红外图谱分析
- 格式:ppt
- 大小:60.75 MB
- 文档页数:90
红外谱图分析方法总结1. 简介红外(Infrared)分析技术是一种非常重要的分析测试方法,它可以用来研究物质的结构、组成、性质及相互作用等方面的信息。
红外谱图分析方法通过测量物质对红外辐射的吸收和散射,并结合相关的理论和数据库,得出样品的红外光谱图。
本文将总结常用的红外谱图分析方法。
2. 样品制备在进行红外谱图分析之前,首先需要将待测的样品制备成适合红外光谱测量的形式。
常见的样品制备方法包括固体试样法、液体试样法和气相试样法。
•固体试样法:将固体样品粉碎并与适量的无水氯化钾或氯化钠混合,制成样品块。
也可以使用压片法,将粉末样品压制成片。
•液体试样法:将液体样品滴在透明基片上,使其干燥后形成薄膜。
也可以将液体样品放入适合的红外吸收池中进行测量。
•气相试样法:将气体样品填充到气室中,通过红外吸收池进行测量。
3. 红外光谱测量仪器进行红外谱图分析需要使用红外光谱测量仪器。
常见的红外光谱测量仪器有红外光谱仪和红外光谱仪。
红外光谱仪主要由光源、干涉仪、样品室、探测器和数据采集系统等组成。
它通过生成红外光源并使其通过样品,然后测量样品对不同波长的红外光的吸收情况。
常用的红外光谱仪有傅立叶红外光谱仪(FTIR)和分散式红外光谱仪。
红外光谱仪是一种通过获取光谱仪的光栅分散红外光的仪器。
它通过将红外光分散为不同的波长,并通过探测器检测各个波长的红外光强度,得到红外光谱图。
4. 红外谱图解释红外谱图是指样品在红外区域内的吸收峰和吸收强度的图谱。
通过研究红外谱图,可以得到样品的结构和组成等信息。
红外谱图的解释可以从以下几个方面进行:•吸收峰的位置:吸收峰的位置与样品中存在的化学键相关。
不同化学键对应着不同波数的吸收峰。
•吸收峰的强度:吸收峰的强度与样品中某种化学键的含量相关。
吸收峰的强度越高,表示样品中该化学键的含量越多。
•布拉格方程:通过使用布拉格方程可以计算吸收峰的波数。
•参考谱库:借助谱库中的红外光谱标准数据,可以将待测样品的红外光谱与已知物质进行比对和鉴定。
红外谱图解析基本知识基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动基团频率和特征吸收峰与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域(1) 4000 ~2500 cm-1 X-H 伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种:饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。
如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。
红外光谱分析图用红外光谱仪测试塑料薄膜的红外光谱非常简单。
由于采用厚度适当的透明薄膜,故可直接使用。
经过校正后可得到图1所示的图谱。
这是最简单的高分子光谱图,它只在2 916,2 849, 1 463和719cm-‘四处出现了吸收峰,说明该分子结构中不含苯环、按基、经基等官能团,只含有亚甲基一CHZ,其中2 916cm-‘对应反对称伸缩振动,2 849cm-‘对应对称伸缩振动,1 463cm-‘对应弯曲振动,据此可初步判断该材料为聚乙烯。
至于719cm-‘对应的峰可以不解读。
据资料介绍,该峰为}CHZ]n ( n } 4)弱吸收峰,用于判断碳链的长短,碳链越长,吸收峰越强[2]。
仔细观察可发现该处实际是双吸收峰。
低波数对应无定形聚乙烯吸收峰,高波数对应结晶态聚乙烯吸收峰[3]。
因此可认定该材料就是聚乙烯。
事实上,通过随设备所附图库也能检索出该材料类别,如图2所示,上半部分为试样谱图,下半部分为标准聚乙烯谱图,吻合率达99%以上,即可得出结论。
当然,也可以根据经验来判断。
通常用来制作薄膜的塑料无非聚乙烯(PE) ,聚氯乙烯(PVC)、聚苯乙烯(PS)等几种,其中以PE和PVC价格低廉,来源广泛,是首先考虑的材料,而PVC由于氯原子的取代作用将使图谱发生很大变化,而且PVC薄膜中含有大量的添加剂,做光谱前一般需进行分离提纯,直接做谱图不可能得到图1所示的简单图谱。
因此可以确定,图1的材料就是PE。
图3所示为另一PE样品的红外光谱,它与图1基本相同。
由于PE中少量烯端基的存在,在909和990cm-‘有时能看到弱谱带,分别对应于RCH=CHZ中反式CH面外弯曲振动及CHZ面内弯曲振动。
图3中,1 720cm-‘处的小峰是由于含拨基的添加剂引起的,不是PE本身的峰。
图4所示为均聚PP红外光谱。
由于每两个碳就有一个甲基支链,因而除了1 460cm-‘的CH湾曲振动外,还有很强的甲基弯曲振动谱带出现在1 378cm-' o CH3和CH的伸缩振动与CHZ的伸缩振动叠加在一起,出现了2 8003 OOOcm-‘多重峰。
红外光图谱分析(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300-2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250-1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200-2100cm-1、烯1680-1640cm-1、芳环1600,1580,1500,1450cm-1。
若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700cm-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100-3010cm-1)C=C伸缩(1675-1640cm-1)烯烃C-H面外弯曲振动(1000-675cm1)。
3.炔烃:伸缩振动(2250-2100cm-1)炔烃C-H伸缩振动(3300cm-1附近)。
红外图谱分析是光谱分析技术中的一种,它利用红外光作为光源,检测样品的吸收、反射、散射等特性,从而得到样品的分子结构和化学组成。
下面是红外图谱分析方法的详细步骤:一、准备工作在进行红外图谱分析之前,需要准备好相应的仪器和样品。
红外光谱仪通常由光源、光阑、干涉仪、样品室、检测器等部分组成。
在采集样品红外光谱时,需要使用专门的样品制备技术,如样品压制、样品溶液制备等。
二、样品制备样品制备是红外图谱分析中非常重要的一步,因为只有样品中的分子在红外光的作用下产生吸收、反射、散射等特性,才能得到样品的分子结构和化学组成。
样品制备需要根据样品的性质和所用光谱仪的类型来选择不同的制备方法,如固体样品需要进行研磨和压片,液体样品需要进行溶液制备等。
三、谱图解析在采集到样品的红外光谱后,需要通过谱图解析来得到样品的分子结构和化学组成。
谱图解析需要掌握一定的方法技巧,例如:1. 确定光谱类型:根据光谱中出现的特征峰,确定光谱的类型。
例如,如果是伸缩振动,则可以判断出样品的分子结构中存在这种键。
2. 确定基团:根据特征峰的位置和形状,确定样品中存在的基团。
例如,如果出现了苯环的振动吸收峰,则可以判断出样品中含有苯环结构。
3. 确定分子结构:通过确定基团和键的类型,可以得到样品的分子结构。
例如,如果一个化合物的红外光谱中出现了C-H键的振动吸收峰,则可以判断出这个化合物的分子结构中存在C-H键。
四、定量分析除了定性分析外,红外光谱还可以用于定量分析。
通过测量特征峰的强度和宽度等参数,可以计算出样品中某种物质的含量。
例如,可以利用红外光谱技术测定高聚物中某种单体的含量。
五、应用领域红外光谱在多个领域都有广泛的应用,例如:1. 化学领域:用于研究有机化合物、无机化合物的分子结构和化学反应机理等。
2. 材料科学领域:用于研究高聚物、无机非金属材料、金属材料的结构和化学组成等。
3. 环境科学领域:用于监测大气、水体、土壤等环境中的有害物质和污染物的含量等。
红外识谱歌红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。
看图要知红外仪,弄清物态液固气。
样品来源制样法,物化性能多联系。
识图先学饱和烃,三千以下看峰形。
2960、2870是甲基,2930、2850亚甲峰。
1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。
面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烷。
末端烯烃此峰强,只有一氢不明显。
化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。
910端基氢,再有一氢990。
顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强很大峰形尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特征,1600~1430。
1650~2000,取代方式区分明。
900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。
C-O伸展吸收大,伯仲叔醇位不同。
1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。
1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。
苯环若有甲氧基,碳氢伸展2820。
次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。
缩醛酮,特殊醚,1110非缩酮。
酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。
羰基伸展一千七,2720定醛基。
吸电效应波数高,共轭则向低频移。
张力促使振动快,环外双键可类比。
二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。
羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。
1740酯羰基,何酸可看碳氧展。
1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。
红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。