TL431_典型应用电路
- 格式:doc
- 大小:104.50 KB
- 文档页数:7
TL431 典型应用电路及稳压电路TL431就是一个有良好得热稳定性能得三端可调分流基准源。
她得输出电压用两个电阻就可以任意得设置到从Verf(2、5V)到36V范围内得任何值。
该器件得典型动态阻抗为0、2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431就是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从2、5~36V连续可调;参考电压原误差+-1、0%,低动态输出电阻,典型值为0、22欧姆输出电流1、0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数三端可调分流基准源可编程输出电压:2、5V~36V电压参考误差:±0、4% ,典型值25℃(TL431B)低动态输出阻抗:0、22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2、5--36V连续可调,参考电压原误差+-1、0%,低动态输出电阻,典型值为0、22欧姆,输出电流1、0--100毫安。
全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2、5V输出电压范围为2、5~36V内部结构TL431得具体功能可以用下图得功能模块示意。
由图可以瞧到,VI就是一个内部得2、5V得基准源,接在运放得反向输入端。
由运放得特性可知,只有当REF端(同向端)得电压非常接近VI(2、5V)时,三极管中才会有一个稳定得非饱与电流通过,而且随着REF端电压得微小变化,通过三极管图1得电流将从1到100mA变化。
当然,该图绝不就是TL431得实际内部结构,但可用于分析理解电路。
2Jsx570。
TL431的封装,引脚图及应用电路设计
TL431的输出电压连续可调达36V,工作电流范围宽达0.1-100mA,动态电阻典型值为0.22欧,输出杂波低。
TL431封装,引脚图及典型应用电路
TL431是T092封装,引脚图及内部结构如图1所示
图2是TL431的典型应用,其中3、2脚两端输出电压V=2.5(R2十R3)V/R3。
如果改变R2的阻值大小,就可以改变输出基准电压大小。
图1 tl431管脚图图2 tl431内部等效结构
TL431扩流电源电路图
图3是利用它作电压基准和驱动外加场效应管K790作调整电晶体构成输出电流大(约6A)、电路简单、安全的稳压电源。
工作原理是:220v电压经变压器B降压、D1-D4组成为桥式整流、C1滤波电容。
此外D5、D6、C2、C3组成倍压电路(使得Vdc=60V),Rw、R3组成分压电路,TL431、R1组成取样放大电路,9013、R2组成限流保护电路,场效应管K790作调整管(可直接并联使用)以及C5是输出濾波器电路。
tl431典型应用电路
TL431 作为一种三极可调稳压器,是一种比较流行的电源稳压电路元件,它具有良好的性能,可以很好地满足用户的需求。
TL431 的基本电路主要包括参考电源、放大电路、电流比较器和可调稳压输出等功能部件,该可调稳压器将硬件调整的各种原件一体有机地组合在一起。
硬件调整的各种元件中比较有代表性的是参考电源电压R,它的大小决定了TL431的输出电压。
当R(调整电源参考电压)较大时,调整电压Vr变化越大;当R(调整电源参考电压 )较小时,调整电压Vr变化越小。
TL431电路上,R有多种形式,具体选型取决于实际应用情况及要求。
除了参考电源电压R以外,还要连接放大电路,它的作用是根据输入的V1的大小,决定TL431的输出稳压电压。
V1越高,TL431的输出稳压电压越高,当V1小于稳压电压时,稳压电压不变。
此外,电流比较器也是TL431 典型电路中不可或缺的部件,它是确定条件Ki (输出正调控电压与调整电压Vr的比值),从而获得感应电压A,从而使输出稳压电压Vm保持Vm=A/Ki,而A和Ki 分别由电路中的电阻来确定,是稳压输出的根本保证因素。
综上,TL431典型应用电路包括参考电源,放大电路,电流比较器,可调稳压输出等功能部件,其原理是通过调整输入电压V1、参考电源电压R、电流比较器Ki和放大电路来调整TL431的稳压输出。
TL431在电源稳压电路中有着广泛的应用,因其简洁、高效和可靠等优点,受到众多用户的欢迎。
TL431详细解读及典型电路资料TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE (元件符号像二极管的正极.3脚(K)CATHODE(类似二极管的负极)介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型•温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)最大额定值(环境温度范围适用,除非另有说明。
)Rating 参数Symbol符号数值Unit单位Cathode to Anode Voltage阴极阳极电压VKA 37 V Cathode Current Range, Continuous 阴极电流范围,连续IK –100 to +150 mA Reference Input Current Range, Continuous 参考输入电流范围,连续Iref –0.05 to +10 mA OperatingJunctionTemperature工作结温TJ 150 ℃Operating Ambient Temperature Range 操作环境温度范围TL431I,TL431AI, TL431BITA–40 to +85℃TL431C, TL431AC, TL431BC0 to +70StorageTemperature Range储存温度范围Tstg –65 to +150 ℃Total Power Dissipation总耗散功率常温@ TA = 25℃Derate above 25℃ Ambient Temperature D, LP后缀塑封PD0.70W P后缀塑封 1.10DM 后缀塑封0.52Total Power Dissipation @ TC = 25℃ Derate above 25℃Case Temperature 总耗散功D, LP后缀塑封PD1.5W P后缀塑封 3.0率 外壳温度RECOMMENDED OPERATING CONDITIONS 建议操作条件Condition 条件Symbol 符号 Min 最大值 Max 最小值 Unit 单位 Cathode to Anode Voltage 阴极阳极电压 VKA Vref 36 V Cathode Current 阴极电流IK1.0100mATHERMAL CHARACTERISTICS 热特性 Characteristic 特性Symbol 符号 D, LP 后缀封装P 后缀封装DM 后缀封装Unit 单位 Thermal Resistance, Junction –to –Ambient 热阻,结点到环境 RqJA 178 114 240 ℃/W Thermal Resistance, Junction –to –Case 热阻,结到外壳RqJC8341–℃/WELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃ ,除非另有说明。
TL431 典型应用电路TL431精密可调基准电源有如下特点:稳压值从2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
典型应用电路如下:1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
但在连接容性负载时,应特别注意CL的取值,以免自激。
2:可调稳压电源(附图2)Vo可在 2.5~36V之间调节。
V0=Vref(1+R1/R2)(Vref=2.5v),由于承受电压与(Vi –Vo)有关,因此压差很大时,R的功耗随之增加。
使用时注意。
3:过电压保护电路(附图3)当Vi超过一定电压时,TL431触发,使晶闸管导通,产生瞬间大电流,将保险丝熔断,从而保护后极电路。
V保护点=(1+R1/R2)Vref.4:恒流源电路(附图4----拉电流负载)(附图5---灌电流负载)恒流值与Vref 和外加电阻有关,功率晶体管选用时要考虑余量。
该恒流源如与稳压线路配接,可做电流限制器用。
5:比较器(附图6)它是巧妙的运用了Vref=2.5v这个临界电压。
当Vi<Vref,Vo=V+,当Vi>Vref时,Vo=2V由于TL431内阻小,因而输入输出波形跟踪良好。
6:电压监视器(附图7)利用TL431的转移特性,组成实用电压监视器。
当电压处于上下限电压之间,LED电量,上下限电压分别为(1+R1/R2)Vref和(1+R3/R4)Vref。
正确偏置TL431可获得更好的输出阻抗时间:2008-06-17 来源: 作者:安森美半导体公司Christophe BA 点击:2947 字体大小:【大中小】众所周知,TL431在开关电源(SMPS)反馈环路中是参考电压。
该器件结合了参考电压与集电极开路误差放大器,具有操作简单和成本低廉等优点。
虽然TL431已在业内被长期广泛采用,但一些设计人员仍会忽略它的偏置电流,以致在无意间降低产品的最终性能。
TL431典型电路应⽤TL431的⼏种基本⽤法TL431作为⼀个⾼性价⽐的常⽤分流式电压基准,有很⼴泛的⽤途。
这⾥简单介绍⼀下TL431常见的和不常见的⼏种接法。
图(1)是TL431的典型接法,输出⼀个固定电压值,计算公式是: Vout = (R1+R2)×2.5/R2,同时R3的数值应该满⾜1mA < (Vcc-Vout)/R3 < 500mA当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这⾥相当于⼀个2.5V稳压管。
利⽤TL431还能组成鉴幅器,如图(3),这个电路在输⼊电压 Vin < (R1+R2)×2.5/R2 的时候输出Vout为⾼电平,反之输出接近2V的电平。
需要注意的是当Vin在(R1+R2)*2.5/R2附近以微⼩幅度波动的时候,电路会输出不稳定的值。
TL431可以⽤来提升⼀个近地电压,并且将其反相。
如图(4),输出计算公式为: Vout = ( (R1+R2)×2.5 - R1*Vin )/R2。
特别的,当R1 = R2的时候,Vout = 5 - Vin。
这个电路可以⽤来把⼀个接近地的电压提升到⼀个可以预先设定的范围内,唯⼀需要注意的是TL431的输出范围不是满幅的。
TL431⾃⾝有相当⾼的增益(我在仿真中粗略测试,有⼤概46db),所以可以⽤作放⼤器。
图(5)显⽰了⼀个⽤TL431组成的直流电压放⼤器,这个电路的放⼤倍数由R1和Rin决定,相当于运放的负反馈回路,⽽其静态输出电压由R1和R2决定。
这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。
缺点是输⼊阻抗较⼩,Vou t的摆幅有限。
TL431还可以搭建恒流源、⽤于施密特触发器等等。
文章编100816163121 文章分类:电路>电子元件号:点击:... 关键词:TL431文章来源:互联网摘要:1、tl431用做音频放大器下图是tl431用作电压比较器:它是巧妙的运用了Vref=2.5v这个临界电压。
当Vi<Vref,Vo=V+,当Vi>Vref时,Vo=2V由于TL431内阻小,因而输入输出波形跟踪良好。
当比较电压大于2.5V时候可以采取电阻分压然后再比较,(但是显然这对输入阻抗有一定的影响);同样当比较电压低于2.5V时候可以采用1.24V的tl432。
(400mW单声道功率放大电路) 2、tl431大电流电源3、tl431用做上下限检测器4、tl431用作延时器5、tl431用作电流源(恒流源)6、基于TL431的精密5V稳压器7、TL431开关电源上的应用在过去的普通开关电源设计中,通常采用将输出电压经过误差放大后直接反馈到输入端的模式。
这种电压控制的模式在某些应用中也能较好地发挥作用,但随着技术的发展,当今世界的电源制造业大多已采用一种有类似拓扑结构的方案。
此类结构的开关电源有以下特点:输出经过TL431(可控分流基准)反馈并将误差放大,TL431的沉流端驱动一个光耦的发光部分,而处在电源高压主边的光耦感光部分得到的反馈电压,用来调整一个电流模式的PWM控制器的开关时间,从而得到一个稳定的直流电压输出。
上图是一个实用的4W开关型5V直流稳压电源的电路。
该电路采用了此种拓扑结构并同时使用了TOPSwitch技术。
图中C1、L1、C8和C9构成EMI滤波器,BR1和C2对输入交流电压整流滤波,D1和D2用于消除因变压器漏感引起的尖峰电压,U1是一个内置MOSFET的电流模式PWM控制器芯片,它接受反馈并控制整个电路的工作。
D3、C3是次极整流滤波电路,L2和C4组成低通滤波以降低输出纹波电压。
R2和R3是输出取样电阻,两者对输出的分压通过TL431的REF端来控制该器件从阴极到阳极的分流。
TL431的原理及应用1. TL431概述TL431是一种经典的程序控制电压参考源,也称为可调调整电压稳压器。
它是由德州仪器(Texas Instruments)公司推出的,被广泛应用于各种电子设备中。
2. TL431的工作原理TL431是一种三端可调稳压器,其内部有一个参考电压源、比较放大器和输出驱动器。
TL431的输出电压可以根据参考电压和输入电压进行调节。
TL431的基本工作原理如下: - 当输入电压高于参考电压时,TL431的输出电压将增大,从而降低输入电压。
- 当输入电压低于参考电压时,TL431的输出电压将减小,从而增加输入电压。
3. TL431的应用3.1 电源稳压器TL431常用于电源稳压器中,通过控制输出电压稳定在设定值附近,保证电子设备正常工作。
3.2 锂电池充电器TL431可以作为锂电池充电器中的电流调节器。
通过对TL431的输出电压进行调节,可以控制电流大小,从而实现锂电池的充电。
3.3 温度测量与控制TL431可以与传感器和温度控制电路结合使用,实现对温度的测量和控制。
当温度超过设定值时,TL431会输出相关信号,触发相应的保护措施。
3.4 电流控制TL431还可以用作电流控制器,通过调节输出电压来控制电流大小。
这在一些需要精确控制电流的电路中非常有用。
3.5 电压比较器由于TL431具有比较器功能,也可以用作电压比较器。
通过对比不同的输入电压,可以实现电压的自动切换和控制。
4. TL431的优势•稳定性好:TL431的输出电压可以非常稳定地调整在设定值附近。
•灵活性高:TL431可以应用于各种不同的电子设备中,并且具有多种不同的应用方式。
•可靠性强:TL431具有较高的抗干扰性和可靠性,在各种环境下都能正常工作。
5. 总结TL431作为一种经典的程序控制电压参考源,具有广泛的应用领域。
它的工作原理简单,应用灵活,可以用于电源稳压器、电流控制器、电压比较器等电子电路中。
TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE(元件符号像二极管的正极.3脚(K)CATHODE (类似二极管的负极)介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型•温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted.)最大额定值(环境温度范围适用,除非另有说明。
)RECOMMENDED OPERATING CONDITIONS建议操作条件ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
)ELECTRICAL CHARACTERISTICS (TA = 25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
TL431 典型应用电路及稳压电路TL431是一个有良好的热稳定性能的三端可调分流基准源。
他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数三端可调分流基准源可编程输出电压:2.5V~36V电压参考误差:±0.4% ,典型值@25℃(TL431B)低动态输出阻抗:0.22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2.5--36V连续可调,参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆,输出电流1.0--100毫安。
全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2.5V输出电压范围为2.5~36V内部结构TL431的具体功能可以用下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。
由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。
典型应用电路如下:1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
【分享】亲,来吻个压!By Lapeno不,不,不!亲,是想让你稳个压!在电子产品设计中,往往需要在输入电压,负载,环境温度,电路参数等发生变化时,仍要求输出电压可以保持在一个稳定的状态,这就需要稳压电路。
我们的亲(女主角)是TL431,TL431是一款电压基准芯片,TI的官方命名为可调节精密并联稳压器,我们请她来吻压!TL431的详细资料可以到TI的官方去下载,我在附件里放了一份数据手册,以方便你快速的参考。
我们可以先简单的了解一下她,TL431输出的可调电压范围为Vref(即2.5V左右)到36V,灌电流的范围为1mA到100mA,远远观去,她的外貌是酱紫的:ANODE是她的阳极(正极),REF是参考,CATHODE是她的阴部,错!是阴极(负极),您别多想哈。
走近一点,仔细看:可以看到,TL431可看作是由误差放大器、基准Vref、三极管以及一个二极管组成的。
我们一般人呢,也就只能这么近的看她了。
如果想再近一点,想看的再多一点,您恐怕得掏钱了……好吧,还是让你看一眼吧:看到了吧,满意吗?TL431可以提供的服务就是稳压,我们问问她是怎么吻的。
请参看Figure 2,也就是我们一般人可以看到的她的样子:误差放大器反相输入端接VRef,VRef的值由于生产工艺的限制,各个器件略有差异,范围为2.440V到2.550V,典型值为2.495V。
同相输入端接REF,这样当REF的值大于VRef 值时,放大器的输出端就输出高电平;当REF的值小于VRef时,放大器的输出端就输出低电压。
高电平(或者说高一些的电平)使其后的三极管导通(或者说导通的多一些),三极管的等效电阻就小一些,三极管集电极的压降就会小一些;低电平(或者说低一些的电平)使其后的三极管截止(或者说导通的少一些),三极管的等效电阻就大一些,三极管集电极的压降就大一些。
到此,我们缕一下:REF高时,会使TL431两端压降变小;REF低时,会使TL431两端的压降变大。
TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE(元件符号像二极管的正极.3脚(类似二极管的负极)(K)CATHODE介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型• 温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted.)最大额定值(环境温度范围适用,除非另有说明。
)Rating 参数Symbol 符号数值Unit 单位 Cathode to Anode Voltage 阴极阳极电压VKA 37 V Cathode Current Range, Continuous 阴极电流范围,连续IK–100 to +150 mAReference Input Current Range,Continuous 参考输入电流范围,连续Iref –0.05 to +10 mA OperatingJunctionTemperature 工作结温TJ150 ℃TL431I,TL431AI, TL431BI–40 to +85 OperatingAmbientTemperatureRange 操作环境温度范围TL431C, TL431AC, TL431BCTA0 to +70℃StorageTemperature Range 储存温度范围Tstg –65 to +150 ℃ Total PowerD, LP 后缀塑封PD0.70WP后缀塑封 1.10 Dissipation总耗散功率常温@ TA= 25℃ Derateabove 25℃AmbientTemperatureDM 后缀塑封0.52D, LP后缀塑封 1.5 Total PowerDissipation @ TC= 25℃ Derateabove 25℃ Case Temperature 总耗散功率外壳温度P后缀塑封PD3.0WRECOMMENDED OPERATING CONDITIONS建议操作条件Condition 条件Symbol符号Min最大值Max最小值Unit单位Cathode to Anode Voltage 阴极阳极电压VKA Vref 36 V Cathode Current 阴极电流IK 1.0 100 mAe an dAl l t h i ng si nt he i rb ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwisenoted.)电气特性(25℃ ,除非另有说明。
一、TL431简介TL431是一种集成电路,属于可编程精密参考电压源(VREF),它在电子电路设计中被广泛应用。
TL431具有稳定的参考电压输出,可以通过外部电阻调节输出电压,因此在各种电路中具有重要的作用。
本文将重点介绍TL431的3种典型应用电路及注意事项。
二、TL431在电源稳压电路中的应用1. 电源稳压电路是电子设备中非常常见的一类电路,用于稳定输出电压并抵御外界干扰。
TL431可以作为电源稳压电路中的基准电压源使用。
其典型电路如下所示:(具体电路图示可根据需要插入)在该电路中,TL431的引脚1连接至电源输入端,引脚2连接至地,引脚3连接至输出负载端,电路通过外接分压电阻R1和R2来调节输出电压。
在使用TL431进行电源稳压时需要注意以下几点:(1)选择合适的分压电阻R1和R2。
分压比需要根据所需输出电压来确定,同时要考虑TL431的工作电流及最小负载要求。
(2)引脚2需要接地并具有合适的接地电流能力。
确保接地点良好,减小接地电阻。
(3)其他外部元器件的选择和连接方式需要按照TL431的规格书进行设计。
三、TL431在LED恒流驱动电路中的应用2. LED恒流驱动电路是LED照明领域使用广泛的一种电路。
TL431也可以应用在LED恒流驱动电路中,实现LED的稳定驱动。
典型电路如下所示:(具体电路图示可根据需要插入)在该电路中,TL431的引脚1连接至电源输入端,引脚2连接至地,引脚3连接至LED负载端,通过外接电阻R1来调节LED的工作电流。
在使用TL431进行LED恒流驱动时需要注意以下几点:(1)选择合适的电流限制电阻R1。
电流限制电阻R1的大小直接影响LED的工作电流,需要根据LED的规格和要求来选择。
(2)引脚2需要接地并具有合适的接地电流能力。
确保接地点良好,减小接地电阻。
(3)保证TL431的稳定工作。
LED恒流驱动电路对TL431的稳定性要求较高,需要注意电路的灵敏度、响应速度及调节范围。
TL431芯片资料及应用TL431精密可调基准电源有如下特点:稳压值从2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
TL431的具体功能可以用下图的功能模块示意。
TL431的器件符号和功能示意图由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮组的。
正确偏置TL431可获得更好的输出阻抗TL431在开关电源(SMPS)反馈环路中是参考电压。
该器件结合了参考电压与集电极开路误差放大器,具有操作简单和成本低廉等优点。
虽然TL431已在业内被长期广泛采用,但一些设计人员仍会忽略它的偏置电流,以致在无意间降低产品的最终性能。
TL431的简化电路图如图1所示,图中包括了驱动NPN 晶体管的参考电压和误差放大器,在该封闭的电源系统中,一部分输出电压一直与TL431的Vref(参考电压)进行比较。
图1 TL431等效电路图图2 SMPS简化直流模型(不考虑输入波动)影响的电阻分压器进行比较,可得到输出电压的理论值为Vref/α。
然而,整个增益链路和各种阻抗均会影响输出电压,如下式所示,其中每个希腊字母均表示一个增益,RSOL表示开环输出阻抗。
转换器简化直流模型如图2所示,Vout与Vref通过受传输率Vout=(Vref-α×Vout) ×β×G- RSOL×Vout / RL (1)Vout= Vref×β×G/(1+α×β×G+ RSOL / RL) (2)静态误差=Vref/α- Vout= Vref×(RSOL+ RL)/ [α×(RSOL+α×β×G×RL+RL)] (3)从式(3)中可看出,增大增益的值有助减小静态误差,提高输出电压精度。
TL431典型应用电路本文主要介绍TL431的典型应用电路,主要包括恒压电路,恒流电路,可控分流电路以及在开关电源设计中的应用,TL431的基础知识请参考本站文章:TL431引脚,参数,工作原理及特点介绍.这里就不再多述.1、恒压电路应用图2:恒压电路前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如上图所示,当R1和R2的阻值确定后,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意范围电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。
当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。
将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4图3:大电流的分流稳压电路图5:精密5V稳压器2、恒流电路应用由前面的例子我们可以看到,器件作为分流反馈后,REF端的电压始终稳定在2.5V,那么接在REF端和地间的电阻中流过的电流就应是恒定的。
利用这个特点,可以将TL431应用很多恒流电路中。
图5:精密恒流源如图5是一个实用的精密恒流源电路。
原理很简单,不在聱述。
但值得注意的是,TL431的温度系数为300ppm/℃,所以输出恒流的温度特性要比普通镜象恒流源或恒流二极管好的多,因而在应用中无需附加温度补偿电路。
下面就介绍一个用该器件为传感器电桥提供恒定偏流的电路,如图6图6:恒定偏流电路这是一个已连成桥路的传感器的前级处理电路。
Vref/R2的值应设为电桥工作所必要的恒定电流,该电流值通常会由传感器制造商提供。
TL431是一个具有良好温度稳定性的三端可控精密基准集成芯片。
它具有体积小、电压精准、性能优良、价格低廉等特点,被广泛运用于恒流源电路,电压比较电路,电压监视电路,低压保护电路,过压保护电路,线性稳压电源电路,开关电源电路,基准电压电路等。
本文讲述几款基于TL431的直流线性稳压电源方案,电路经调节合理的参数后可以运用于多种直流供电电源电路。
1.精密基准电源电路。
下图是TL431作为基准电压源时的两种典型接法,TL431的内部含有一个2.5V的基准电压,若直接将输出电压(VO)引入ref脚(1脚),则输出电压为2.5V;若将输出电压分压后再反馈到ref脚(1脚),则可设置输出电压从2.5V~36V之间的任意基准电压。
典型值:当R1=R2时VO=5V。
需要注意的是,在选择电阻R1或R2时,时必须保证TL431工作的必要条件,即通过阴极的电流要大于1ma。
分压电阻R3\R4简易使用精密电阻,总阻值可以从几K到百K级别。
VO=2.5(1+R3/R4)2.串联稳压电路。
下图一是基于TL431的串联稳压电路。
此电路利用Q1三极管扩流,可以增大整个电路输出电流,同时又能减小R5限流电阻的功率。
其输出电压由分压电阻R7和R8比例所得。
Q1的放大倍数主要由R6决定,所以设置合适的R6可以增大Q1的过电流能力。
VO=2.5(1+R7/R8)有时为了或许更大的电流,为了降低限流电阻的最大功率,我们还可以使用达林顿三极管来扩流,如下图:使用时须注意选择合适的三极管并给三极管合理的散热3.并联稳压电路如下图电路基于TL431的并联稳压电路,通过并联Q2三极管调节输出电流,相应的降低或升高输出电压,相应的限流电阻R9也选着足够功率的电阻,以达到最大功率要求。
此电路一般常用于过压保护电路或限压电路中,常见于锂电池平衡电路中。
百度文库------------翩翩奇货店。
TL431 典型应用电路及稳压电路
TL431是一个有良好的热稳定性能的三端可调分流基准源。
他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数
三端可调分流基准源
可编程输出电压:2.5V~36V
电压参考误差:±0.4% ,典型值25℃(TL431B)
低动态输出阻抗:0.22Ω(典型值)
等效全范围温度系数:50 ppm/℃(典型值)
温度补偿操作全额定工作温度范围
稳压值送从2.5--36V连续可调,
参考电压原误差+-1.0%,
低动态输出电阻,
典型值为0.22欧姆,
输出电流1.0--100毫安。
全温度范围内温度特性平坦,
典型值为50ppm,
低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23
最大输入电压为37V
最大工作电流150mA
内基准电压为2.5V
输出电压范围为2.5~36V
内部结构
TL431的具体功能可以用下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。
由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。
典型应用电路如下:
1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
但在连接容
性负载时,应特别注意CL的取值,以免自激。
2:可调稳压电源(附图2)V o可在2.5~36V之间调节。
V0=Vref(1+R1/R2)(Vref=2.5v),由于承受电压与(Vi –V o)有关,因此压差很大时,R的功耗随之增加。
使用时注意。
3:过电压保护电路(附图3)当Vi超过一定电压时,TL431触发,使晶闸管导通,产生瞬间大电流,将保险丝熔断,从而保护后极电路。
V保护点=(1+R1/R2)Vref.
4:恒流源电路(附图4----拉电流负载)(附图5---灌电流负载)恒流值与Vref和外加电阻有关,功率晶体管选用时要考虑余量。
该恒流源如与稳压线路配接,可做电流限制器用。
5:比较器(附图6)它是巧妙的运用了Vref=2.5v这个临界电压。
当Vi<Vref,V o=V+,当Vi>Vref时,V o=2V由于TL431内阻小,因而输入输出波形跟踪良好。
6:电压监视器(附图7)利用TL431的转移特性,组成实用电压监视器。
当电压处于上下限电压之间,LED电量,上下限电压分别为(1+R1/R2)Vref和(1+R3/R4)Vref。
TL431基准发生器稳压原理及应用
如图1是TL431的框图。
一般情况下,使用时CATHODE端通过一个电阻接到电源正或调整管上,ANODE端接到电源地,REF端则一般通过分压电阻进行采样。
TL431是
一个名义电压为2.5V的电压基准,亦即图1中的V REF=2.500V(名义值),当REF端的电压与之相等时,电路工作稳定,即三极管电流稳定不变----这时电路是通过控制内部的调整管(即三极管)工作电流的大小来达到稳压的目的。
图1
如图2是TL431的基本应用图。
正常情况下,应当在REF与CATHODE之间接一个电容,以确保电路的工作稳定。
电路的控制效果通过控制TL431内部的受控程度在一定范围内的三极管的电流来达到稳定电压V O的目的(其反馈过程,请自己尝试画出来)。
我们注意到,TL431的这个三极管实际上是和接在V O端上的负载并联的,所以,称之为并联稳压器。
事实上,如果将图中的R1、R2和TL431合成一个整体,那么我们就不难发现它和一个稳压二极管所处的位置和作用是完全相同的。
平时,你觉得稳压管是并联稳压的器件吗?如果没觉得,就得清醒一下了。
也许用稳压管的稳压电路你很熟悉,也没觉得它有什么,不过不能让人换个名称叫做并联稳压(电路)就给搞糊涂了。
图2
图片链接:TL431框图.gif TL431的基本应用1.gif
附注:
这里名义值的意思是,生产这个产品时的控制目标就是2.500V,但实际产品可能存在或高或低一些的偏差,因此,我们虽然叫它是2.500V稳压器,但实际上并不保证它一定准确地输出2.500V。
当然,误差范围是确定的,如数据表中给出了在一定温度范围内的最大值和最小值。
关于误差的概念大家不要小看,这是个可以很简单也可以很复杂的问题。
今后要讲到的。
那么TL431在电路中是串联还是并联稳压的呢?
下面通过一个合二为一的电路来说明。
不过要说明的是,这样的例子可以帮助你理解许多类似的问题。
如图,紫色线条部分所示的TL431的电流与负载部分的电流是并联的,因此是并联稳压;而蓝色线条部分所示是串联的,因此三极管的电流与负载RL的电流是串联的,因而是串联稳压。
当然,三极管的稳压精度是由TL431来控制的。
具体的稳压电压,由TL431的基准电压与分压电阻R1和R2决定。
即V O=V REF×[(R2+R1)÷R2](亦见图中的公式)
TL431是一个又小又好用的基准发生器,这个图的电源,也算是比较精密的电源。
它的精密固然与TL431的VREF精度有关,但电阻R1和R2造成的误差没准要比它大呢。
TL431是常用的基准发生器,可以经常地在开关电源中看到。
用并联稳压基准TL431得出的串联稳压电源.gif。