概率论与数理统计
- 格式:docx
- 大小:20.17 KB
- 文档页数:6
2.和(并):
3.互斥(互不相容):对立:
事件的运算:
伯努利大数定律:当试验次数n足够大时,事件发生的频率就约等于事件发生的概率。
全概率公式、贝叶斯公式
定义:
引入随机变量后,可用随机变量的
等式或不等式来表达随机事件;
随机变量的函数一般也是随机变量
0-1分布是n=1时的二项分布
定义:性质:
定义:
F(x)是X的分布函数,X是连续型随机变量,f(x)是它的概率密度函数,简称概率密度
性质:
均匀分布:
标准正态分布N(0,1)
标准正态分布的分位数
举例:
期望反映了随机变量取值的平均,又称均值。
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。
《概率论与数理统计》姓名:黄淑芹学号:1543201000276班级:数学与应用数学E时间:2017年6月概率论与数理统计摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键词:概率、统计、数学期望、方差、实际问题、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
(一)、概率要学习与概率有关的知识,首先要知道事件的定义与分类及与它们有关的运算性质:随机事件在抛掷一枚均匀硬币的试验中,“正面向上”是一个随机事件,可用A={正面向上}表示。
【1】随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。
全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…}。
仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。
在随机试验中,随机事件一般是由若干个基本事件组成的。
样本空间Ω的任一子集A称为随机事件。
属于事件A的样本点出现,则称事件A发生。
例如,在试验E中,令A表示“出现奇数点”,A就是一个随机事件,A还可以用样本点的集合形式表示,即A={1,3,5},它是样本空间Ω的一个子集,在试验中W中,令B表示“灯泡的寿命大于1000小时”,B也是一个随机事件,B也可用样本点的集合形式表示,即B={t|t>1000},B也是样本空间的一个子集。
因此在理论上,我们称试验E所对应的样本空间Ω的子集为E的一个随机事件,简称事件。
在一次试验中,当这一子集中的一个样本点出现时,称这一事件发生。
样本空间Ω的仅包含一个样本点ω的单点子集{ω}也是一种随机事件,这种时间称为基本事件。
【2】例如,在试验A中{H}表示“正面朝上”,这是基本事;在试验B中{3}表示“掷得3点”,这也是基本事件;在试验C中{5}表示“测量的误差是0.5”,这还是一个基本事件。
(二)、统计与数学期望数学期望的定义离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,y,z,...则称该随机变量为离散型随机变量。
随机变量的数学期望值在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。
(换句话说,期望值是该变量输出值的平均数。
期望值并不一定包含于变量的输出值集合里。
)对于数学期望的定义是这样的。
数学期望E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。
在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)很容易证明E(X)对于这几个数据来说就是他们的算术平均值。
我们举个例子,比如说有这么几个数:1,1,2,5,2,6,5,8,9,4,8,11出现的次数为3次,占所有数据出现次数的3/12,这个3/12就是1所对应的频率。
同理,可以计算出f(2) = 2/12,f(5) = 2/12 , f(6) = 1/12 , f(8) = 2/12 , f(9) = 1/12 , f(4) = 1/12 根据数学期望的定义:E(X) = 1*f(1) + 2*f(2) + 5*f(5) + 6*f(6) + 8*f(8) + 9*f(9) + 4*f(4) = 13/3 所以 E(X) = 13/3,现在算这些数的算术平均值:Xa = (1+1+2+5+2+6+5+8+9+4+8+1)/12 = 13/3所以E(X) = Xa = 13/3(三)、方差方差的定义在概理论与数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。
在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。
方差是实际值与期望值之差平方的期望值,而标准差是方差平方根。
在实际计算中,我们用以下公式计算方差。
方差是各个数据与平均数之差的平方的平均数,即:s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] ,其中,x_表示样本的平均数,n表示样本的数量,^2表示平方,xn表示个体,而s^2就表示方差。
而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为总体X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍:[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(Xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。
即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。
即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。
若X的取值比较集中,则方差D(X)较小;若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。
方差的几个重要性质(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。
(3)设 X 与 Y 是两个随机变量,则D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),则D(X+Y)=D(X)+D(Y)。
此性质可以推广到有限多个相互独立的随机变量之和的情况.(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(四)、实际问题与应用(1)生日概率问题每个人都有自己的生日(指一年365天中某一天),随机相遇的两人的生日要在365天中的同一天,即使有也是很凑巧,但如果相聚的人数增多,可能性会增大;某次随机相遇无论男女、老幼,若人数达到了50以上,形成一个团体(如集会、上课、旅游等)。
1.随意指定一个人,你猜某天正好是他的生日,猜对的可能性有多大?2,随意指定二个人,你猜他俩生日是同一天,猜对的可能性有多大?3.某一团体有一群人,我绝对可以肯定至少有2人生日相同,这群人人数至少要多少?4.如果某个随机而遇的团体有50人以上,我敢打贿,这个团体几乎可以肯定有生日相同的两个人,你相信吗?问题1. 解:一年有365天,他某天生日概率p≈0.0027,故猜对的可能性微乎其微。
问题2. 解:两个人生日,总共可能性有365×365种搭配,其中有365种生日相同,故随意指定二个人,生日相同的概率p≈0.0027,故猜对的可能性仍旧微乎其微。
问题3. 解:某一团体中,绝对肯定至少有2人生日相同,即为必然事件,p=1。
由抽屉原理可知,这群人至少要有366人。
问题4. 解:要解决这个概率问题,我们首先来计算一下,50个人生日的搭配一共有多少种可能情况。
第一个人生日,可以是一年中任何一天,一共有365种可能情况,而第二、第三及其它所有人生日也都有365种,这样50个人共有365种可能搭配。
如果50人的生日无一相同,那么生日搭配可能情况就少得多了。
第一个人有365种可能,第二人因不能与第一个生日相同,只有364种可能,依次类推,如50人生日无一相同,其生日搭配情况只有365×364×363×……×317×316 种只占3655050种情况中的 3%,即p=3%。
即反面推至生日2人相同概率有97%。
同理可推算如果某群人有40人,至少两人生日相同概率有89%,如果有45人至少两人生日相同的概率达94%。
故这样赌局,几乎可以稳操胜券。
(2)、保险赔偿问题目前, 随着人们的经济水平越来越高,自身及家人的安全问题、财产安全及养老问题等受到了极大的重视,有一定经济条件的人纷纷选择购买保险来给自己一份保障; 我们可能就有疑惑, 是保险公司受益还是投保人受益, 谁才是最大受益者? 通过下面这个例子也许他们会明白一些。
某一保险公司, 有3000 个统一年龄层的相同社会阶层的人参加保险。
在一年内, 每个人死亡的概率为0.002。
每个参加保险的人在1月1 日付12 元保险费, 而当他在这一年死亡时, 家属可从公司领取保险费2000 元, 问保险公司每年盈利的概率是多少? 且获利不少于10000 元的概率是多少?乍一看, 很难知道保险公司是否盈利, 但经过一系列计算就可以得知保险公司几乎是必定盈利的!设X 表示参保的3000 人中一年内死亡的人数, 则X 可能的取值有0,1,2,3…3000, 且X 服从B(3000 ,0.002)。
用A 表示“保险公司盈利”, B表示“保险公司营利大于10000 元”由题可知A={3000×12- 2000X>0}={X<18},B={3000×12-2000X≥10000}={X≤13}. P(A)= P{X<18}==0.999;P(B)=P{x<=13}= 0.9964;以上结果表明, 保险公司盈利的概率高达0.999944, 而盈利在10000元以上的概率也为0.996408。