算题:(1);(2) (-2x2y+6x3y4-8xy)÷(-2xy);(3)先化简,再求值:,其中 .17. (5分)探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9 ,若∠BDC=140°,∠BG1C=77°,求∠A的度数.18. (5分) (2017九上·肇源期末) 解方程:.19. (5分)当x满足什么条件时,下列分式有意义.(1)(2)(3)(4).20. (5分) (2017七下·长春期末) 如图,已知点B、E、F、C依次在同一条直线上,AF⊥BC,DE⊥BC,垂足分别为F、E,且AB=DC,BE=CF.试说明AB∥DC.21. (10分)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于E、F.(1)若BC=10,求△AEF周长.(2)若∠BAC=128°,求∠FAE的度数.22. (5分)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?23. (3分)(2017·芜湖模拟) 观察下列算式:①1×5+4=32 ,②2×6+4=42 ,③3×7+4=52 ,④4×8+4=62 ,…请你在察规律解决下列问题(1)填空:________×________+4=20152.(2)写出第n个式子(用含n的式子表示),并证明.24. (10分) (2019九下·宁都期中) 如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?25. (10分) (2019八下·高阳期中) 如图,正方形ABCD的边长为2 ,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F.(1)求证:AF=BE;(2)求点E到BC边的距离.26. (10分)如图1,四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC。
2019-2020学年蜀山区50中新八年级上学期期末测试卷V.单项填空(共10小题;每小题1分,满分10分)从每小题所给的A、B、C、D四个选项中选出一个可以填入空白处的最佳选项。
21.—What should I do to improve my English,Daming?—Why not?See?There are many mistakes in your homework.A.talk to other peopleB.listen to the radioC.correct the mistakesD.read words aloud22.—Excuse me.Do you mind my sitting here?I can't find other seats.—My friend will come back very soon.A.Better notB.Never mindC.Go aheadD.All right23.A mobile phone with5G can send videos much than the one with4G.A.busierB.fasterC.slowerD.quieter24.—What do you know about the accident,sir?—I am sorry.I am was just passing by(路过).I know nothing more the information on the newspaper because I read it this morning.A.exceptB.aboutC.forD.besides25.Jason is interested in music and I often notice him playing the piano in the musicroom.A.to practiseB.practisesC.practiseD.practising26.—What were your sister and you doing at eight last night?—My sister was doing some reading I was cleaning up the kitchenA.whileB.afterC.althoughD.because27.—How fast can a lion run hour?—About58kilometers.It is really fast.A.aB.anC.theD./28.—Look!It is raining heavily!I don't like rainy weather.—It is terrible and makes me feel wet everywhereA.Me tooB.Me neitherC.Sounds goodD.Not at all29.Five hour's walk,and you be tired.Now sit down and have a restA.canB.shouldC.mustD.will30.—Your meal is here,sir.How will you have it?—Thanks.I will and have it at home.A.lift it upB.take it awayC.ask for itD.think about itVI.完形填空(共10小题;每小题1分,满分10分)阅读下列短文,从每小题所给的A、B、C、D四个选项中选出一个最佳选项。