概率论与数理统计案例
- 格式:pdf
- 大小:222.92 KB
- 文档页数:5
《概率论与数理统计》课程思政典型案例一、课程简介《概率论与数理统计》是高等学校理工科专业的一门重要的基础理论课,它是研究自然界、人类社会及技术过程中大量随机现象统计规律性的一门数学学科。
本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和基本方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析、处理、解决实际问题的基本技能和基本素质。
二、课程思政设计《概率论与数理统计》虽然是一门数学类课程,但是生活中,这门课程的应用实际上早已超越了数学的范畴,在各个行业,领域中均有十分广泛的应用。
在教学实施过程中,结合课程的知识结构特点,挖掘思政元素,使得思想政治教育融入课程,融入课堂,做到入耳、入眼、入心,深入学生血液,成为学生的潜意识、持久稳定的精神需求,进而固化为学生的日常行为习惯,最终变成学生认识武器和行动武器。
(一)思政教育融入物种进化,感受生命之美在上第一次课的时候,会讲到概率的起源、发展及其在哪些领域有应用。
本节课就是从生命起源物种进化讲起,地球从有生命开始出现过亿万种物种,经历了五次大灭绝事件,99.9%的物种都灭绝了,只有人类这一支进化成了人种,进而向学生提问“进化为人类的概率是多少?”,答案是亿万分之一。
亿万分之一的概率发生在我们身上,那么我们每个人生而为人是不是应该感到幸运和自豪呢,是不是应该更加的珍爱生命,努力生活,让每一天都有意义呢。
并进一步用概率知识计算两个人相遇的概率,让学生体会人生中的不确定性以及珍惜老师与学生、学生与学生的相遇。
尤其是在2020年全球疫情背景下,引发学生体会生命的无常和微弱,培养学生热爱生命,敬畏生命的品质。
(二)思政教育融入爱国情怀,树立价值观在讲授统计部分的参数估计和假设检验章节时,要特别介绍我国在这方面研究的先驱者——许宝騄教授。
许教授在加强独立随机变量列强大数定律结论、参数估计理论、假设检验理论、多元分析等方面都取得了卓越成就,并且是世界公认的多元分析的奠基人之一。
概率论与数理统计案例分析概率论与数理统计作为数学的一个重要分支,广泛应用于各个领域。
本文将通过一些具体案例来分析概率论和数理统计在实际中的应用。
案例一:市场营销中的A/B测试在市场营销领域,A/B测试是一种常见的实验设计方法,用于比较两种不同的营销策略、广告设计或产品设计等。
假设某电商公司希望提高其网站用户的转化率,他们可以设计一个A/B测试来比较两种不同的促销活动对用户购买行为的影响。
首先,将用户随机分为两组,一组接受A方案,另一组接受B方案。
然后通过收集和分析用户的购买数据,可以利用概率论和数理统计方法来评估两种方案的效果。
通过统计显著性检验和置信区间分析,可以得出结论,哪种方案对用户购买行为影响更大,从而指导公司的营销策略。
案例二:医学研究中的双盲试验在医学研究领域,双盲试验是一种常用的研究设计,用于评估新药物的疗效。
在一次双盲试验中,研究者和参与者都不知道哪些人接受了治疗,哪些人接受了安慰剂。
通过随机分组和盲法设计,可以最大程度地减少实验结果的偏倚。
利用概率论和数理统计方法,研究人员可以对试验数据进行分析,来评估新药物的疗效是否显著,以及是否出现不良反应等情况。
通过以上案例分析,可以看出概率论和数理统计在实际中的重要性和应用价值。
无论是市场营销领域还是医学研究领域,都离不开对数据的收集、分析和解释。
掌握好概率论和数理统计知识,对于提高决策的科学性和准确性有着重要的意义。
希望本文的案例分析能够让读者更深入地理解概率论和数理统计的实际应用,为他们在相关领域的工作和研究提供一定的启发和帮助。
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
《概率论与数理统计》典型例题第一章 随机事件与概率例1.已知事件,A B 满足,A B 与同时发生的概率与两事件同时不发生的概率相等,且()P A p =,则()P B = 。
分析:此问题是考察事件的关系与概率的性质。
解:由题设知,()(P AB P A B =∩),则有()()()1()1()()()P AB P A B P A B P A B P A P B P AB ===−=−−+∩∪∪而,故可得。
()P A p =()P B =1p −注:此题具体考察学生对事件关系中对偶原理,以及概率加法公式的掌握情况,但首先要求学生应正确的表示出事件概率间的关系,这三点都是容易犯错的地方。
例2.从10个编号为1至10的球中任取1个,则取得的号码能被2或3整除的概率为 。
分析:这是古典概型的问题。
另外,问题中的一个“或”字提示学生这应该是求两个事件至少发生一个的概率,即和事件的概率,所以应考虑使用加法公式。
解:设A :“号码能被2整除”,B :“号码能被3整除”,则53(),()1010P A P B ==。
只有号码6能同时被2和3整除,所以1()10P AB =,故所求概率为 5317()()()()10101010P A B P A P B P AB =+−=+−=∪。
注:这是加法公式的一个应用。
本例可做多种推广,例如有60只球,又如能被2或3或5整除。
再如直述从10个数中任取一个,取得的数能被2或3整除的概率为多少等等。
例3.对于任意两事件,若,则 A B 和()0,()0P A P B >>不正确。
(A )若AB φ=,则A 、B 一定不相容。
(B )若AB φ=,则A 、B 一定独立。
()若C AB φ≠,则A 、B 有可能独立。
()若D AB φ=,则A 、B 一定不独立。
分析:此问题是考察事件关系中的相容性与事件的独立性的区别,从定义出发。
解:由事件关系中相容性的定义知选项A 正确。
概率论与数理统计案例概率论与数理统计是数学学科的两个分支,它们研究与概率和随机变量相关的问题,可以应用于统计、经济、金融等领域。
下面将介绍一些概率论与数理统计的案例。
案例一:骰子游戏在玩一个骰子游戏时,每次掷一个骰子,如果骰子点数为1或6,则游戏结束,否则游戏继续。
假设你可以决定掷骰子的次数,掷的次数越多,结束游戏的概率越大,但可能会因为掷的次数过多而浪费时间。
现在假设你只能掷骰子n次,问你应该掷几次骰子可以使结束游戏的概率最大?解题思路:对于这个问题,我们可以使用概率论的方法来求解。
假设掷骰子的次数为k,那么结束游戏的概率为:$P_k$ = $\frac{1}{3} + \frac{4}{9}(\frac{2}{3})^k +\frac{2}{9}(\frac{1}{2})^k(\frac{2}{3})^{n-k}$为了使结束游戏的概率最大,我们需要求出这个概率关于k的一阶导数,并令其等于0。
对上式求导,得到:令$P'_k$ = 0,解得:$k$ = $\frac{n}{2}$因此,在保证掷骰子次数不超过n的情况下,掷骰子次数为$\frac{n}{2}$时可以使结束游戏的概率最大。
案例二:股票涨跌预测对于投资者来说,股票的涨跌是一个重要的决策因素,如果能准确预测股票涨跌,可以获得更高的投资收益。
根据概率论和数理统计的方法,我们可以尝试分析股票涨跌的概率和趋势,并根据分析结果制定投资策略。
对于股票涨跌的预测,我们可以使用概率论中的二项分布来进行分析。
假设一个股票价格在一段时间内有50%的概率上涨,50%的概率下跌,我们可以将上涨定义为成功事件,下跌定义为失败事件,那么在n次交易中,股票涨k次的概率为:$P(k) = \frac{n!}{k!(n-k)!}\times p^k\times (1-p)^{n-k}$其中,p为股票价格上涨的概率,k为股票涨的次数。
对于预测股票涨跌的趋势,我们可以使用时间序列分析的方法来进行分析。
概率论部分:案例1 邮局开设多少服务窗口合理案例2 国家邮政局发行贺年(有奖)明信片的利润计算案例3 彩民获奖的概率问题案例4 人寿保险问题案例5 免费抽奖问题案例6 双色球彩票中奖概率的理论计算与验证案例7 公交大巴车门高度如何设计案例8 怎样由脚印长度估计罪犯身高案例9 生日问题案例10 排队等待问题案例11 传送带效率问题案例12 商品订货案例13 交货时间为随机变量的存贮模型。
案例14 轧钢问题续集案例15 销售量为随机的存储模型(报童卖报问题)案例16 到货时间为随机的存储模型(报童卖报问题)案例17 随机性人口模型案例18 捕鱼问题案例19 足球门的危险区域案例20 利用蒙特卡洛方法(随机模拟)计算积分统计部分案例21 计算常用描述性统计量,绘制常用统计图案例22 卡方分布问题:案例23 工程师的建议是否应采纳案例24 化妆品销售量的预测案例25 假设检验(配对样本的t检验,本题目源于2012年全国大学生数学建模竞赛A题)案例26 气候预测案例27 蠓虫的分类模型案例1 邮局开设多少服务窗口合理某居民区有n 个人,设有一个邮局,开m 个服务窗口,每个窗口都在办理所有业务。
m 太小则经常排长队。
m 太大又不经济。
假定在每一指定时刻,这n 个人中每一个是否去邮局是独立的。
每个人在邮局的概率都是p 。
现要求“在营业中任一时刻每个窗口的排队人数(包括正在被服务的那个人)不超过s ”这个事件的概率不小于α(一般取95.090.0,80.0或=α)则至少需开设多少窗口? 利用伯努利分布解决这个问题 设事件),,(个人在邮局办事在指定时刻恰有sm k k A k ⋯==2,1,0}{由题设条件知k n k k n k p p C A P --=)1()(由于sm A A A A ,,,,210⋯为两两互斥事件。
故∑∑=-==≥-===smk k n kk n smk k smk k p p C A P A P s P 0)1()()()(α每个窗口人数都不超过找一个最小的自然数m ,使上面不等式成立。
《概率论与数理统计》课程思政教学案例一、课程思政目标在《概率论与数理统计》课程中,思政教学的目标主要是培养学生的爱国主义精神、科学理性态度以及诚信、创新和探索的精神。
通过将思政元素融入专业知识教学,引导学生在掌握数学知识的同时,树立正确的世界观、人生观和价值观。
二、思政元素融入点与教学案例1. 爱国主义精神培养教学案例:在介绍概率论与数理统计的发展历程时,穿插讲述中国数学家在这一领域的贡献,如许宝騄、王梓坤等,强调中国数学家的爱国情怀和科研精神,激发学生的民族自豪感和爱国主义精神。
2. 科学理性态度培养教学案例:在讲解条件概率和全概率公式时,通过“狼来了”的寓言故事,引导学生分析问题、解决问题,并培养他们将实际问题转化为数学问题的能力。
同时,强调科学理性的重要性,让学生在解决问题时能够保持客观、理性的态度。
3. 诚信、创新和探索精神培养教学案例:在课程实验中,要求学生严格遵守数据真实性原则,不得捏造或篡改数据。
通过实验过程,培养学生的诚信意识和严谨的科学态度。
同时,鼓励学生运用所学知识进行创新实践,如设计新的统计模型或算法,以解决实际问题,从而培养他们的创新精神和探索能力。
三、教学评价与反馈在课程结束后,通过问卷调查、学生自评和互评等方式,对思政教学效果进行评价。
收集学生的反馈意见,了解他们在思政方面的收获和体会,以便及时调整教学方法和内容,更好地实现课程思政目标。
四、结语通过将思政元素巧妙地融入《概率论与数理统计》课程教学中,我们不仅可以提高学生的专业素养,还能培养他们的爱国情怀、科学理性态度以及诚信、创新和探索的精神。
这种教学模式有助于培养出既具备专业技能又具有良好思政素养的复合型人才,为国家的科技进步和社会发展做出贡献。
《概率论与数理统计》应用实例概率论与数理统计应用实例
概率论与数理统计是一门重要的数学学科,它被广泛应用于各个领域。
本文将介绍一些关于概率论与数理统计的应用实例。
1. 金融风险评估
在金融领域,概率论与数理统计被用来评估和管理风险。
通过统计方法和概率模型,可以对金融市场的波动性和不确定性进行分析和预测,帮助投资者做出风险管理决策。
2. 医学研究
概率论与数理统计在医学研究中发挥着重要作用。
它可以用来设计和分析临床试验、评估新药的疗效、研究疾病的发病机理等。
通过统计方法,可以对大量的医学数据进行整理和分析,为医学研究提供科学依据。
3. 工程质量控制
在工程领域,概率论与数理统计可以用来进行工程质量控制。
通过统计方法,可以对生产过程中的数据进行分析和监控,及时发
现和纠正问题,确保产品的质量符合标准要求。
4. 社会调查与民意测验
概率论与数理统计也被广泛应用于社会科学领域,如社会调查
和民意测验。
通过随机抽样和统计方法,可以对大量的调查数据进
行处理和分析,得出客观可靠的结论,为社会决策提供参考和依据。
5. 财务分析
概率论与数理统计在财务分析中也发挥着重要作用。
通过对财
务数据的概率建模和统计分析,可以对企业的财务状况和经营风险
做出评估,帮助投资者和管理者做出决策。
以上仅是概率论与数理统计的一些应用实例,这门学科在实际中的应用非常广泛。
通过对概率和统计的深入学习和应用,我们可以更好地理解和处理各种实际问题。
实例1发行彩票的创收利润解:设每张彩票中奖的数额为随机变量X,则每张彩票平均能得到奖金每张彩票平均可赚20.50.3 1.2(),--=元因此彩票发行单位发行10万张彩票的创收利润为:⨯=元100000 1.2120000().实例2如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否作此项投资?解:设X为投资利润,则存入银行的利息:1050.5(),⨯=万元故应选择投资.%实例3商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X(以年计),规定解:11001{1}e d 10x P X x -≤=⎰0.11e -=-0.0952,=例1 某单位内部有260部电话分机,每个分机有4%的时间要与外线通话,可以认为每个电话分机用不同的外线是相互独立的,问总机需备多少条外线才能95%满足每个分机在用外线时不用等候?解: 令),260,2,1(01 =⎩⎨⎧=k k k X K 个分机不要用外线第个分机要用外线第,26021,,,X X X 是260个相互独立的随机变量,且04.0)(=i X E ,26021X X X m +++= 表示同时使用外线的分机数,根据题意应确定最小的x 使%95}{≥<x m P 成立。
由上面定理,有查得95.09505.0)65.1(>=Φ,故,取65.1=b ,于是也就是说,至少需要16条外线才能95%满足每个分机在用外线时不用等候。
例2 用机器包装味精,每袋净重为随机变量,期望值为100克,标准差为10克,一箱内装200袋味精,求一箱味精净重大于20500克的概率。
解: 设一箱味精净重为X 克,箱中第k 袋味精的净重为k X 克,200,,2,1 =k .20021,,,X X X 是200个相互独立的随机变量,且100)(,100)(==k k X D X E ,因而有 }20500{1}20500{≤-=>X P X P例3设一批产品的强度服从期望为14,方差为4的分布。
概率论与数理统计典型例题分析(期末考试与考研必备)1.在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立?(3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立.2.将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立? 解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+=== ()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0,而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?3.设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0?提示 利用事件的关系与运算导出.4.设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===5.某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 6.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P7.设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 8.在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P9.五个人抓一个有物之阄,求第二个人抓到的概率.解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P 所以 ⋅=⨯=514154)(2A P10.设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}. 试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.11.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).12.一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或. 13.用高射炮射击飞机,如果每门高射炮击中飞机的概率是0.6,试问:(1)用两门高射炮分别射击一次击中飞机的概率是多少?(2)若有一架敌机入侵,至少需要多少架高射炮同时射击才能以99%的概率命中敌机?分析 本题既可使用加法公式,也可使用乘法公式.解 (1)令B i ={第i 门高射炮击中敌机}(i =1,2),A ={击中敌机}.在同时射击时,B 1与B 2可以看成是互相独立的,从而21,B B 也是相互独立的,且有P (B 1)=P (B 2)=0.6,.4.0)(1)()(121=-==B P B P B P方法1(加法公式)由于A =B 1+B 2,有P (A )=P (B 1+B 2)=P (B 1)+P (B 2)-P (B 1)P (B 2)=0.6+0.6-0.6×0.6=0.84.方法2(乘法公式) 由于21B B A =,有,16.04.04.0)()()()(2121=⨯===B P B P B B P A P于是 .84.0)(1)(=-=A P A P(2)令n 是以99%的概率击中敌机所需高射炮的门数,由上面讨论可知,99%=1-0.4n 即 0.4n =0.01,亦即.026.53979.024.0lg 01.0lg ≈--==n 因此若有一架敌机入侵,至少需要配置6门高射炮方能以99%的把握击中它.14.设某人从外地赶来参加紧急会议.他乘火车、轮船、汽车或飞机来的概率分别是31110510、、及52,如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来迟到的概率分别为41、⋅12131、试问:(1)他迟到的概率;(2)此人若迟到,试推断他是怎样来的可能性最大? 解 令A 1={乘火车},A 2={乘轮船},A 3={乘汽车},A 4={乘飞机},B ={迟到}.按题意有:,103)(1=A P ,51)(2=A P ,101)(3=A P ,52)(4=A P,41)|(1=A B P ,31)|(2=A B P ,121)|(3=A B P .0)|(4=A B P (1)由全概率公式,有⋅=⨯+⨯+⨯+⨯==∑=203052121101315141103)|()()(41i i i A B P A P B P (2)由逆概率公式 ),4,3,2,1()|()()|()()|(41==∑=i A B P A P A B P A P B A P jj j i i i得到.0)|(,181)|(,94)|(,21)|(4321====B A P B A P B A P B A P 由上述计算结果可以推断出此人乘火车来的可能性最大.15.三人同时向一架飞机射击,设他们射中的概率分别为0.5,0.6,0.7.又设无人射中,飞机不会坠毁;只有一人击中飞机坠毁的概率为0.2;两人击中飞机坠毁的概率为0.6;三人射中飞机一定坠毁.求三人同时向飞机射击一次飞机坠毁的概率.解 设A i ={第i 个人射中}(i =1,2,3),有P (A 1)=0.5, P (A 2)=0.6, P (A 3)=0.7.又设B 0={三人都射不中},B 1={只有一人射中},B 2={恰有两人射中},B 3={三人同时射中},C ={飞机坠毁}.由题设可知,0)|(0=B C P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P并且.06.03.04.05.0)()()()()(3213210=⨯⨯===A P A P A P A A A P B P同理)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++=0.5×0.4×0.3+0.5×0.6×0.3+0.5×0.4×0.7=0.29;P (B 2)=0.44;P (B 3)=0.21.利用全概率公式便得到)|()()(30i i i B C P B P C P ∑===0.06×0+0.29×0.2+0.44×0.6+0.21×1=0.532.由上面的讨论可以看出,在使用全概率公式和逆概率公式解题时,“分析题目,正确写出题设,找出(或计算)先验概率和条件概率”是十分重要的.练习:两台机床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率;又:如果任意取出的零件经检查是废品,求它是由第二台机床加工的概率.答案是:0.973;0.25.16.某类电灯泡使用时数在1000 h 以上的概率为0.2,求三个灯泡在使用1000 h 以后最多只坏一个的概率.解 这是一个n =3,p =0.8二项概型问题P 3(μ≤1)=P (μ=0)+P (μ=1).17.袋中有10个球,其中2个为白色,从中有放回地取出3个,求这3个球中恰有2个白球的概率.解 方法1 设A ={恰有2个白球},由古典概型,有310=n , 8232⨯⨯=m ,因此 ⋅⨯⨯=3210823)(A P 方法2 由二项概型,有⋅⨯⨯====321223310823)108()102()2()(C P A P μ18.袋中有4个白球、6个红球,先从中任取出4个,然后再从剩下的6个球中任取一个,则它恰为白球的概率是______.分析 设A i ={第i 次取到白球},根据古典概型,我们有⋅==104)(110141C C A P 由于 ,)(212111222A A A A A A A ΩA A +=+==并且,94106)|()()(,93104)|()()(1212112121⨯==⨯==A A P A P A A P A A P A P A A P 因此 ⋅=⨯⨯+⨯=1049104634)(2A P 同理 ⋅=104)(5A P 19.有一批产品,其中正品有n 个,次品有m 个,先从这批产品中任意取出l 个(不知其中的次品数),然后再从剩下的产品中任取一个恰为正品的概率为( ).方法1 设A k ={前l 次中恰有k 个正品},k =q ,q +1,…,p ;其中q =max(l -m ,0),p =min(n ,l ).又设B ={第l +1个恰为正品},有,)(,1nm k l m k n k p q q C C C A P ΩA A A +-+==+++ 而 ,)|(11ln m k n C C A B P l n m k n k -+-==-+- 由全概率公式有⋅+==∑=nm n A B P A P B P k k p q k )|()()( 举例说明:(1)n =3,m =5,l =4,这时k =0,1,2,3.⋅=+++=8)4/()0306015()(48C B P⋅=+++=8)4/()5609020()(48C B P 方法2 利用抓阄问题的讨论,直接得到⋅+n m n 方法3 前l +1次取到正品的概率减去前l 次取到正品的概率(有条件限制,有时使用起来不一定方便)方法4 (全排列方法)令第l +1个位置上为正品,由于有n 个正品,故有n 种方法,于是⋅+=+-+=nm n n m n m n B P )!()!1()( 方法5 将第l +1次看成第1次,于是⋅+==+nm n C C B P n m n 11)( 20.袋中有5个球,其中1个是红球,每次取1个球,取出后不放回,前3次取到红球的概率为( ).分析 设A ={前3次取到红球},根据古典概型,有⋅==53)(352411C C C A P说明 利用这一结论,可以计算第3次取到红球的概率:P {第3次取到红球}=P {前3次取到红球}-P {前2次取到红球}⋅=-=-=515253251411352411C C C C C C 注意 这里实际用到了互斥情况下的加法公式.21.设两两相互独立的三事件A ,B ,C ,满足:ABC =∅,P (A )=P (B )=P (C )<21,并且169)(=++C B A P ,求事件A 的概率. 分析 设P (A )=p .由于ABC =∅,有P (ABC )=0,根据三个事件两两独立....情况下的加法公式,有P (A +B +C )=P (A )+P (B )+P (C )-P (A )P (B )-P (B )P (C )-P (A )P (C )+P (ABC ), 即 ,1690332=+-p p 亦即 ,01632=+-p p 解得 41=p 或43(由题意舍去).于是 ⋅=41)(A P 说明 (1)三个事件两两独立,不能推出三个事件相互独立.(2)由ABC =⇒∅P (ABC )=0,反之不真.22.设P (A )>0,P (B )>0,证明(1)若A 与B 相互独立,则A 与B 不互斥.(2)若A 与B 互斥,则A 与B 不独立.分析 (1)由于事件A 与B 相互独立,且P (A )>0,P (B )>0,因此P (AB )=P (A )P (B )>0.可见,AB ≠∅,即事件A 与B 不互斥(相容).(2)由于事件A 与B 互斥,即AB =∅,因此P (AB )=0,而P (A )>0,P (B )>0,故P (AB )≠P (A )P (B ),即事件A 与B 不可能相互独立.说明 (1)事件之间相互独立,并不意味着它们互斥,反之亦然.(2)在P (A )>0,P (B )>0的条件下,两个事件独立与否,是在它们相容情况下讨论的.(3)事件的“互斥”与“相互独立”是没有关系的两个“关系”.23.设A ,B 是两个随机事件,且0<P (A )<1,P (B )>0,)|()|(A B P A B P =,则P (AB )=P (A )P (B ).分析 由公式()()()(|),(|),()()1()P AB P AB P AB P B A P B A P A P A P A ===- 由题设 ),|()|(A B P A B P =即,)(1)()()(A P B A P A P AB P -= 于是,有 ()()(()())()()()(),P AB P A P AB P AB P A P AB AB P A P B =+=+=即A 、B 相互独立.说明 (1) )|()|(A B P A B P =是A ,B 独立的一个充要条件.(2)若此题换成下述选择题:设……,则______ (A)).|()|(B A P B A P = (B)(|)(|).P A B P A B =/(C)P (AB )=P (A )P (B ). (D )P (AB )≠P (A )P (B ).时,能否认为(A )与(B ),或(C )与(D )之中必有一个成立.24.设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则 P (A )=______,P (B )=______.分析 方法1 因为P (A )>0,P (B )>0,且A 与B 相互独立,所以AB ≠∅(想一想为什么).一方面P (A +B )=P (A )+P (B )-P (A )P (B ); (1-6)另一方面).()(21)()()()()(B P A P B P A P B A P B A P B A P +=++=+ (1-7) 由于)()(B A P B A P =,有 ),()()()(B P AB B A P AB B A P A P =+=+=于是由式(1-6),式(1-7)有,))((21))(()(222A P A P A P +=- 即 ⋅===-21)(,21)(,41))(()(2B P A P A P A P 方法2 因为A 与B 相互独立,所以A 与B 也相互独立.由于)()(B A P B A P =,有P (A )=P (B ),于是,41))(1)(())(1)(()()()(=-=-==A P A P B P A P B P A P B A P 因此 ⋅==21)()(B P A P 问题 比较上述两种方法,哪个更简单一些,还有没有其他方法?25.设随机事件A 与B 的和事件的概率为0.6,且积事件B A ⋅的概率为0.3,则事件A 的概率P (A )=( ).分析 因为B A B A +=⋅,所以.4.06.01)(1)()(=-=+-=+=⋅B A P B A P B A P又因为,)(B A B A B B A ΩA A +=+==故 .7.04.03.0)()(=+=+=B A B A P A P26.甲、乙两封信随机地投入标号是1,2,3,4,5的五个信筒内,则第3号信筒恰好只投入一封信的概率为( ).分析 这是一个古典概型问题,有1422,5C m n ⨯==,因此P (A )=0.32.问题 (1)如何将信投入信箱转化为在信封上写号问题? (2)本题是否可用(有放回)摸球问题来解决?27.袋中有10个球,其中有4个白球、6个红球.从中任取3个,求这3个球中至少有1个是白球的概率.分析 这一个古典概型问题,样本空间中样本点的总数为⋅=310C n方法1 设A ={至少有1个白球},有⋅=++=65)(310063416242614C C C C C C C A P 方法2 设B ={取出的全是红球},有⋅-=-=3104361)(1)(C CC B P A P方法3 先从4个白球中任取一个,然后再从剩下的9个球(有红球又有白球)中任取2个,因此⋅=3102914)(C CC A P问题 上述三种方法都对吗,为什么?28.一批产品共100件,对产品进行不放回地抽样检查,整批产品不合格的条件是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5件是废品,求该批产品被拒绝接收的概率.解 设A i ={被检查的第i 件产品是废品},i =1,2,3,4,5;B ={该批产品被拒绝接收}.方法1 由于,54321A A A A A B ++++=于是1234512345()1()1()P B P A A A A A P A A A A A =-++++=-1213124123512341()(|)(|)(|)(|),P A P A A P A A A P A A A A P A A A A A =-而 ,9893)|(,9994)|(,10095)(213121===A A A P A A P A P ⋅==9691)|(,9792)|(432153214A A A A A P A A A A P因此 .23.09691979298939994100951)(=⨯⨯⨯⨯-=B P方法2 .23.01)(1)(5100595=-=-=C C B P B P29.由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏2%,10%,90%的概率分别为0.8,0.15和0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少?分析 设B ={三件都是好的},A 1={损坏率为2%}, A 2={损坏率为10%},A 3={损坏率为90%},则A 1,A 2,A 3两两互斥,且A 1∪A 2∪A 3=Ω.已知P (A 1)=0.8,P (A 2)=0.15,P (A 3)=0.05,且3198.0)|(=A B P , 3290.0)|(=A B P , 3310.0)|(=A B P .由全概率公式可知)()|()(31i i i A P A B P B P ∑==05.01.015.090.08.098.0333⨯+⨯+⨯= 8624.0≈.由贝叶斯公式,这批物品的损坏率为2%,10%,90%的概率分别是,8731.08624.08.098.0)()()|()|(3111≈⨯==B P A P A B P B A P,1268.08624.015.090.0)()()|()|(3222≈⨯==B P A P A B P B A P.0001.08624.005.01.0)()()|()|(3333≈⨯==B P A P A B P B A P由于P (A 1|B )比P (A 2|B ),P (A 3|B )大得多,因此可以认为这批货物的损坏率为2%.30.掷两枚匀称的骰子,X ={点数之和},求X 的分布. 答案是:⋅⎥⎦⎤⎢⎣⎡36/136/236/11232~ X 31.设⎪⎩⎪⎨⎧≤>+=,0,0,0,11)(2x x x x f f (x )是否为分布密度函数?如何改造?解 由于,2πd )(=⎰+∞∞-x x f 所以f (x )不是分布密度函数.令⎪⎩⎪⎨⎧≤>+⋅==.0,0,0,11π2)(π2)(2x x x x f x p则p (x )是分布密度函数.32.设随机变量X 的分布密度函数为⎩⎨⎧≤≤=.,0,10,)(其他x Cx x p求(Ⅰ)常数C ;(Ⅱ)P (0.3≤X ≤0.7);(Ⅲ)P (-0.5≤X <0.5).解 (Ⅰ)由p (x )的性质,有,21|2d d )(110210C x C x Cx x x p =⋅===⎰⎰∞+∞-所以C =2.(Ⅱ).4.0|d 2)7.03.0(7.03.027.03.0===≤≤⎰x x x X P(Ⅲ).25.0|d 2d 0)5.05.0(5.0025.0005.0==+=≤≤-⎰⎰-x x x x X P问题 若连续型随机变量X 的分布密度函数p (x )为不可求积函数,如何计算P (X ∈D )呢?33.从一批有13个正品和2个次品的产品中任意取3个,求抽得的次品数X 的分布列和分布函数,并求⋅≤<)2521(X P 解 先求X 的分布列,X 的所有可能取值为0,1,2,由古典概型的概率计算公式知3122113213213323151********(0),(1),(2)353535C C C C C P X P X P X C C C =========⋅ 故X 的分布列为四个区间.当x <0时,F (x )=P (X ≤x )=0.当10<≤x 时,⋅===3522)0()(X P x F 当12x ≤<时,⋅==+==3534)1()0()(X P X P x F 当x ≥2时,F (x )=P (X =0)+P (X =1)+P (X =2)=1. 综上有X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.2,1,21,3534,10,3522,0,0)(x x x x x F由分布函数可求出⋅=-=-=≤<351335221)21()25()2521(F F X P 34.设连续型随机变量X 的分布函数⎪⎩⎪⎨⎧≤>+=-,0,0,0,e )(22x x B A x F x求系数A 和B .解 由lim ()1n F x →+∞=,知A =1.再由F (x )在x =0处的连续性可知,)e(lim )(lim 02200B A B A x F x x x +=+==-+→→故 B =-A =-1.35.设连续型随机变量X 的分布函数为()1xAF x e-=+, +∞<<∞-x , 求(Ⅰ)常数A . (Ⅱ)X 的分布密度函数p (x ). (Ⅲ)P {X ≤0}.答案是:(Ⅰ)A =1.(Ⅱ)2)e 1(e )(x xx p --+= +∞<<∞-x . (Ⅲ)⋅==<21)0()0(F X P 问题 (1)离散型随机变量的概率分布与分布函数之间有什么关系?(2)连续型随机变量的概率分布密度与分布函数之间有什么关系? (3)如何利用分布函数计算P (X ∈D )?其中D =(a ,b ]. (4)如何确定分布函数中的待定常数?36.设X 服从指数分布,则Y =min{X ,2}的分布函数( ).(A)连续. (B)至少有两个间断点. (C)阶梯函数. (D)恰有一个间断点. 答案是:D .分析 方法1 由题设可知X ~E (λ),有⎩⎨⎧≤>=-.0,0,0,e )(x x x p x λλ 令X 1=X ,X 2=2,则⎩⎨⎧≥<=⎩⎨⎧>-≤=-.2,1,2,0)(;0,e 1,0,0)(21x x x F x x x F xλ于是,Y =min{X ,2}=min{X 1,X 2}的分布函数为))(1))((1(1)(21y F y F y F ---=○一⎪⎩⎪⎨⎧≥<<-≤=-.2,1,20,e 1,0,0y y y y λ 可见它只有一个间断点y =2.方法2 从图2-1中,容易看出它只有一个间断点y =2.图2-137.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,用X 表示取出的3只球中的最小号码数,求X 的分布函数.解 X 的可能取值为3,2,1.,106/)1(,103/)2(,101/)3(352435233522=========C C X P C C X P C C X P 即X 的分布阵为⎥⎥⎦⎤⎢⎢⎣⎡101103106321, 从而X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.3,1,32,109,21,106,1,0)(x x x x x F38.设X ~U (a ,b ),即⎪⎩⎪⎨⎧≤≤-=.,0,,1)(其他b x a a b x p则⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 其图形是一条连续的曲线,见图2-3.图2-339.设X ~N (0,1),求P (X <2.35),P (X <-1.25)以及P (|X |<1.55). 解 P (X <2.35)=Ф(2.35)查表0.9906.P (X <-1.25)=Ф(-1.25)=1-Ф(1.25)=1-0.8944=0.1056.P (|X |<1.55)=P (-1.55<X <1.55)=Ф(1.55)-Ф(-1.55)=2Ф(1.55)-1=2×0.9394-1=0.8788.40.设X ~N (1,22),求P (0<X ≤5). 解 这里μ=1,σ=2,β=5,α=0,有.5.0,2--=-σμασμβ 于是P (0<X ≤5)=Ф(2)-Ф(-0.5)=Ф(2)-[1-Ф(0.5)]=Ф(2)+Ф(0.5)-1=0.9772+0.6915-1=0.6687.41.若X ~N (μ,σ2),求(Ⅰ)P {μ-σ<X <μ+σ}; (Ⅱ)P {μ-2σ<X <μ+2σ}; (Ⅲ)P {μ-3σ<X <μ+3σ}. 解 (Ⅰ)由于X ~N (μ,σ2),故)()(}{σμσμσμσμσμσμ----+=+<<-ΦΦX P =Ф(1)-Ф(-1)=2Ф(1)-1=0.6826≈0.68.同理有:(Ⅱ) P {μ-2σ<X <μ+2σ}=2Ф(2)-1=0.9545≈0.95. (Ⅲ) P {μ-3σ<X <μ+3σ}=2Ф(3)-1=0.9973≈0.99.42.设X ~N (2,32),求:(Ⅰ)P {-1≤X ≤8};(Ⅱ)P {X ≥-4};(Ⅲ)P {X ≤11}. 解 由于X ~N (2,32),即μ=2,σ=3,因此 (Ⅰ)P {-1≤X ≤8}=P {2-3≤X ≤2+2×3}=P {2-3≤X <2}+P {2≤X ≤2+2×3}}322322{21}3232{21⨯+<≤⨯-++<≤-=X P X P.815.0295.0268.0=+≈(Ⅱ)P {X ≥-4}=P {-4≤X <+∞}=P {2-2×3≤X ≤2}+P {X ≥2}.975.021295.0=+≈(Ⅲ)P {X ≤11}=P {-∞<X ≤11}=P {-∞<X ≤2}+P {2≤X ≤2+3×3}.995.0299.021=+≈43.设X ~N (3,σ2),并且P (3≤X ≤7)=0.4,求P (X ≤-1).答案是:0.1. 分析(略)44.设某机器生产的螺栓的长度(cm)服从参数μ=10.05,σ=0.06的正态分布,规定长度在范围(10.05±0.12)cm 内为合格品,求螺栓的次品率.答案是:0.0455(或0.05). 分析(略).求Y =X +1的概率分布.解 由y i =2i x +1(i =1,2,…,5)及X 的分布,得到把f (x i )=2i x +1相同的值合并起来,并把相应的概率相加,便得到Y 的分布,即,21)2()2()5(==+-===X P X P Y P ,103)1()1()2(==+-===X P X P Y P ⋅====51)0()1(X P Y P 所以46.设X ~U (0,1),并且Y =X ,求Y 的分布密度p 2(y ). 解 X 的分布密度函数为⎩⎨⎧∈=.,0],1,0[,1)(1其他x x p 对于函数y =x 2,当x ∈[0,1]时,α=min{x 2}=0,β=max{x 2}=1,于是⎪⎩⎪⎨⎧≥<<≤=.1,1,10*,,0,0)(y y y y F 当0<y <1时)()()()(2y X P y X P y Y P y F ≤=≤=≤=.d 1d 0d )(01y x x x x p yy=+==⎰⎰⎰∞-∞-由 ,21)()()(2yy y F y p ='='=故随机变量Y 的分布密度函数为⎪⎩⎪⎨⎧<<=.,0,10,21)(2其他y yy p47.设随机变量)2π,2π(~-U X ,求随机变量Y =sin X 的分布密度p 2(y ). 解 X 的分布密度函数为⎪⎩⎪⎨⎧-∈=.0,],2π,2π[,π1)(1其他x x p因为y =sin x 在)2π,2π(-内单调增加,所以存在反函数x =arc sin y ,其导数为 ⋅-='211yx y利用公式求出Y 的分布密度函数,首先计算,1}{sin min 2π2π-==≤≤-x x α ππ22max {sin }1,x x β-≤≤== 于是⎪⎩⎪⎨⎧<<-'⋅=-.,0,11|,|))(()(112其他y x y f p y p y⎪⎩⎪⎨⎧<<--=.,0,11,11.π12其他y y 48.X ~U (0,π),Y =sin X ,求p 2(y ).解 X 的分布密度函数为⎪⎩⎪⎨⎧∈=.,0],π,0[,π1)(1其他x x p0π0πmin{sin }0,max{sin } 1.x x x x αβ≤≤≤≤====当0<y <1时,F (y )=P (Y ≤y )=P (sin X ≤y )=P (0≤X ≤arc sin y )+P (π-arc sin y ≤X ≤π),sin arc π2y =所以⎪⎩⎪⎨⎧≥<<≤=1,,11,0,sin arc π20,,0)(y y y y y F 即⎪⎩⎪⎨⎧<<-=.,0,10,1π2)(22其他y yy p 49.(1).,,2,1,}{N k NAk X P ⋅⋅⋅=== (2) ,!}{k B k X P kλ⋅==k =0,1,2,…,λ>0且λ为常数,试确定常数A 和B .解 (1)由分布律的性质可知,)(111A N NAN A k X P Nk N k =⋅====∑∑== 因此,A =1.于是,X 的分布律为).,,2,1(1)(N k Nk X P === 称这样的分布为离散型的均匀分布.(2)由分布律的性质,有,e !!10λλλ⋅===∑∑∞=∞=B k B k Bkk kk解得B =e -λ.于是.e !)(λλ-==k k X P k这表明X 服从参数为λ的泊松分布.50.设平面区域D 是由x =1,y =0,y =x 所围成(如图2-5),今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.图2-5分析 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=51.设随机变量X 具有连续的分布函数F 1(x ),求Y =F 1(X )的分布函数F 2(y ).(或证明题:设X 的分布函数F 1(x )是连续函数,证明随机变量Y =F 1(X )在区间(0,1)上服从均匀分布.)分析 由于F 1(x )为X 的连续分布函数,可知α=min{F 1(x )}=F 1(-∞)=0, β=max{F 1(x )}=F 1(+∞)=1. 因为F 1(x )是单调递增函数,所以11-F (y )存在(单调函数必有单值反函数存在),因而有⎪⎩⎪⎨⎧≥<≤<=≤.1,1,10*,,0,0)()(def2y y y y Y P y F 当0≤y <1时,*=F 2(y )=P (F 1(X )≤y )=P (X ≤11-F (y )) =F 1(11-F (y ))=y .代入F 2(y )表达式有⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F 因此,Y 的分布密度函数为⎩⎨⎧≤≤=.,0,10,1)(2其他y y p即 ).1,0(~U Y52.设X ~E (2),证明Y =1-e -2X~U (0,1)分析 由于X ~E (2),因此⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x p x 当x =0时,y =0=α;当x →+∞时,y →1=β:因为y =1-e -2x单调增加,所以其反函数为)1ln(21y x --=,有 .e 21112111212x yy y x =-=---='方法1(公式法)⎩⎨⎧≤≤'=--.,0,10|,))((|))(()(1112其他y y f y f p y p⎪⎩⎪⎨⎧≤≤⋅=-.,0,10,e 21e 222其他y xx ⎩⎨⎧≤≤=.,0,10,1其他y 即Y ~U (0,1).方法2(定义法) 由分布函数的定义⎪⎩⎪⎨⎧>≤≤<=.1,1,10*,,0,0)(2y y y y F 当0≤y ≤1时,有))1ln(21()e 1()()(22y X P y P y Y P y F X --≤=≤-=≤=-12(ln(1))211(ln(1))1e 2---=--=-y F y,)1(1y y =--=因此⎪⎩⎪⎨⎧>≤≤<=,1,1,10,,0,0)(y y y y y F即Y ~U (0,1).53.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈=,,0],8,1[,31)(32其他x x x fF (x )是X 的分布函数.求随机变量Y =F (X )的分布函数.解 易见,当x <1时,F (x )=0;当x >8时,F (x )=1. 对于x ∈[1,8],有.1d 31)(1332-==⎰xx t t x F设G (y )是随机变量Y =F (X )的分布函数.显然,当y ≤0时,G (y )=0;当y ≥1时,G (y )=1.对于y ∈(0,1),有}1{})({}{)(3y X P y X F P y Y P y G ≤-=≤=≤=,])1[(})1({33y y F y X P =+=+≤=于是,Y =F (X )的分布函数为⎪⎩⎪⎨⎧≥<<≤=.1,1,10,,0,0)(y y y y y G即Y ~U (0,1).54.设随机变量X ~U (0,5),求方程4x 2+4Xx +X +2=0有实根的概率. 分析 因为X 在(0,5)上服从均匀分布,故X 的分布密度为⎪⎩⎪⎨⎧≤≤=.,0,50,51)(其他x x p方程4x 2+4Xx +X +2=0有实根的条件是∆=16X 2-16(X +2)≥0,即 (X +1)(X -2)≥0.解 得X ≤-1或X ≥2.舍去X ≤-1,最后得2≤X ≤5.因此,所求概率为⋅==≤≤⎰53d 51)52(52x X P 问题 本题可否使用其他方法?55. 设随机变量X 的绝对值不大于1,即|X |≤1,且===-=)1(,81)1(X P X P41,在事件{-1<X <1}出现的条件下,X 在(-1,1)内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数F (x )及P (X <0)(即X 取负值的概率).分析 (1)由题设,我们有x <-1时,F (x )=0;x ≥1时,F (x )=1.以下考虑-1<x <1时的情形.由于1=P (|X |≤1)=P (X =-1)+P (-1<X <1)+P (X =1), 故 ⋅=--=<<-8541811)11(X P 另据条件,有),1(21)11|1(+=<<-≤<-x X x X P 于是,对于-1<x <1,有(-1,x ]⊂(-1,1),因此P (-1<X ≤x )=P (-1<X ≤x ,-1<X <1)=P (-1<X <1)P (-1<X ≤x |-1<X <1)),1(165)1(2185+=+⨯=x x ⋅+=≤<-+-≤=1675)1()1()(x x X P X P x F综上,有⎪⎩⎪⎨⎧≥<≤-+-<=.1,1,11,16/)75(,1,0)(x x x x x F (2)P (X <0)=P (X ≤0)-P (X =0)=F (0)=7/16.56.射击用的靶子是一个半径为R 的圆盘,已知每次射击都能击中靶子,并且击中靶子上任一以靶心为圆心的圆盘的概率与该盘的面积成正比.设随机变量X 表示击中点与靶心的距离,求X 的分布密度函数.分析 根据分布函数的定义及几何概型,由图2-6有图2-6),0(ππ)()(2222R x R x R x x X P x F ≤≤==≤=于是 22()(),xp x F x R='=因此⎪⎩⎪⎨⎧≤≤=.,0,0,2)(2其他R x R xx p 说明 (1)注意其分布函数应为⎪⎪⎩⎪⎪⎨⎧>≤≤<=.,1,0,,0,0)(22R x R x R x x x F 57.点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布,求(1)落点的横坐标的概率分布密度函数p 1(x ).(2)落点与点(-R ,0)的弦长的概率分布密度函数p 2(y ). (提示:落点的极角θ均匀地分布在(0,2π)上)分析 设落点的极角为Θ,落点P 的横坐标为X ,落点与(-R ,0)点的弦长为Y ,则由题设可知Θ~U (0,2π),即()1,02π,2π0,.p θθΘ⎧≤<⎪=⎨⎪⎩其他 由图2-7不难看出⋅==2cos2,cos ΘR Y ΘR X图2-7(1)定义法试求点P 的横坐标X =R cos Θ的密度函数.因为x =R cos θ(0≤θ<2π)不是单调函数,由图2-8得到,使R cos θ≤x 成立的θ应满足⋅-≤≤Rx R x cos arc π2cosarc θ图2-8于是,对-R ≤x ≤R ,有θθθd )()cos ()()(cos ΘxR X p x ΘR P x X P x F ⎰≤=≤=≤=⋅-==⎰-Rx Rx Rx os arcc π11d 2π1arccosπ2arccosθ 对x <-R ,有.0)()cos ()()(=∅=≤=≤=P x ΘR P x X P x F X对x >R ,有,1)()cos ()()(==≤=≤=ΩP x ΘR P x X P x F X即⎪⎩⎪⎨⎧≥<<---≤=.,1,,cos arc π11,,0)(R x R x R R xR x x F X 所以X 的密度函数为⎪⎩⎪⎨⎧<<--='=.,0,,π1)()(22其他R x R x R x F x p X X(2)公式法设θ∈(-π,π).由,2cos 2θR y =有当0≤θ≤π时,单调递减,⋅--='=2242,2cosarc 2y R R y y θθ 当-π≤θ≤0时,单调递增,2arccos,2y y R θθ=-=' 可见p Y (y )=P θ(f -1(y ))|y y f'-))((1|⋅-=--+-=22222241π2|42|2π1422π1yR y R y R 因此⎪⎩⎪⎨⎧<≤-=.,0,20,4π2)(22其他R y y R y p Y58.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=.,0],6,3[,92],1,0[,31)(其他x x x p若使得32)(=≥k X P ,则k 的取值范围是________. 分析 由图2-9可知图2-9,32)36(92)63(=-⨯=≤≤X P 因此k ∈[1,3]时,⋅=≤≤=≥32)63()(X P k X P 59.设随机变量X 的分布函数为F (x ),则Y =-2ln F (X )的概率分布密度函数P Y (y )=______.分析 用定义法求出Y 的分布,首先求出Y 的分布函数. 当y >0时,有F (y )=P (Y ≤y )=P (-2ln F (X )≤y ))e )((2y X F P -≥= ))e ((21y F X P --≥= ))e ((121y F F ---=.e 12y--=当y ≤0时,F (y )=0.因此 ⎪⎩⎪⎨⎧≤>-=-.0,0,0,e 1)(2y y y F y 再求出Y 的分布密度函数⎪⎩⎪⎨⎧≤>='=-.0,0,0,e 21)()(2y y y F y p yY60.设)2π,2π(~-U X ,并且y =tan x ,求Y 的分布密度函数p (y ). 分析 由)2π,2π(~-U X ,有⎪⎩⎪⎨⎧-∈=.,0],2π,2π[,π1)(1其他x x p 下面利用公式法求出Y =tan X 的分布,为此先求出:α=-∞,β=+∞.,tan arc )(1y y f x ==-⋅+='='-2111))((yy f x y y 于是有121()(())|(1'())|y p y p f y f y --=⋅').(11.π12+∞<<-∞+=y y61.设二维随机向量(X ,Y )共有6个取正概率的点,它们是:(1,-1),(2,-1),(2,0)(2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布及边缘分布为62.设(X ,Y )的联合分布密度为⎩⎨⎧≥≥=+-.,0,0,0,e ),()43(其他y x C y x p y x试求:(1)常数C . (2)P {0<X <1,0<Y <2}. (3)X 与Y 的边缘分布密度p 1(x ),p 2(y ).解 (1)由p (x ,y )的性质,有y x C y x y x p y x d d e d d ),(1)43(0+-+∞+∞+∞∞-+∞∞-⎰⎰⎰⎰==3401e d e d ,12x y C x y C +∞+∞--=⋅⋅=⎰⎰ 即C =12.(2)令D ={(x ,y )|0<x <1,0<y <2},有y x y x p D Y X P Y X P Dd d ),(}),{(}20,10{⎰⎰=∈=<<<<).e 1)(e 1(d e d e 12d d e 128342310)43(----+---===⎰⎰⎰⎰y x y x y x y x D(3)先求X 的边缘分布:①当x <0时,p (x ,y )=0,于是10()(,)d 0.p x p x y y +∞==⎰②当x ≥0时,只有y ≥0时,p (x ,y )=12e-(3x +4y ),于是⎰+∞∞--+-==.e 3d e 12)(3)43(1x y x y x p因此⎩⎨⎧<≥=-.0,0,0,e 3)(31x x x p x 同理⎩⎨⎧<≥=-.0,0,0,e 4)(42y y y p y 63.设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中D ={(x ,y ):|x +y |≤1,|x -y |≤1},求X 的边缘密度p X (x ).解 区域D 实际上是以(-1,0),(0,1),(1,0),(0,-1)为顶点的正方形区域(见图3-9),其边长为2,面积S D =2,因此(X ,Y )的联合密度是图3-9⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 11111d ,10,21()(,)d d ,01,20,.x x x X x y x p x p x y y y x +--+∞--∞-⎧-≤≤⎪⎪⎪==<≤⎨⎪⎪⎪⎩⎰⎰⎰其他即 1,10,()1,01,0,.X x x p x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他 64.设二维随机向量(X ,Y )的联合分布函数为⎩⎨⎧≥≥+--=----.,0,0,0,333),(其他y x C y x F y x y x求(1)常数C ;(2)分布密度p (x ,y ).解 (1)由性质F (+∞,+∞)=1,得到C =1.(2)由公式:yx Fy x p ∂∂∂=2),(有3ln 33ln 3,x x y Fx--∂=-∂ .)3(ln 3)3ln 33ln 3(22y x y x x yyx F -----=-∂∂=∂∂∂故 ⎩⎨⎧≥≥=--.,0,0,0,)3(ln 3),(2其他y x y x p y x65.设D 2是x =0,y =0,y =2x +1围成的区域,ξ=(X ,Y )在D 2上均匀分布,求F (x ,y ).答案是:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅∈∈-∈+∈-+∈=54232221),(,1,),(,2,),(,)12(,),(,)12(2,),(,0),(D y x D y x y y D y x x D y x y x y D y x y x F 其中区域D 1,D 2,D 3,D 4,D 5如图3-10所示.图3-1066.求 (1)X 与Y 的边缘分布.(2)X 关于Y 取值y 1=0.4的条件分布. (3)Y 关于X 取值x 2=5的条件分布. 解(1)由公式),3,2,1()(====∑⋅i p x X p p ijji i),2,1()(====⋅j p y Y p p ijij j(2)计算下面各条件概率:,8380.030.0)(),()|(,16380.015.0)(),()|(1121211111======y p y x p y x p y p y x p y x p⋅===16780.035.0)(),()|(11313y p y x p y x p因此,X 关于Y(3)同样方法求出Y 关于X 取值x =5的条件分布为67.设二维随机向量(X ,Y )的联合分布密度为.e π1),()52(2122y xy x y x p ++-=求(1)X 与Y 的边缘分布密度; (2)条件分布密度.解 (1)由公式y y y x p x p y xy x d e π1d ),()()52(21122++-∞+∞-∞+∞-⎰⎰==)10125(d e 52e e π1222)10125(102x y x y x x +=⎰∞+∞-+-- ,e 5π2πe 52π1224.04.0x x --=⋅=这里应用了.πd e2=-+∞∞-⎰u u 同理,可求得Y 的边缘分布密度为.e π2)(222y y p -=(2)在给定Y =y 的条件下,X 的条件分布密度为,e 2π1)(),()|(2)(5.02y x y p y x p y x p +-==而在给定X =x 的条件下,Y 的条件分布密度为.e 2π5)(),()|(2)5(1.01y x x p y x p x y p +-==69.设随机变量X 与Y 相互独立,下表列出了二维随机向量(X ,Y )联合分布律及关于X和关于Y 的边缘分布律中的部分数值,试将其余数值填入下表中的空白处.分析 应注意到X 与Y 相互独立. 解 由于P (X =x 1,Y =y 1)=P (Y =y 1)-P (X =x 2,Y =y 1),2418161=-=考虑到X 与Y 相互独立,有P (X =x 1)P (Y =y 1)=P (X =x 1,Y =y 1),⋅===4161241}{1x X P所以同理,可以导出其他数值.故XY 的联合分布律为70.设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立. 证 X 的分布函数为⎩⎨⎧≥<=.0,1,0,0)(1时当时当x x x F 设Y 的分布函数为F 2(y ),(X ,Y )的分布函数为F (x ,y ),则当x <0时,对任意的y 有F (x ,y )=P {X ≤x ,Y ≤y }=P ({X ≤x }∩{Y ≤y })=P (∅∩{Y ≤y })=P (∅)=0=F 1(x )F 2(y ).当x ≥0时,对任意的y 有F (x ,y )=P ({X ≤x }∩{Y ≤y })=P {Y ≤y }=F 2(y )=F 1(x )F 2(y ).因此,对任意的x ,y 均有F (x ,y )=F 1(x )F 2(y ),即X 与Y 相互独立.71.设(X ,Y )的联合分布密度为⎪⎩⎪⎨⎧<<+=.,0,1||,1||,41),(其他y x xy y x p试证明:(1)X 与Y 是相依的. (2)X 2与Y 2是相互独立的.证 (1)先求X 的边缘分布密度.当|x |<1时,有⋅=+==⎰⎰-+∞∞-21d 41d ),()(111y xy y y x p x p当|x |≥1时,p 1(x )=0,因此⎪⎩⎪⎨⎧<=.,0,1||,21)(1其他x x p 同理⎪⎩⎪⎨⎧<=.,0,1||,21)(2其他y y p 可见,当|x |<1,|y |<1时p (x ,y )≠p 1(x )·p 2(y ),所以X 与Y 不独立,即是相依的.(2)令ξ=X 2,η=Y 2,其分布函数分别为F 1(x )和F 2(y ),于是当0≤x <1时,有)()()(21x X x P x X P x F ≤≤-=≤=⎰-==x x x x ,d 21因此⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(1x x x x x F同理可求得Y 2的分布函数⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F如图3-11所示,将Oxy 平面分成5块区域来讨论,并将(ξ,η)的分布函数记为F 3(x ,y ),则图3-11①当x <0或y <0时,F 3(x ,y )=0. ②当0≤x <1,y ≥1时,.)(),(),(2223x x X P y Y x X P y x F =≤=≤≤=③当0≤y <1,x ≥1时,同理.),(3y y x F =④当0≤x <1,0≤y <1时, F 3(x ,y )=P (X 2≤x ,Y 2≤y )),(y Y y x X x P ≤≤-≤≤-=1d 4sxs t +==⑤当x ≥1,y ≥1时,.1d d 41),(),(1111223=+=≤≤=⎰⎰--y x xyy Y x X P y x F综合起来得到⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤<≤≥<≤≥<≤<<=.1,1,1,10,10,,1,10,,1,10,,00,0),(3y x y x xy x y y y x x y x y x F 或不难验证,对于所有x ,y 都有F 3(x ,y )=F 1(x )·F 2(y ),所以ξ与η相互独立,即X 2与Y 2相互独立.72. 设(X ,Y )的联合分布为求(Ⅰ)Z 1=X +Y ;23解 (Ⅰ)Z 1=X +Y 的正概率点为0,1,2,3.因为。
概率论与数理统计在生活中的应用
概率论和数理统计在生活中应用广泛,以下是一些例子:
1. 投资,包括股票和证券。
投资者需要评估不同股票和证券的风险和收益率。
概率论和数理统计可以帮助投资者预测股票和证券的未来表现。
2. 保险。
保险公司需要评估风险和确定保险费。
概率论和数理统计可以帮助保险公司确定保险费的最佳水平,同时仍然可以满足其保险计划的财务责任。
3. 运输。
航空公司,铁路公司和公路运输公司都需要评估其运输系统的效率和容量。
概率论和数理统计可以帮助他们预测交通瓶颈和需求峰值。
4. 质量控制。
制造商需要确定其产品的质量,以确保产品符合消费者期望和法律标准。
概率论和数理统计可以帮助制造商评估其生产过程的标准差,并识别可能导致批次缺陷的因素。
5. 医疗保健。
医生和研究人员需要评估药物和治疗方案的疗效和安全性。
概率论和数理统计可以帮助他们确定最佳治疗方法,并评估新药或治疗方法的效果和副作用。
总之,概率论和数理统计在各行各业中都有广泛的应用。
它们提供了工具和技术,可以帮助人们做出基于数据的决策,并更好地了解和管理风险。
概率论与数理统计案例案例背景在概率论与数理统计这个领域中,我们可以通过案例分析来更好地理解和应用所学的理论知识。
本文将通过介绍一个实际案例来探讨概率论与数理统计的应用。
案例介绍假设某个电商平台希望在销售季节到来之前预测某款商品的销售量,以便做好库存管理,制定营销策略和预测盈利情况。
该电商平台采集了过去一年的销售数据,并希望通过概率论与数理统计方法来预测未来的销售量。
数据收集该电商平台从过去一年的销售数据中获取到了每天该商品的销售量。
数据包括商品编号、销售日期和销售数量。
为了简化问题,我们仅考虑某一款商品的销售情况。
数据预处理在进行数据分析之前,首先对数据进行预处理。
预处理包括去除异常值、缺失值处理以及数据归一化等。
对于销售数量这个变量,我们可以先检查是否存在异常值,如果存在则进行删除或修正。
然后,我们需要处理可能存在的缺失值,可以使用均值填充或者删除缺失值较多的样本。
最后,为了进行统计分析,需要将数据进行归一化处理,例如使用z-score标准化方法。
数据分析在数据预处理完成后,我们可以开始进行数据分析了。
首先,我们可以计算该商品的每日平均销售量,并进行可视化展示。
通过对平均销售量的观察,我们可以初步判断销售量的分布情况。
平均销售量分布我们可以绘制柱状图来展示每天销售量的分布情况。
柱状图可以展示销售量的频数分布,帮助我们了解销售量的区间和分布特征。
同时,可以计算平均值和标准差来描述销售量的集中趋势和变异程度。
时间序列分析在考察销售量整体情况后,我们还可以进行时间序列分析。
时间序列分析可以帮助我们了解销售量的趋势和季节性变动。
通过绘制时间序列图和计算季节指数,我们可以确定销售量是否存在明显的趋势和周期性。
模型建立与预测在了解销售量的分布和规律后,我们可以基于概率论与数理统计的方法建立模型来预测未来的销售量。
随机游动模型随机游动模型是一种常用的时间序列模型,用于描述一系列随机变量的演化过程。
在本案例中,我们可以考虑用随机游动模型来预测未来的销售量。
第一章第一节例1:甲、乙、丙三个射手击中目标的事件分别记作A 、B 、C ,试替用A 、B 、C 表示以下事件。
1) 甲击中目标,乙、丙未击中;2) 三个人中恰有一个人击中目标;3) 三个人中至少有一个击中目标;4) 三个人中恰有两个人击中目标;5) 三个人中至多一个人击中目标;6) 三个人都击中了目标;7) 三个人都未击中目标。
解:1) C B A2) C B A C B A C B A3) C B A C B A C B A C AB C B A BC A ABC ,或A B C 4) C AB C B A BC A5) C B A C B A C B A C B A ,或C B C A B A6) ABC7) C B A 或C B A例2:一名射手连续向某个目标射击三次,事件i A 表示第i 次射击时击中目标(i =1,2,3),试用文字叙述叙述下列事件:1A 2A ,2A ,3A -2A ,C B A 。
解:1A 2A :前两次射击中至少有一次击中目标;2A :第二次射击未中目标;3A -2A :第三次击中目标但第二次未击中目标;C B A =A B C :三次射击中至少有一次击中目标。
第二节例1:同时掷两枚硬币,求出现一正一反的概率。
解:试验样本空间 ={(正,正),(正,反),(反,正),(反,反)},因此有四个基本事件且每个基本事件发生的可能性相同,所以是古典概型问题。
设A 表示事件“出现一正一反”,则事件A 包含两个基本事件(正,反)、(反,正),所以)(A P =42=21 例2:一批产品中有7件正品和3件次品,现从中任取两次,每次任取一件产品,考虑下面两种抽样方式:(a )第一次取出一件产品,观察是否合格后放回,混合后再取第二件。
这种抽样方式称为有放回抽样。
(b )第一次取出一件产品不放回,第二次从剩下的产品中再取一件。
这种抽样方式称为无放回抽样。
分别就以上两种情况求:1) 取到的两件都是次品的概率;2) 取到的两件是一件正品一件次品的概率。
例1在管理系同学中任选一名同学,令大事A 表示选出的是男生,大事5表示选出的 是三班级同学,大事C 表示该生是运动员.(1)叙述大事A53的意义;(2)在什么条件下ABC = C 成立?(3)什么条件下CuB?(4)什么条件下A = 3成立?解(1) A53是指当选的同学是三班级男生,但不是运动员.(2)只有在CuAB,即CuACu3同时成立的条件下才有A3C = C 成立,即只有在 全部运动员都是男生,且全部运动员都有是三班级同学的条件下才有ΛBC = C.(3) Cu3表示全部运动员都是三班级同学,也就是说,若当选的同学是运动员,那么肯 定是三班级同学,即在除三班级同学之外其它班级没有运动员当选的条件下才有CuB.(4) ∙u8表示当选的女生肯定是三班级同学,且8u∙表示当选的三班级同学肯定是 女生.换句话说,若选女生,只能在三班级同学中选举,同时若选三班级同学只有女生中选 举.在这样的条件下,彳=8成立.例2考察某一位同学在一次数学考试中的成果,分别用A,B,C,QP,厂表示下列各大事 (括号中表示成果所处的范围):A - -优秀([90,100]), 。
一 一中等([70,80)), P ——通过([60,100]), 则A5,C 。
,厂是两两不相容大事P 与尸是互为对立大事,即有歹=尸;4氏。
,。
均为。
的 子大事,且有P = A ∪B ∪CUD.例4指出下㈣各等式命题是否成立,并说明理由:(1) A ∪B = (ΛB)∪Bi(2) AB = A ∖JB ∖(3) A ∪B∩C = ABC ;(4) (AB)(AB) = 0.解⑴成立.(A B)U8 =(AU8)n (耳 U8)(安排律) = (AU8)nS=AUB(2)不成立.若A 发生,则必有AU3发生,A 发生,必有彳不发生,从而彳5不发生,故∙8 = AU8不成立.(3)不成立.若而δ∩c 发生,即C 发生且而§发生,即必定有C 发生.由于C 发生,故不必定不发生,从而彳万仁不发生,故(3)不成立.(4)成立.8 —良好([80,90)),。
三、教学组织过程第一学时:1.问题的引入(10分钟)引例:科学研究表明,遗传对智力是有影响的,据医学统计,生男孩和生女孩的可能性各位50%,而智力遗传因素都来自X染色体。
问:孩子智力遗传因素中,来自母亲的可能性多大?2.复习乘法定理(5分钟)3.由引例,介绍样本空间的划分,即完备事件组的定义。
(5分钟)4.例子1(5分钟)例1 设10把钥匙中有两把能把锁打开,求第三次把锁打开的概率。
此时样本空间如何划分?5.全概率公式的介绍与证明(10分钟)6.利用全概公式解决例1(5分钟)7.例子2(8分钟)例2 某工厂有三条流水线生产同一种产品,三条流水线的产量分别占该产品总产量的46%,33%,21%,且三条流水线生产产品的次品率分别为0.015,0.025,0.035.请问随意抽取一件产品,恰好抽到次品的概率为多少?8.解决例2后留下疑问:(2分钟)如果已知抽到的产品是次品,请问这件次品来自哪条流水线的概率最大?第二学时:1.复习全概率公式,并提出逆问题:(2分钟)事件已经发生(结果已经出现),问:各种原因对结果出现“所做的贡献”各有多大?即求——由果索因2.推导贝叶斯公式(5分钟)3.解决上节课遗留的例2 反问(8分钟)4.先验概率与后验概率的介绍(5分钟)5.贝叶斯学术成就介绍(3分钟)6.案例2(10分钟)《伊索寓言》中有一则“孩子与狼”的故事,讲的是一个小孩每天到山上放羊,山里有狼出没。
第一天,他在山上喊“狼来了!狼来了!”,山下的村民闻声便去打狼,可到了山上,发现狼没有来;第二天也如此;第三天,狼真的来了,可无论小孩怎么喊叫,也没有人来救他,因为前两天他说了慌,人们不再相信他了。
试用贝叶斯公式来分析此寓言中村民对这个小孩的可信度是如何下降的。
7.例3 癌症诊断问题(10分钟)小明去医院作验血实验,检查他患上了X疾病的可能性,其结果居然为阳性,把他吓了一大跳,赶忙到网上查询。
网上的资料说,实验总是有误差的,这种实验有“百分之一的假阳性率和百分之一的假阴性率”。