材料表征方法 第七章 红外光谱
- 格式:ppt
- 大小:9.01 MB
- 文档页数:78
红外光谱在材料表征中的应用红外光谱作为一种重要的材料表征手段,在材料科学和化学等领域得到广泛应用。
本文将从红外光谱的基本原理入手,介绍其在材料表征中的应用。
一、基本原理红外光谱是由于分子在特定频率下吸收红外辐射而产生的光谱。
当红外辐射与物质相互作用时,分子中的化学键发生振动或转动,从而吸收一部分红外辐射。
不同的功能基团吸收的红外辐射频率不同,因此可以通过测量样品吸收的红外辐射强度来推断样品中的化学成分和功能基团。
红外光谱可分为两种主要类型:傅里叶变换红外光谱(FTIR)和色散红外光谱(dispersive IR)。
FTIR技术采用干涉仪和快速傅里叶变换(FFT)算法进行信号分析,具有高分辨率和快速采集速度的优点,适用于快速分析和定性鉴定。
而色散红外光谱则采用光栅或棱镜对红外光进行分光处理,其分辨率较低但可以进行微弱信号的分析。
二、应用领域1.聚合物材料表征聚合物是一类重要的工程材料,其化学结构和功能特性对性能有着重要的影响。
红外光谱可以对聚合物材料的结构、分子链的方向和有序程度等方面进行表征。
例如,通过红外光谱的峰位和形状分析可以确定聚合物链的取向,进而推断材料的结晶度。
此外,红外光谱还可以检测聚合物中的卤素、酰胺和酯等功能基团的存在与否,进而确定材料的化学组成和结构。
2.无机材料表征红外光谱在无机材料表征中也有广泛应用。
例如,可以通过红外光谱检测到表面吸附的分子、材料的晶格振动和与有机物质的作用等信息,揭示材料的表面和晶体结构。
同时,红外光谱还可以作为非常规样品表征的工具,例如检测催化剂和颗粒材料中的物质,研究材料与水的相互作用等。
3.医药化学领域在药物设计和研究中,红外光谱也发挥了重要作用。
例如,可以通过红外光谱检测药物与受体分子的相互作用、药物的晶体结构和药物结构的合成方案等方面。
红外光谱还可以定量分析药物的成分和相对含量,快速筛查药物污染物和检测新药物的分子结构等。
4.生物医学领域红外光谱在生物医学领域中也有广泛应用。
材料分析测试技术一、名词解析:1.红外光谱(Infrared Spectroscopy, IR)是利用试样吸收红外光的特征对物质进行结构鉴定的表征技术。
2.拉曼光谱(Raman Spectroscopy)就是利用光经过试样产生的拉曼散射特征对物质进行结构鉴定的表征技术。
3.Raman位移就是Stokes或Anti-Stokes线频率与入射光频率的差值。
4.核磁共振(Nuclear Magnetic Resonance, NMR)是记录处于外磁场中磁核能级之间跃迁的一种技术。
5.化学位移:由于质子所处的化学环境不同,其周围的微磁场自然不同,因此,核磁共振发生时外加的磁场强度并不相同,而是相对有一定的位移,这种吸收峰位置的差距被称为化学位移。
6.凝胶渗透色谱(Gel Permeation Chromatography, GPC)是一种色谱技术,它用高度多孔性的、非离子型的凝胶小球将溶液中多分散的聚合物逐级分开,配合分子量检测器使用即可得到分子量分布,是目前测定分子量分布最广泛应用的方法。
7.X射线衍射如果试样具有周期性结构(结晶),则X射线被相干散射(相对于入射光,散射光没有波长和相关系的改变),该现象被称为X射线衍射8.漫射X射线衍射如果试样具有不同电子密度的非周期性结构,则X射线被不相干散射(相对于入射光,散射光有波长和相关系的改变),该现象被称为漫射X 射线衍射(简称散射)。
9.热分析(Thermal Analysis, TA)是指在程序控温下测量物质的物化性质与温度关系的一类技术10.热重分析(Thermalgravimetry or Thermalgravimetric analysis, TG or TGA)是在程序控温下测量试样质量对温度的变化。
11.热机械分析(Thermomechanical analysis, TMA)是在程序控温和加载静态载荷(压或拉)下测量样品尺寸对温度的变化。
材料表征方法一、引言。
材料表征是材料科学研究中的一个重要环节,通过对材料进行表征可以了解材料的结构、性能和特性,为材料的设计、合成和应用提供重要依据。
本文将介绍常见的材料表征方法,包括显微结构表征、物理性能表征和化学性能表征。
二、显微结构表征。
1. 光学显微镜。
光学显微镜是最常用的显微结构表征方法之一,通过光学显微镜可以观察材料的表面形貌和微观结构,了解材料的晶体形态、晶粒大小和分布等信息。
2. 电子显微镜。
电子显微镜包括扫描电子显微镜(SEM)和透射电子显微镜(TEM),能够观察材料的微观形貌和晶体结构,对材料的晶体学性质进行详细表征。
三、物理性能表征。
1. X射线衍射。
X射线衍射是一种常用的物理性能表征方法,通过分析材料对X射线的衍射图样,可以得到材料的晶体结构信息,包括晶格常数、晶面指数和结晶度等。
2. 热分析。
热分析是通过对材料在不同温度下的热学性质进行测试,包括热重分析(TGA)、差热分析(DSC)和热膨胀分析(TMA),可以得到材料的热稳定性、热容量和热传导性等信息。
四、化学性能表征。
1. 质谱分析。
质谱分析是一种常用的化学性能表征方法,通过对材料中各种化合物的质谱进行分析,可以确定材料的组成和结构,了解材料的化学成分和分子结构。
2. 红外光谱。
红外光谱可以用于表征材料的化学成分和分子结构,通过分析材料在红外光谱下的吸收特征,可以得到材料中各种官能团的信息,包括羟基、羰基和氨基等。
五、结语。
材料表征是材料科学研究中的重要内容,通过对材料的显微结构、物理性能和化学性能进行全面表征,可以为材料的设计、合成和应用提供重要依据。
本文介绍了常见的材料表征方法,希望能够对材料科学研究者有所帮助。
红外光谱在材料科学中的表征分析红外光谱是材料科学领域广泛应用的一种非常重要的分析技术。
它通过检测材料对红外辐射的吸收和散射来获取关于材料结构、化学键以及分子组成的信息。
红外光谱能够提供有关材料的结构、功能和性质的详尽信息,因此在材料科学中具有极高的应用价值。
本文将介绍红外光谱技术的原理、应用以及其在材料科学中的具体表征分析方法。
首先,让我们来了解一下红外光谱的原理。
红外光谱是基于材料对红外辐射的吸收和散射原理而工作的。
红外光谱的原理基于分子固有振动的概念,即材料中分子之间的原子相对位置的变化会引起不同的振动。
当红外光线通过材料时,与样品中的化学键发生相互作用后,红外光线的振动状态发生变化,部分光线被吸收。
通过分析被吸收的光线的频率和强度,我们可以获得材料的红外光谱图。
红外光谱在材料科学中的应用非常广泛。
首先,它被用于材料的组成分析。
由于不同材料的化学键和分子结构不同,它们对红外光的吸收和散射特性也会有所差异。
通过分析红外光谱图,可以识别和确定材料的化学组成。
这对于材料的鉴定和品质控制非常重要。
其次,红外光谱可用于材料的结构分析。
由于红外光谱可以提供材料中化学键的信息,因此可以推断材料的分子结构和晶体结构。
这对于研究材料的结构性能关系以及开发新材料具有重要意义。
此外,红外光谱还可以用于研究材料的表面性质和界面反应等方面。
在材料科学中,红外光谱的表征分析方法具有多样性。
常见的红外光谱技术包括傅里叶红外光谱、红外反射光谱和红外拉曼光谱等。
傅里叶红外光谱是最常用的方法之一,它可以提供关于材料中各种键的信息。
利用傅里叶变换技术,我们可以将红外光谱进行数学处理,得到频率和强度的谱图。
这种方法非常适用于材料的成分分析和结构表征。
红外反射光谱则是通过将红外光线投射到材料表面上,然后测量反射光的强度和频率来分析材料。
这种方法通常用于非透明材料的表面分析,可以提供关于材料表面化学键和结构的信息。
红外拉曼光谱是一种结合了拉曼光谱和红外光谱的方法,可以提供分子振动模式的信息。
红外光谱技术在材料表征中的应用研究引言红外光谱技术是一种广泛应用于材料表征领域的重要科学工具。
它通过测量材料在红外区域的吸收和散射光谱,可以获取材料的结构和性质信息。
本文将探讨红外光谱技术在材料表征中的应用研究,并着重讨论其在聚合物材料、无机材料和生物材料等领域中的具体应用。
聚合物材料表征中的应用红外光谱技术在聚合物材料的表征中发挥着重要作用。
聚合物是由重复单元组成的大分子化合物,红外光谱可以通过测量材料分子中的键振动来确定其化学结构。
例如,红外光谱可以帮助研究人员确定聚合物中的官能团,如羰基、羟基、胺基等,并进一步探究它们在材料性能中的作用。
此外,红外光谱还能够揭示聚合物材料中的其它性质,如晶型结构、有序程度和分子间相互作用等。
无机材料表征中的应用除了聚合物材料,红外光谱技术在无机材料中也发挥着重要作用。
无机材料是由非碳基小分子化合物组成的,相对于聚合物材料,其红外光谱特征更加清晰。
通过红外光谱,研究人员可以鉴定无机材料中的化学键种类和结构,如金属氧化物中的金属-氧键和氧化物键等。
此外,红外光谱还可以提供无机材料晶体结构的信息,研究人员利用该技术可以确定无机材料的晶体结构和晶格参数,以及材料中的杂质和缺陷等。
生物材料表征中的应用在生物材料的表征中,红外光谱技术也有广泛的应用。
生物材料通常包括蛋白质、核酸和多糖等复杂分子,在红外光谱中具有特定的吸收峰。
通过红外光谱,研究人员可以确定生物材料的功能基团,如蛋白质中的酰胺键和羧基等,进而了解其化学组成和结构性质。
此外,红外光谱还可以研究生物材料中的相互作用,如蛋白质和药物之间的相互作用和多肽链的构象变化等。
这些信息对于研究人员理解生物材料的生理活性和功能具有重要意义。
红外光谱技术的发展趋势红外光谱技术在材料表征中的应用正随着科学技术的进步不断发展。
随着仪器设备的升级和红外光谱的分辨率提高,研究人员可以获取更加准确和详细的信息。
此外,红外光谱技术与其它分析技术的结合也为材料表征提供了更多的手段。
红外光谱技术在材料分析中的应用随着科技的进步,现代材料科学越来越依赖于高精度的材料分析。
在材料分析领域,红外光谱技术凭借着其高效、快速、精准的分析方法成为了分析手段的首选。
红外光谱技术是一种基于分子振动的分析方法。
其原理是利用物质在特定波长下的吸收和反射,通过红外光谱仪的检测和记录,来分析物质中分子的组成和结构。
一、红外光谱技术在材料表征中的应用红外光谱技术在材料表征中的应用很广泛,可以用来研究各种材料的性质和结构。
例如,它可以在电化学研究中确定电荷状态、揭示电化学反应机理;在材料制备中控制化学反应体系;在新材料的开发中进行结构表征和性能测试等等。
二、红外光谱技术在材料的缺陷检测中的应用红外光谱技术在材料的缺陷检测中也有很好的应用。
在材料制备和应用过程中,存在各种缺陷如裂纹、异物、气泡、夹杂物等,这些缺陷会影响材料的性能和寿命。
利用红外光谱技术可以对这些缺陷进行有效检测和分析。
三、红外光谱技术在材料的腐蚀分析中的应用红外光谱技术还广泛应用于材料的腐蚀分析。
在工业生产和使用过程中,材料难免会遭到腐蚀的影响,这会影响材料的可靠性和使用寿命。
利用红外光谱技术可以测量材料的腐蚀程度和成分,并进行腐蚀形式和机理的分析,为腐蚀的预防和处理提供了有力的手段。
四、红外光谱技术在材料的污染分析中的应用最后,红外光谱技术还可以在材料的污染分析中发挥重要作用。
尽管现在环境保护越来越得到重视,但在工业生产中还是难免存在各种污染。
红外光谱技术可以有效地识别污染物的成分和来源,并进行精确的定量分析,有助于科学合理地制定污染物的防治措施。
总之,红外光谱技术作为一种高效、快速、精准的分析手段,在材料分析领域得到了广泛应用。
它在材料表征、缺陷检测、腐蚀分析和污染分析等方面都具有重要的应用价值。
相信随着科技的不断推进和发展,红外光谱技术在材料分析中的应用将会更加广泛和深入。
硅树脂表征方法
硅树脂是一种广泛应用于化工、材料、电子等领域的重要材料。
为了更好地掌握硅树脂的性能和结构,需要对其进行表征。
本文介绍常用的硅树脂表征方法。
一、红外光谱
红外光谱是一种常用的表征硅树脂结构的方法。
硅树脂中的
Si-O-Si键和Si-CH3键等都具有比较明显的红外吸收峰,通过对这
些吸收峰的分析可以得到硅树脂的结构信息。
二、核磁共振
核磁共振是一种可以测量物质分子结构的高精度分析技术。
硅树脂中的硅原子和氢原子都可以被核磁共振检测到,通过对不同原子核的信号进行分析,可以对硅树脂的结构信息进行表征。
三、差示扫描量热
差示扫描量热是一种可以测量样品热量变化的分析技术,常用于表征硅树脂的热性质。
通过测量硅树脂的热稳定性、熔点、玻璃转化温度等参数,可以评估硅树脂的性能。
四、热重分析
热重分析是一种通过测量样品在升温或降温过程中的重量变化
来表征化合物性质的技术。
硅树脂在高温下会发生裂解和氧化等反应,通过热重分析可以了解硅树脂的热稳定性、热分解机理等信息。
五、电子显微镜
电子显微镜是一种可以观察样品微观结构的高分辨率分析技术。
硅树脂的微观形貌可以通过电子显微镜观察到,例如硅树脂粉末的粒径大小、硅树脂膜的表面形貌等。
综上所述,以上五种方法都是常用的硅树脂表征方法,每种方法都有其独特的优点和适用范围。
通过多种表征方法的综合分析,可以更全面、准确地了解硅树脂的性能和结构。
材料表面官能团的表征手段在材料科学和化学领域,表征材料表面的官能团对于理解材料的性质、反应活性以及其与周围环境的相互作用至关重要。
以下是几种常见的材料表面官能团表征手段:1.红外光谱法(IR):红外光谱法是用于检测材料中特定官能团的有效手段。
它利用不同波长的红外光与样品相互作用,检测材料对光的吸收或散射,从而确定材料中存在的特定化学键或官能团。
通过分析红外光谱图,可以识别出不同官能团对应的特征吸收峰,进而推断出材料表面的官能团组成。
2.拉曼光谱法(Raman):拉曼光谱法是一种基于拉曼散射效应的振动光谱技术,可用于检测材料表面的化学键和官能团。
当激光照射到样品上时,散射光会因分子振动而发生频率变化,产生与特定官能团相对应的拉曼光谱。
通过分析拉曼光谱图,可以确定材料表面官能团的类型和分布情况。
3.X射线光电子能谱法(XPS):X射线光电子能谱法是一种利用X射线激发材料表面电子并测量其能量的分析技术。
通过测量电子的结合能,可以确定材料表面的元素组成和化合价态。
同时,结合元素分析峰的强度和形状,可以推断出材料表面的官能团结构。
4.原子力显微镜(AFM):原子力显微镜是一种用于检测材料表面形貌和物理特性的高分辨率成像技术。
通过在材料表面扫描微小的探针,原子力显微镜可以检测到表面微小变化和化学不均匀性,从而提供有关官能团分布的信息。
此外,还可以通过力曲线分析了解官能团与探针之间的相互作用力。
5.X射线衍射法(XRD):X射线衍射法是一种利用X射线测量晶体结构的技术。
虽然主要用于测定晶体结构,但通过分析衍射图谱中特定峰的位置和强度,可以推断出材料表面的晶体结构和可能的官能团排列。
6.热重分析法(TGA):热重分析法是一种在程序控温下测量物质质量变化的热分析技术。
通过加热样品并测量质量变化,可以确定官能团在加热过程中的稳定性以及可能发生的化学反应。
这对于评估官能团在高温环境中的行为以及潜在的热解过程非常重要。
红外光谱在材料表征中的应用红外光谱是一种重要的材料表征工具,它可以通过检测材料对红外辐射的吸收和散射来研究材料的结构和性质。
红外光谱广泛应用于化学、物理、材料科学等领域,为我们提供了深入了解材料的方法。
一、红外光谱的基本原理红外光谱是通过在材料表面投射红外辐射,然后测量材料对红外辐射的吸收和散射来分析材料的结构和成分。
红外辐射包含了可见光和微波之间的电磁波,它的频率范围为300 GHz到400 THz。
不同的材料会对不同的波长的红外辐射表现出吸收的峰值,这些峰值可以用来确定材料的特性。
二、红外光谱在有机化学中的应用红外光谱在有机化学中有着广泛的应用。
有机化合物通常在红外光谱中表现出明显的特征吸收峰,这些峰可以帮助确定分子中的功能团和官能团。
通过红外光谱的分析,我们可以判断分子中是否含有羟基、羰基、烷基等官能团,从而推断出化合物的结构和性质。
此外,红外光谱还可以用于分析有机化合物的纯度和检测化学反应的进程。
三、红外光谱在材料科学中的应用红外光谱在材料科学中也有着重要的应用。
通过红外光谱分析材料,我们可以得到材料的吸收谱图,从而了解材料的成分和结构。
例如,通过红外光谱可以确定某种材料中是否含有特定的化学键,比如羟基键、酯基键等。
此外,红外光谱还可以用于研究材料的结晶性质、取向性和相变等特性。
四、红外光谱在物理学中的应用红外光谱在物理学中也有重要的应用。
通过红外光谱的分析,可以研究材料的振动谱和转动谱,从而了解材料的分子结构、晶格结构和性质。
例如,通过红外光谱可以检测材料中存在的不同类型的振动模式,包括平移、弯曲、伸缩等振动,这些振动可以帮助我们判断材料的化学键类型和键强度。
五、红外光谱在医学和生物学中的应用红外光谱在医学和生物学中也有着广泛的应用。
例如,通过红外光谱可以检测人体组织中的蛋白质、脂肪和碳水化合物等分子的存在和组成。
利用红外光谱的技术,可以研究生物体内分子结构的变化和有机化合物的特征,从而帮助诊断疾病和评估药物治疗效果。
利用红外光谱仪进行材料表征的方法引言:材料科学是一门研究材料性质和结构的学科,而材料表征则是其中至关重要的一环。
利用红外光谱仪进行材料表征已经成为了现代材料科学研究的重要手段之一。
本文将介绍红外光谱仪的原理、应用以及一些常见的红外光谱分析方法。
红外光谱仪的原理:红外光谱仪是一种利用红外光的吸收、散射和透射特性来研究物质结构和性质的仪器。
它的工作原理基于物质对红外光的吸收特性,通过测量样品对不同波长红外光的吸收程度,可以得到样品的红外光谱图。
红外光谱图可以提供关于材料中化学键、官能团、结构和组成的信息。
红外光谱仪的应用:红外光谱仪在材料科学中有广泛的应用。
首先,它可以用于材料的鉴定和鉴别。
不同材料对红外光的吸收特性不同,通过比对样品的红外光谱图和已知材料的谱图数据库,可以确定样品的成分和结构。
其次,红外光谱仪可以用于研究材料的变化和反应。
通过监测样品在不同条件下的红外光谱变化,可以了解材料的稳定性和反应机理。
此外,红外光谱仪还可以用于材料的质量控制和性能评估。
通过分析样品的红外光谱,可以判断材料的纯度、含杂质情况以及材料的性能。
红外光谱分析方法:红外光谱分析方法是利用红外光谱仪进行材料表征的核心内容。
常见的红外光谱分析方法包括傅里叶变换红外光谱法(FTIR)、红外显微镜(IR microscopy)和红外光谱成像(IR imaging)等。
傅里叶变换红外光谱法是目前应用最广泛的红外光谱分析方法。
它通过将红外光信号转换为频谱信息,可以得到更准确和清晰的红外光谱图。
傅里叶变换红外光谱法不仅可以用于固体、液体和气体样品的分析,还可以进行红外光谱图的定量分析和定性分析。
红外显微镜是一种将红外光谱仪和显微镜结合起来的仪器。
它可以在微观尺度下观察和分析材料的红外光谱特性。
红外显微镜可以用于材料的局部分析和成分分布的研究,尤其适用于复杂结构和异质材料的表征。
红外光谱成像是一种将红外光谱仪和图像处理技术结合起来的方法。
材料研究方法与实验红外光谱引言材料研究是一门广泛应用于不同学科的学科,其目的在于了解和掌握材料的结构、性质和功能等方面的信息。
红外光谱是材料研究中常用的方法之一,通过测定样品对红外光的吸收和散射情况,可以得到样品的结构信息和化学键的性质等。
一、红外光谱的原理红外光是电磁波的一种,其波长范围为0.75至1000微米。
在红外光谱仪中,光线通过一个用来产生红外光的光源,然后通过一个分光器进行分光,产生不同波长的红外光。
这些红外光穿过样品后,会被检测器接收并转换成电信号,然后经过信号放大和数字化后,就可以通过计算机进行进一步处理和分析。
样品中的化学键在各个振动模式下会产生特定的频率,因此不同的化学键会表现出不同的红外光谱特征。
红外光谱图上的吸收峰对应着特定的振动频率,可以用来确定化学键的类型和相对强度。
二、红外光谱仪的构造和操作红外光谱仪通常由光源、分光器、样品室、检测器和数据处理系统等组成。
光源通常是一种产生连续波长的红外光的热源,例如钨灯或硅钛酸钡晶体等。
分光器用于分离出一定波长范围内的红外光,常见的有棱镜和反射光栅等。
样品室是用来放置样品的小隔室,通常有吸收采样室和透射采样室两种形式。
检测器则将红外光转换成电信号进行检测,常用的有热电偶和半导体探测器等。
数据处理系统可以将电信号转换成数字信号,并进行数据处理和结果显示。
操作红外光谱仪时,首先应进行基线校准。
即在没有样品的情况下,记录红外光的强度。
然后将待测样品放入样品室,进行吸收或透射测量。
通过对测得的信号进行背景补偿和数据平滑等处理,可以得到红外光谱图。
三、红外光谱的数据解析红外光谱图上的吸收峰位置和强度对应着样品中化学键的类型和相对丰度。
常见的红外光谱特征包括振动吸收峰、伸缩吸收峰和指纹区等。
振动吸收峰通常出现在4000至1500波数范围内,对应着分子中氢键、氨基、羟基等振动模式。
伸缩吸收峰则通常出现在1500至400波数范围内,对应着分子中的碳-氧和碳-氮等伸缩振动模式。
材料红外光谱测定与分析一、实验目的1、了解红外分光光度计的工作原理和基本结构。
2、了解红外分光光度计的不同样品的制样方法。
3、掌握红外光谱特征峰的分析和识别。
二、实验原理红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的,记录跃迁过程而获得该分子的红外吸收光谱,因此红外光谱又称为分子振动转动光谱。
红外光谱最广泛的应用是对物质的化学组成进行分析,用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物结构,依照特征吸收峰的强度来测定混合物中各组分的含量,加上此法快速、高灵敏度、试样用量少、能分析各种状态的试样等特点,因此它已成为现代结构化学、分析化学最常用和不可缺少的共具。
本实验测定高分子试样如聚乙烯膜(家用保鲜膜)或聚酰胺胺(PAMAM)等的红外光谱,来学习红外光谱仪器的使用。
三、实验步骤1.打开主机电源,主机进行自检(约1分钟),打开PC机,进入windows操作系统,若气温较低,则机器需预热较长时间(约1h左右)。
2. 压片:将溴化钾研磨成细粉末,取适量装入压片模具,然后在小型压片机上压成薄片。
将待测样品混入溴化钾粉末中压片,将片装入支架,放入红外光谱仪器样品室内。
薄膜类样品可直接放入支架测试。
2.由开始菜单中Thermo Nicolet或桌面Omnic快捷方式进入Omnic红外光谱仪测试操作窗口,在实验Experiment选项中选择样品测试方式。
3.绘制试样的红外光谱图整个过程包括(1)设定收集参数;(2)收集背景;(3)收集样品图;(4)对所得试样谱图进行基线校正,标峰等处理;(5)标准谱库检索;(6)打印谱图。
对一些已知化合物进行标准谱库检索。
4.收集样品图完成后,即可从样品室中取出样品架。
并用浸有无水乙醇的脱脂棉将用过的研钵、镊子、刮刀、压模等清洗干净,置于红外干燥灯下烘干,以备制下一个试样。
5.关机:退出Omnic操作系统,关闭计算机,关闭主机电源。
四、红外光谱仪注意事项:1.严格按照操作规程进行操作。