第12章 模拟电子电路设计与分析
- 格式:pdf
- 大小:1.60 MB
- 文档页数:40
《模拟电路》课程教学大纲一、课程说明(一)课程名称: 模拟电路;所属专业: 微电子科学与工程专业;课程性质: 专业基础课;学分: 4学分。
(二)课程简介、目标与任务;《模拟电路》是微电子专业本科生在电子技术方面入门性质的基础课, 具有自身的体系和很强的实践性。
本课程通过对常用半导体器件、模拟电路的学习, 使学生获得模拟电子技术方面的基本知识、基本理论和基本技能, 为深入学习电子技术及其在专业中的应用打下基础。
(三)先修课程要求, 与先修课与后续相关课程之间的逻辑关系和内容衔接;本课程应开设在高等数学、电路分析(未开设)课程之后, 是微电子专业本科生系统学习电子技术知识的基础课程之一。
也是后续数字电路、模拟电路实验、集成电路分析与设计等课程的先修课程。
(四)教材: 《模拟电子技术基础》童诗白华成英主编(第四版)高等教育出版社参考书目: 《模拟电子技术基础简明教程》清华大学电子学教研室编高等教育出版社《电于技术基础》(模拟部分) 康华光主编高等教育出版社《电子线路线性部分》谢嘉奎主编高等教育出版社二、课程内容与安排第一章常用半导体元器件(要求列出章节名)第一节半导体基础知识第二节半导体二极管第三节双极型晶体管第四节场效应管第五节晶闸管(一)教学方法与学时分配课堂教学, 8学时(二)内容及基本要求主要内容: 半导体基础知识;二极管的结构、伏安特性及主要参数;双极型晶体管的结构、伏安特性及主要参数;场效应管的结构、伏安特性及主要参数;晶闸管的结构、伏安特性及主要参数。
【重点掌握】: PN结特性及PN结方程;二极管、晶体管、场效应管、晶闸管的伏安特性。
【了解】: 二极管、晶体管、场效应管、晶闸管的结构及主要参数。
【难点】: 二极管、晶体管、场效应管、晶闸管的伏安特性。
第二章基本放大电路第一节放大电路的组成及工作原理第二节放大电路的分析方法第三节放大电路静态工作点的稳定第四节共集电极放大电路和共基极放大电路第五节场效应管放大电路(一)教学方法与学时分配课堂教学, 12学时(二)内容及基本要求主要内容: 放大的概念;放大电路的组成及工作原理;放大电路的性能指标;放大电路的分析方法:直流通路与甲流通路, 图解法, 微变等效电路法;放大电路静态工作点的稳定;晶体管共集电极放大电路和共基极放大电路;场效应管放大电路。
电子电路分析与设计模拟电子技术第四版课程设计简介本课程设计旨在通过设计一个简单的电子电路,掌握电子电路分析与设计模拟电子技术的基本知识,加深对电子电路的理解和应用。
本文将介绍电路设计的背景、设计原理和具体步骤,以及实验过程中的注意事项和实验结果的分析与总结。
背景在现代电子技术领域,电路设计是非常重要的一环。
一个成功的电路设计可以直接带来性能卓越、成本低廉、功耗低的产品,同时也可以减少故障率,提高生产效率。
因此,学习电子电路分析与设计模拟电子技术具有重要意义。
设计原理本课程设计使用了基于非反相放大器的电流源镜像电路,实现对恒流源的输出,并将其应用在光强测量电路中。
该电路的基本原理是通过电流源镜像电路中的测量电阻、反馈电阻和输出电阻,控制整个电路中的电流流动,从而实现对光信号的测量和放大。
设计步骤第一步:原理分析首先,根据电路设计原理,确定电路中所需使用的器件参数,如电阻、电容和放大器等。
第二步:电路设计根据电路分析和电路原理分析,设计出电路的具体构造和连接方式,绘制出电路原理图,并确定每个器件的具体参数。
第三步:电路仿真在仿真软件中,进行电路仿真,进行电路参数的分析和测试,发现问题并进行修正和优化。
通过仿真,选择最优的器件和电路拓扑结构。
第四步:电路实验按照最终确定的电路原理图,用示波器进行电路测试和实验。
记录并分析测试数据和实验结果,根据实验结果进行进一步的优化和改进。
注意事项在进行电路实验过程中,需要注意以下几点:•保证实验环境安全,不要使用损坏或破损的设备和器件;•严格遵守电路实验步骤和说明,不要私自更改电路连接方式;•在使用示波器进行电路测试时,需要注意合理调节示波器参数,以防止对电路产生影响。
实验结果通过设计和实验,本课程设计成功地实现了基于非反相放大器的电流源镜像电路的搭建和光强测量电路的应用。
经过实验和数据分析,发现电路实验结果符合预期,证明了电路设计方案的准确性和可行性。
总结通过本次电子电路分析与设计模拟电子技术第四版课程设计,加深了对电子电路分析与设计的理解和掌握。
目 录第1章 绪 论1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 运算放大器2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 二极管及其基本电路3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 双极结型三极管及放大电路基础4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 场效应管放大电路5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 模拟集成电路6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 反馈放大电路7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 功率放大电路8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 信号处理与信号产生电路9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 直流稳压电源10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 电子电路的计算机辅助分析与设计第1章 绪 论1.1 复习笔记一、电子系统与信号电子系统指若干相互连接、相互作用的基本电路组成的具有特定功能的电路整体。
信号是信息的载体,按照时间和幅值的连续性及离散性可把信号分成4类:①时间连续、数值连续信号,即模拟信号;②时间离散、数值连续信号;③时间连续、数值离散信号;④时间离散、数值离散信号,即数字信号。
二、信号的频谱任意满足狄利克雷条件的周期函数都可展开成傅里叶级数(含有直流分量、基波、高次谐波),从这种周期函数中可以取出所需要的频率信号,过滤掉不需要的频率信号,也可以过滤掉某些频率信号,保留其它频率信号。
幅度频谱:各频率分量的振幅随频率变化的分布。
相位频谱:各频率分量的相位随频率变化的分布。
三、放大电路模型信号放大电路是最基本的模拟信号处理电路,所谓放大作用,其放大的对象是变化量,本质是实现信号的能量控制。
放大电路有以下4种类型:1.电压放大电路电路的电压增益为考虑信号源内阻的电压增益为2.电流放大电路电路的电流增益为考虑信号源内阻的电压增益为3.互阻放大电路电路的互阻增益为4.互导放大电路电路的互导增益为四、放大电路的主要性能指标1输入电阻:输入电压与输入电流的比值,即对输入为电压信号的放大电路,R i越大越好;对输入为电流信号的放大电路,R i越小越好。
模拟电子电路及技术基础课程设计一、学科背景模拟电子电路及技术是电子信息工程、计算机科学与技术等专业中非常重要的基础课程,它是电路原理和电子技术的关键知识点,广泛应用于模拟电子电路、系统和控制等领域。
本课程主要研究线性电路、非线性电路、反馈电路和振荡器等内容,以及相关技术应用。
二、课程设计目标该课程设计的目标是通过大量实验操作及理论知识的学习,使学生能够掌握模拟电子电路的基本理论知识和技能,能够独立设计和分析电路,掌握模拟电子电路在电子、通信等领域的应用,培养学生的科学创新能力和实践能力。
三、课程设计内容本课程设计主要有以下内容:1. 线性电路实验研究和了解理想电子元器件、电路分析方法以及电路设计思想;通过电阻、电容与电感等元器件的组合实现模拟电子电路基础。
2. 非线性电路实验深入理解二极管、齐纳二极管和场效应管等元器件的工作原理,学习非线性电路基本特性,并利用非线性电路实现基本信号处理和调节电路。
3. 反馈电路实验详解反馈电路的组成及其类型,引导学生认识到反馈对电路性能的调节和提高,通过实验获得简单的反馈电路的基础知识和实践经验,掌握反馈电路的应用和设计。
4. 振荡器实验深入理解振荡器的产生原理和定义,了解振荡器的基本特点和各种结构形式,实验学习振荡器电路设计原理和实现方法。
四、课程设计考核考核方式包括实验内容、报告撰写及答辩,具体考核内容如下:1. 实验内容学生需要按时完成每个实验项目,实验过程需要记录实验现象、处理数据和数据分析等。
2. 报告撰写学生应按照课程设计要求,撰写完整、清晰、简明的实验报告,报告中需要包括实验目的、实验原理、实验设计、实验结果和结论等内容。
3. 答辩课程设计答辩是对学生实验能力以及课程学习成果的综合考核,要求学生在一定时间内对实验进行演示以及对设计过程和实验结果进行口头答辩和讲解。
五、结语模拟电子电路及技术基础课程设计是理论课到实践课的转化,非常重要和必要。
期望通过该课程设计,能够更好地培养学生的综合实践能力,同时也希望学生能够在实践中深化理论、激发创造力和提升开发能力。
模拟电路分析与设计第二版课程设计
项目简介
本课程设计旨在加深学生对于模拟电路分析与设计的理解和应用,
提高学生的实际动手操作能力和解决问题的能力。
课程设计主要包含
三个部分:模拟电路分析,模拟电路设计和实验验证。
通过本课程设计,学生将学会如何对模拟电路进行分析和设计,并能够将理论知识
应用到实际中去。
项目目标
本课程设计的目标如下:
1.深入了解模拟电路的基本概念,掌握模拟电路的分析和设
计方法。
2.学会使用常用的模拟电路元件和仪器设备,具备实践能力。
3.培养学生的实践动手能力,加强团队协作和交流,提高解
决问题的能力。
项目内容
第一部分:模拟电路分析
•基本电路定理(欧姆定律、基尔霍夫定律、环路定理、节点定理等)
•交流电路分析(交流电压与电流的基本关系、相位、参考方向、交流电路中的有源元件和无源元件)
1。
电子电路分析与设计2篇电子电路分析与设计第一篇:电子电路分析1.导言在现代科技中,电子电路是一个可以改变和控制电力行为的最基本和重要的元素。
电子电路包含众多不同类型的电子元件,如:电阻、电容、电感、二极管、晶体管、集成电路等等。
为了更好地学习和应用电子电路,我们需要学习、了解和分析电链路的各种性质和特点。
2.分析方法在电路分析中,我们通常使用基尔霍夫定律和欧姆定律来描述电路的特性和行为。
基尔霍夫定律包括电路中节点定律和电路中回路定律。
节点定律指出,一个电路中节点的代数和等于零。
回路定律指出,在一个电路中,所有回路中电势差之和等于零。
欧姆定律告诉我们电压和电阻之间的关系,电阻R等于电压V与通过电阻的电流I之比,也就是R=V/I。
3.电路元件至于电路元件,它们可以分为两类。
一个是被动元件,包括电阻、电容和电感。
这些被动元件不会引起电磁波的辐射或发生其他形式的能量转换。
另一类是主动元件,包括二极管、晶体管、场效应管和集成电路等。
这些主动元件可以控制电流并实现调制、放大等效果。
4.电路分析电路分析是电子电路学的核心内容之一。
电路分析的主要目的是计算电路中电压、电流和功率等重要参数。
通常使用基尔霍夫定律和欧姆定律等方法进行计算。
另外,在分析电路之前,我们还需要了解电路的网络拓扑结构、电路元件的特性和使用方法等重要信息。
5.总结总之,电路分析是电子电路学的基础,我们需要学习和掌握各种电路分析方法,了解电路元件功能、性质和使用方法,才能更好地应用电子电路,创造更多的技术应用和发明。
第二篇:电子电路设计1.导言电路设计是电子电路学的另一个重要分支。
电路设计的主要目的是设计能够完成特定功能的电路,例如放大器、振荡器和数字逻辑电路等。
电路设计需要掌握各种电路拓扑结构、元件特性和电路参数的影响等知识,才能满足实际应用的需求。
2.电路设计的基本步骤电路设计的基本步骤包括:1)明确定义电路的功能和性能要求;2)选择所需的元件和电路拓扑结构;3)计算电路参数并进行仿真和优化;4)制定电路的 PCB 布局和电路板;5)测试电路的性能并进行调整和优化。
《模拟电路教案》word版教案章节:一、模拟电路概述1.1 模拟电路的定义1.2 模拟电路的特点1.3 模拟电路的应用二、模拟电路基本元件2.1 电阻元件2.2 电容元件2.3 电感元件2.4 电压源和电流源三、模拟电路基本分析方法3.1 节点分析法3.2 回路分析法3.3 叠加分析法3.4 戴维南-诺顿定理四、模拟电路常见电路模块4.1 放大器4.2 滤波器4.3 振荡器4.4 模拟信号发生器五、模拟电路设计与仿真5.1 模拟电路设计流程5.2 仿真软件的选择与使用5.3 电路仿真的一般步骤5.4 仿真结果分析与优化《模拟电路教案》word版教案章节:六、放大器的设计与分析6.1 放大器的作用与分类6.2 放大器的特性指标6.3 晶体管放大器的设计与分析6.4 运算放大器的设计与分析七、滤波器的设计与分析7.1 滤波器的作用与分类7.2 滤波器的特性指标7.3 低通滤波器的设计与分析7.4 高通滤波器的设计与分析八、振荡器的设计与分析8.1 振荡器的作用与分类8.2 振荡器的特性指标8.3 晶体振荡器的设计与分析8.4 RC振荡器的设计与分析九、模拟信号发生器的设计与分析9.1 模拟信号发生器的作用与分类9.2 模拟信号发生器的特性指标9.3 正弦波发生器的设计与分析9.4 方波发生器的设计与分析十、模拟电路的测试与调试10.1 测试与调试的目的与方法10.2 测试仪器与设备的选择10.3 电路测试的一般步骤10.4 测试结果分析与调试《模拟电路教案》word版教案章节:十一、模拟电路在实际应用中的案例分析11.1 通信系统中的模拟电路应用11.2 音频设备中的模拟电路应用11.3 医疗设备中的模拟电路应用11.4 工业控制中的模拟电路应用十二、模拟电路的可靠性与稳定性12.1 影响模拟电路可靠性的因素12.2 提高模拟电路稳定性的方法12.3 电路保护与故障处理12.4 电路的长期维护与保养十三、模拟电路的现代设计方法13.1 集成电路设计基础13.2 数字模拟混合信号电路设计13.3 射频电路设计简介13.4 基于计算机辅助设计(CAD)的工具与应用十四、模拟电路教学实验与实践14.1 实验目的与要求14.2 实验设备与材料14.3 实验内容与步骤14.4 实验结果与分析十五、模拟电路课程设计15.1 课程设计的要求与流程15.2 课程设计选题与指导15.4 课程设计的评价与反馈重点和难点解析一、模拟电路概述:理解模拟电路的基本概念和特点,掌握模拟电路与数字电路的区别。
Chapter 1414.1 80(max) 4.5(max)56.25 mV o d io i v A v v v ==−=⇒=So(max)i rms v = ______________________________________________________________________________________14.2(a) 2 4.50.028125 mA 1604.5 4.5 mA 1L i i ==== Output Circuit 4.528 mA = 4.50.05625 V 80o i i v v v A −=−=⇒=−(b) 4.515 mA (min)300o o L L L v i R R R ≈==⇒=Ω______________________________________________________________________________________14.3 (1)2 V o v = (2)212.5 mV v = (3)4210OL A =× (4) 18 V v μ=(5)1000OL A =______________________________________________________________________________________14.4(a) ()42857.216.512012−=−=−=∞R R A CL 42376.211042857.22142857.215−=+−=CL A ()%0224.0%10042857.2142857.2142376.21−=×−−−− (b) ()634146.142.812012−=−=−=∞R R A CL 63186.1410634146.151634146.145−=+−=CL A ()%0156.0%100634146.14634146.1463186.14−=×−−−− ______________________________________________________________________________________14.5(a) (i) 90863.710291176.7191176.71028.647118.647144=×+=×⎟⎠⎞⎜⎝⎛+++=CL A (ii) %03956.0%10091176.791176.790863.7−=×− (b) (i) 84966.71091176.7191176.73=+=CL A (ii) %785.0%10091176.791176.784966.7−=×− ______________________________________________________________________________________14.6(a) 12091.151050005.1102110.15121241231212=⇒⎟⎠⎞⎜⎝⎛×+−=×⎟⎠⎞⎜⎝⎛++−=−−R R R R R R R R R R (b) 1160.1510512091.16112091.154−=×+−=CL A ______________________________________________________________________________________14.7()()5109991.890190900001.01×=⇒+=−OL OLA A ______________________________________________________________________________________14.8()()499911110002.01=⇒+=−=OL OLCL A A A ______________________________________________________________________________________14.9(a) ()()001.0121001.0121012±±=+=R R A 02.10979.2021.210max ==A 98.9021.2179.209min ==A So 02.1098.9≤≤A (b) 009.101002.11102.104max =+=A 969.91098.10198.94min =+=A So 009.10969.9≤≤A ______________________________________________________________________________________14.1010110012010011212and so that 111I L iL I i v v v v v v A R R R v v A v v v R R R R R −−=+=−=−⎛⎞+=++⎜⎟⎝⎠1vSo 01201211111I L i v v R R A R R R ⎡⎤⎛⎞=−+++⎢⎥⎜⎟⎝⎠⎣⎦ Then 012012(1/)11111CL I L i v R A v R A R R R −==⎡⎤⎛⎞+++⎢⎥⎜⎟⎝⎠⎣⎦ From Equation (14.20) for and L R =∞00R =02(1)1111L if i A R R R +=+⋅ a. For1 k i R =Ω 33(1/20)11111100201001100.05[0.01 1.0610]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+×or3 4.521111090.8 1100CL if if A R R ⇒=−+=+⇒=Ω b. For10 k i R =Ω 34(1/20)111111002010010100.05[0.01 1.610]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+× or 4.92CL A ⇒=−31111098.9 10100if if R R +=+⇒=Ω c. For100 k i R =Ω 35(1/20)1111110020100100100.05[0.01710]CL A −−=⎡⎤⎛⎞+++⎜⎟⎢⎥⎝⎠⎣⎦−=+×or 3 4.9651111099.8 100100CL if if A R R ⇒=−+=+⇒=Ω ______________________________________________________________________________________14.1121211111o CL i OL R R v A v R A R ⎛⎞+⎜⎟⎝⎠==⎡⎤⎛⎞++⎢⎥⎜⎟⎝⎠⎣⎦ For the ideal: 210.10150.002R R ⎛⎞+==⎜⎟⎝⎠0 ()(0.10)(10.001)0.0999ov actual =−= So 0.09995049.9510.0021(50)OL A ==+which yields 1000OLA = ______________________________________________________________________________________14.12From Equation (14.18) 211121111OL o o vf L o A R R v A v R R R ⎛⎞−−⎜⎟⎝⎠==⎛⎞++⎜⎟⎝⎠ Or 331131151011100(4.9999910)111 1.111011004.50449510o o v v v v ⎛⎞×−−⎜⎟−×⎝⎠=⋅=⎛⎞++⎜⎟⎝⎠=−×⋅1v ⋅ Now 11111i v v i K v R v −=≡Then 11i v v KR v −=1 which yields 111i v v KR =+ Now, from Equation (14.20) 3311510111011101001101005.001110(0.1)(0.01)45.154951.11K ⎡⎤+×+⎢⎥=+⎢⎥⎢⎥++⎢⎥⎣⎦⎡⎤×=+=⎢⎥⎣⎦Then ()()145.15495101452.5495i i v v v ==+We find31 4.50449510452.5495i o v v ⎡⎤=−×⎢⎥⎣⎦ Or 119.9536o vf i v A v ==− For the second stage,L R =∞ 332131111151011100 4.9504851011110011151049.6148511010011001(49.61485)(10)1497.1485o o o o v v K v v v v KR ⎛⎞×−−⎜⎟⎝⎠′′=⋅=−⎛⎞+⎜⎟⎝⎠⎡⎤⎢⎥+×≡+=⎢⎥⎢⎥+⎢⎥⎣⎦′===++1v ×⋅ Then 321 4.950485109.95776497.1485o o v v −×==−So 2(9.9536)(9.95776)99.12o vf vf iv A A v ==−−⇒= ______________________________________________________________________________________14.13a.10113120I i v v v v v R R R R −−++=+ (1) 0131223111I i i v v v R R R R R R R ⎡⎤++=+⎢⎥++⎣⎦00001020L d L v v A v v v R R R −−++= (2) or 010*******L dL A v v v R R R R R ⎡⎤++=+⎢⎥⎣⎦ 13I d i i v v v R R R ⎛⎞−=⋅⎜⎟+⎝⎠ (3)So substituting numbers:011110201040401020I v v v 1⎡⎤++=+⎢⎥+⎣⎦+ (1)or10[0.15833][0.025][0.03333]I v v v =+ 410(10)11110.540400.5d v v v ⎡⎤++=+⎢⎥⎣⎦ (2) or[][]()4013.0250.025210dv v =+×v ()11200.66671020I d v v v v −⎛⎞=⋅=⎜⎟+⎝⎠I v − (3)So[][]()()()4013.0250.0252100.6667I v v v =+×−1v (2) or []44013.025 1.33310 1.33310I v v =×−×v ) From (1):()(100.15790.2105I v v v =+ Then []()()44003403.025 1.33310 1.333100.15790.21052.107810 1.052410I I I v v v v v v =×−×+⎡⎤⎣⎦⎡⎤⎡⎤×=×⎣⎦⎣⎦or 0 4.993CL I v A v == To find:if R Use Equation (14.27) ()31210.50.5114010110.50.50.51104014040(40)(1.5125){(0.125)(1.5125)0.0003125}25I d I d i v v i v ⎛⎞++⎜⎟⎝⎠⎧⎫⎛⎞⎛⎞=+++−−⎨⎬⎜⎟⎜⎟⎝⎠⎝⎠⎩⎭=−v −or (1.5125){0.18875}25I I d i v =−v I Nowand(20)d I i I v i R i ==1(20)I I v v i =− So(1.5125)[(20)][0.18875]25(20)[505.3](0.18875)I I I I I i v i i i v =−⋅−= or 2677 k I I v i =Ω Now 102677 2.687 M if if R R =+⇒=ΩTo determine 0:f R Using Equation (14.36)30200111110400.5111020L f i A R R R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⋅=⋅′⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦or0 3.5 f R ′=Ω Then 0 1 k f R =ΩΩ0 3.49 f R ⇒=Ωb. Using Equation (14.16) 35(10)(0.05)%10CL CL CL CL dA dA A A ⎛⎞=−⇒=−⎜⎟⎝⎠ ______________________________________________________________________________________14.14(a)(b) (i)()o O I OL O i O I R A R υυυυυ−−=− ⎟⎟⎠⎞⎜⎜⎝⎛++=+o OL o iO o I OL i IR A R R R A R 11υυυ ⎟⎟⎠⎞⎜⎜⎝⎛×++=⎟⎟⎠⎞⎜⎜⎝⎛×+110511101110510133O I υυ()(33100011.5100001.5×=×O I υυ) 9998.0=IO υυ (ii) ()ix o x OL x x R V R V A V I +−−= 101110511113+×+=++==i o OL of x x R R A R V IΩ≅2.0of R______________________________________________________________________________________14.151011210121201040111201040201040I I I I v v v v v v v v v v −−−+=⎡⎤++=++⎢⎥⎣⎦ andso that 00L v A =−1v 010L v v A =−Then 1203200120000117(0.05)(0.10)4040210[2.5087510]1.993 3.9862 1.9930.352I I I I v v v v v v v v v %v v −⎧⎫⎛⎞+=−+⋅⎨⎬⎜⎟×⎝⎠⎩⎭=−×⇒=−−ΔΔ−=⇒= ______________________________________________________________________________________14.16224040.840105B v v v ⎛⎞⎛⎞===⎜⎟⎜⎟+⎝⎠⎝⎠2v (1) 011040A A v v v v −−= 011110401040A v v v ⎛⎞+=+⎜⎟⎝⎠ (2)10(0.1)(0.025)(0.125)A v v v += 000()L d L B A v A v A v v ==−(3)or002020020[0.8]0.80.8L A A LA L v A v v v v v A v v v A =−−=−⇒=−Then 01020120320021(0.1)(0.025)(0.125)0.80.125(0.1)(0.1)0.02510[2.512510]3.98010.01990.49754L d d d v v v v A v v v v v A v v A %A −⎡⎤+=−⎢⎥⎣⎦⎡⎤−=−+⎢⎥⎣⎦=−×⇒==−Δ⇒=⇒ ______________________________________________________________________________________14.17a. Considering the second op-amp and Equation (14.20), we have 211111001010.101100.1(0.1)(11)10.1if R ⎡⎤⎢⎥+=+⋅=+⎢⎥⎢⎥+⎢⎥⎣⎦ So 20.0109 k if R =ΩThe effective load on the first op-amp is then 120.10.1109 k L if R R =+=Ω Again using Equation (14.20), we have 11100111110.0170.11090.101110111.01710.11091if R ++=+⋅=+++ so that 99.1 if R =Ω b. To determine 0:f RFor the first op-amp, we can write, using Equation (14.36) 020101111100401111||10||L f i A R R R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⋅=⋅⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦ which yields010.021 k f R =Ω For the second op-amp, then020*******()||11000.1011(0.121)||10L f f i A R R R R R R ⎡⎤⎢⎥⎢⎥=⋅⎢⎥+⎢⎥+⎣⎦⎡⎤⎢⎥⎢⎥=⋅⎢⎥+⎢⎥⎣⎦ or018.4 f R =Ω c. To find the gain, consider the second op-amp.0122202()0.10.1d d d i v v v v v R −−−−+= (1) 010221110.10.1100.10.1d v v v ⎛⎞+++=−⎜⎟⎝⎠ or 01202(10)(20.1)(10)d v v v +=−02020220()00.1L d d v A v v v R −−−+= (2) 0202202210010110.10.1(11)(90)0d d v v v v v ⎛⎞−−+⎜⎟⎝⎠−==−or 202(0.1222)d v v = Then Equation (1) becomes010202(10)(0.1222)(20.1)(10)v v v += or0102(1.246)v v =− Now consider the first op-amp.1110()11I d d d i v v v v v R −−−−+=1 (1) 10111(1)(1)1101I d v v v ⎛⎞+++=−⎜⎟⎝⎠1(1)(2.1)(1)v v v +=− or101I d 010*******()00.11091L d d v v A v v v R −−−++= (2) 011011111100100.11091111(11.017)(99)0d d v v v v ⎛⎞⎛++−−=⎜⎟⎜⎝⎠⎝−=⎞⎟⎠−or 101(0.1113)d v v = Then Equation (1) becomes0101(1)(0.1113)(2.1)I v v v += or01(1.234)I v v =− We had0102(1.246)v v =− So02(1.246)(1.234)I v v = or 020.650I v v =d. Ideal021Iv v = So ratio of actual to ideal0.650.=______________________________________________________________________________________14.18(a) For the op-amp. 60310L dB A f ⋅= 6341050 Hz 210dB f ==× For the closed-loop amplifier. 631040 kHz 25dB f == (b) Open-loop amplifier.444310A f f ==×=10 Closed-loop amplifier330.2524.255dB dB f f f f −===⇒______________________________________________________________________________________14.19dB,100=o A 510=⇒o A dB,38=A 43.79=A Then 2451011043.79⎟⎟⎠⎞⎜⎜⎝⎛+=PD f 94.743.79101054=⇒≅PD PD f f Hz Hz()()551094.794.710×==GBW ______________________________________________________________________________________14.20(a) 11151501112=⎟⎠⎞⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛+=R R A CLO kHz()10911102.1336=⇒=×=−−dB dB T f f f (b) ()()()()⎥⎦⎤⎢⎣⎡±±+=05.011505.011501CLO A ()05.1225.145.1571max =+=CLO A ()05.1075.155.1421min =+=CLO A Then05.1205.10≤≤CLO AkHz ()6.9905.12102.1336=⇒=×=−−dB dB T f f f kHz()4.11905.10102.1336=⇒=×=−−dB dB T f f f Then kHz4.1196.993≤≤−dB f ______________________________________________________________________________________14.21The open loop gain can be written as 006()11510L PD A A f f f j j f =⎛⎞⎛⎞+⋅+⋅⎜⎟⎜⎟×⎝⎠⎝⎠ where 50210.A =× The closed-loop response is 001L CL LA A A β=+ At low frequency, 552101001(210β×=+×) So that39.99510.β−=× Assuming the second pole is the same for both the open-loop and closed-loop, then116tan tan 510PD f f f φ−−⎛⎞⎛⎞=−−⎜⎟⎜⎟×⎝⎠⎝⎠ For a phase margin of80 ,°100.φ=−°So 1610090tan 510f −⎛⎞−=−−⎜⎟×⎝⎠ or58.81610 Hz f =× Then051L A == or 558.81610 1.969610PD f ×≅× or 4.48 HzPD f = ______________________________________________________________________________________14.22(a) 1st stage33(10) 1 100dB dB f MHz f kHz −−=⇒= 2nd stage33(50) 1 20dB dB f MHz f kHz −−=⇒= Bandwidth of overall system20 kHz ≅(b) If each stage has the same gain, so 250022.36K K =⇒= Then bandwidth of each stage33(22.36) 1 44.7dB dB f MHz f kHz −−=⇒= ______________________________________________________________________________________14.23(a) 9978.91051110.101141212−=×+−=⎟⎠⎞⎜⎝⎛++−=O CLO A R R R R A kHz()033.1509978.9105.1336=⇒=×=−−dB dB T f f f (b) ()34.9999978.93−=−=CLO A At ; dB f −364.706234.999==⇒CL AThen 323310033.150134.99964.706⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛×+=−dB f 49.7664.70634.99910033.1501323233=⇒⎟⎠⎞⎜⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛×+−−dB dB f f kHz ______________________________________________________________________________________14.24466333(510)1020 (25)1040 1PD PD dB dB vov v dB f f Hzf f kHzA A A fj f −−−×=⇒=⇒==⇒=+ At 30.520 dB f f k −==Hz22.36v AAt 3280 dB f f k −==Hz11.18v A = ______________________________________________________________________________________14.25 36(2010)1050vf vf MAX MAX A A ×⋅=⇒= ______________________________________________________________________________________14.26(a) ()159521052max 6max =⇒×==f V SR f PO ππkHz (b) ()5.5305.12105max 6max =⇒×=f f πkHz (c) ()99.14.02105max 6max =⇒×=f f πMHz ______________________________________________________________________________________14.27a. Using Equation (14.55), 6038102(25010)P V π×=× or 0 5.09 V P V =b.Period 6311410 s 25010T f −===××One-fourth period 1 sμ= 00Slope 8 V/s 18 VP P V SR s V μμ===⇒= ______________________________________________________________________________________14.28 PO V SR f π2max = V/s()()531054.71012102×=×=πSR Or V/754.0=SR μs______________________________________________________________________________________14.29(a) 0.521063.0102063max =⇒×=×=PO POV V f πV (b) ()87.231020210336=××=πPO V V ______________________________________________________________________________________14.30For input (a), maximum output is 5 V. 1 V/μs S R =soFor input (b), maximum output is 2 V.For input (c), maximum output is 0.5 V so the output is______________________________________________________________________________________14.31 For input (a),01max 3 V.v =Then02max 3(3)9 V v ==For input (b),01max 1.5 V.v =Then()02max 31.5 4.5V v ==______________________________________________________________________________________14.32111exp ,BE S T V I I V ⎛⎞=⎜⎟⎝⎠ 222exp BE S T V I I V ⎛⎞=⎜⎟⎝⎠ Want so12,I I = 1411214212510(1)exp 1510(1)exp (1)exp (1)BE T BE T BE BE T V x V I I V x V V V x x V −−⎛⎞×+⎜⎟⎝⎠==⎛⎞×−⎜⎟⎝⎠⎛⎞−+=⎜⎟−⎝⎠Or 211exp exp 10.0025exp 1.100.026OS BE BE T T V V V x x V ⎛⎞⎛−+==⎜⎟⎜−⎝⎠⎝⎛⎞==⎜⎟⎝⎠V ⎞⎟⎠Now 1(1)(1.10)x x +=−⇒ 0.0476 4.76%x =⇒______________________________________________________________________________________14.33(a) Balanced circuit, A154105−×=S I (b) From Eq. (14.62), 51=CE υV, 4.42.16.52=−=CE υV⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⋅=++802.111204.41806.011205143S S I I()()015.1036667.10075.1041667.143⋅=S S I I 1544310939.40123.1−×=⇒=S S S I I I A (c) 51=CE υV, 1.35.26.52=−=CE υV ⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⋅=++805.211201.31806.011205143S S I I()()03125.1025833.10075.1041667.143⋅=S S I I 1544310811.403937.1−×=⇒=S S S I I I A ______________________________________________________________________________________14.34μ150=n K A/V 2()()μx x x K n 30011501150=−−+=ΔA/V2 ⎟⎟⎠⎞⎜⎜⎝⎛Δ=n n n Q OS K K K I V 221()01837.08165.015030015022002110153=⇒=⎟⎠⎞⎜⎝⎛=×−x x x ______________________________________________________________________________________14.35(a) V()()3310603001021030−−×±−=×±−=O υ So 240.0360.0−≤≤−O υV (b) V()06.0310*******±−=×±−=−O υ So 94.206.3−≤≤−O υ V______________________________________________________________________________________14.36()2sin 2530±−=t O ωυmV06.0sin 75.0±−=t O ωυVSo ()(06.0sin 75.006.0sin 75.0)+−≤≤−−t t O ωυω V______________________________________________________________________________________14.373840.510510 10I A −−×==×Also 01i o o dV I I C V Idt t dt C C =⇒==∫⋅Then 836510511010t t s −−×=⇒=×0______________________________________________________________________________________14.38(a) (31010011±⎟⎠⎞⎜⎝⎛+=O υ) mV, 33331≤≤−O υmV ()33310502±±⎟⎠⎞⎜⎝⎛−=O υ mV, 1801802≤≤−O υmV (b) ()()310111±=O υ mV, 143771≤≤⇒O υmV()730314352−=+−=O υmV()37037752−=−−=O υmVSo 37.073.02−≤≤−O υV(c) ()()3100111±=O υ mV133.1067.11≤≤O υV()68.5003.0133.152−=+−=O υV()32.5003.0067.152−=−−=O υVSo 32.568.52−≤≤−O υV______________________________________________________________________________________14.39 due to 0v I v 01(0.5)10.9545 V 1.1v ⎛⎞=+=⎜⎟⎝⎠ Wiper arm at (using superposition) 10 V,V +=151154||0.0909(10)(10)||0.0909100.090R R v R R R ⎛⎞⎛⎞==⎜⎟⎜⎟++⎝⎠⎝⎠= Then 011(0.090)0.0901v ⎛⎞=−=−⎜⎟⎝⎠Wiper arm in center, and10v =020v = Wiper arm at10 V,V −=−10.090v =− So030.090v = Finally, total output (from superposition)0:v Wiper arm at,V + 00.8645 Vv = Wiper arm in center, 00.9545 V v = Wiper arm at,V − 0 1.0445 V v = ______________________________________________________________________________________14.40 a.120.5||250.490 k R R ′′===Ω or 12490 R R ′′==Ωb. From Equation (14.75), 6114621412510(0.026) ln (0.125)21012510(0.026) ln (0.125)2.210R R −−−−⎛⎞×′+⎜⎟×⎝⎠⎛⎞×′=+⎜⎟×⎝⎠12210.586452(0.125)0.583974(0.125)0.002478(0.125)()R R R R ′′+=+′′=−So210.0198 k 19.8 R R ′′−=Ω⇒Ω Then 2121(1)0.0198(1)(0.5)(1)(50)(0.5)(50)0.0198(0.5)(1)(50)(0.5)(50)25(1)250.019850.5500.550(0.550)(2525)(25)(50.550)0.0198(50.550)(0.550)x x x xR x R R R R x R R xR x x x x x x x xx x x x x x −×−=+−+−−=+−+−−=−++−−−=−+{}{}{}{}22222250.50.5505050.5500.019825.252525252500250.50.019825.25250025000.50.019998 1.98 1.981.98 2.980.4802x x x x x x x x x x x x x x x x x −+−−+=+−−−=+−−=+−−+==So 0.183x = and 10.81x −=7ΩΩ ______________________________________________________________________________________14.411122||150.5||150.4839 k ||350.5||350.4930 k R R R R ′===′=== From Equation (14.75), 121122341221121112222211222(0.026) ln (0.026) ln (0.026) ln (0.026) ln 1(0.026) ln (0.4930)1(0.9815)C C C C S S C C C C C C C C C C C C C C i i i R i R I I i i R i R i i i R i R i i R i i i i i ⎛⎞⎛⎞′′+=+⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞′′=−⎜⎟⎝⎠′⎛⎞⎡⎤′=−⋅⎜⎟⎢⎥′⎝⎠⎣⎦⎛⎞=−⎜⎟⎝⎠⎡⎤⎛⎞⎢⎥⎜⎟⎝⎠⎣⎦ By trial and error: 1252 A C i μ= and 2248 A C i μ=or 12 1.0155C C i i = ______________________________________________________________________________________14.42(a) ()()()2.010********=×=−A O μυV Insert resistor3R ()()09.92020011022.03362=⇒⎟⎠⎞⎜⎝⎛+×−=−=−R R A O μυk Ω (b) ()()()16.010200108.0368.0=××=−A O μυV ()()09.29202001105.016.03365.0=⇒⎟⎠⎞⎜⎝⎛+×−=−=−R R A O μυk Ω ______________________________________________________________________________________14.43(a) V ()()3.010*********−=××−=−=−R I B O υ(b) ()5.03.002.015150−=−−=O υV (c) ()1.03.002.015150−=−−−=O υV (d) ()3.13.01.015150−=−−=O υV ______________________________________________________________________________________14.44(a) V ()()15.010250106.036=××=−O υ(b) ()()478.015.0008.041=+=O υV(c) ()()0065.015.00035.041=+−=O υV(d) ()()15.0sin 205.015.0sin 005.041+=+=t t O ωωυ (V)______________________________________________________________________________________14.45a.For 2 1 A,B I μ= then()(6401010v −=−) or00.010 Vv =− b. If a 10 resistor is included in the feedback loop k ΩNow021(10)(10)0B B v I I =−+= Circuit is compensated if12.B B I I =______________________________________________________________________________________14.46From Equation (14.83), we haveΩ 020S v R I = where and 240 k R =0 3 A.S I μ= Then()(3604010310v −=××) or 00.12 V v = ______________________________________________________________________________________14.47a. Assume all bias currents are in the same direction and into each op-amp.()()()6501101100 k 10100.1 V B v I v −=Ω=⇒=Then ()()()()()(020******* k 0.15105100.50.05B v v I −=−+Ω=−+×=−+)or 020.45 V v =− b. Connect resistor to noninverting terminal of first op-amp, and310||1009.09 k R ==ΩΩ resistor to noninverting terminal of second op-amp.310||508.33 k R ==______________________________________________________________________________________14.48a. For a constant current through a capacitor. 001 t v I C =∫dt or 60060.110(0.1)10v t v −−×=⋅⇒=t b.At10 s,t =0 1 V v = c. Then 1240010010(10)10v t v −−−×=⋅⇒=t At10 s,t =0 1 mV v = ______________________________________________________________________________________14.49(a) V()()15.010********=××=−O υ 15.02=O υV ()()()09.010*******.02020363−=××+−=−O υV (b) 33.85010==A R k Ω 102020==B R k Ω(c) V()()015.0103.01050631±=××±=−O υ 015.02±=O υVV()()021.0015.0103.01020633±=±××±=−O υ______________________________________________________________________________________14.50a. Using Equation (14.79),Circuit (a),()()()()63630500.81050100.8102510150v −−⎛⎞=××−××+⎜⎟⎝⎠ or 00v = Circuit (b),()()()()636302500.81050100.81010150410 1.6v −−−⎛⎞=××−×+⎜⎟⎝⎠=×− or 0 1.56 V v =− b. Assume 10.7 AB I μ= and 20.9 A,B I μ= then using Equation (14.79): Circuit (a),()()()()63630500.71050100.91025101500.0350.045v −−⎛⎞=××−××+⎜⎟⎝⎠=− or00.010 V v =−Circuit (b), ()()()()63660500.71050100.910101500.035 1.8v −−⎛⎞=××−×+⎜⎟⎝⎠=− or 0 1.765 Vv =−______________________________________________________________________________________14.51(a) For : OS V ()333101001±=±⎟⎠⎞⎜⎝⎛+=O υmV For : B I ()()()043.010*******.0max 36=××=−O υ V()()()037.010*******.0max 36=××=−OυVSo 764≤≤O υmV(b) For : OS V 33±=O υmV For : VOS I ()()006.010*******.036±=××±=−O υSo 3939≤≤−O υmV(c) ()039.02.0101001±⎟⎠⎞⎜⎝⎛+=O υ So 239.2161.2≤≤O υV______________________________________________________________________________________14.52a. 2(15)0.010 V i i R R R ⎛⎞=⎜⎟+⎝⎠ 22150.00066671515(10.0006667)0.0006667 R R =+−= Then 222.48 M R =Ωb.11||15||10 6 k i F R R R R ==⇒=Ω ______________________________________________________________________________________14.53a. Assume the offset voltage polarities are such as to produce the worst case values, but the bias currents are in the same direction.Use superposition:Offset voltages 010********||1(10)110 mV ||1050||(5)(110)1(10)10||610 mV v v v v ⎛⎞=+==⎜⎟⎝⎠⎛⎞=++⎜⎟⎝⎠⇒=Bias Currents: 6301(100 k )(210)(10010)0.2 V B v I −=Ω=××= Then6302(5)(0.2)(210)(5010)0.9 V v −=−+××=− Worst case: is positive and is negative, then01v 02v 010.31 V v = and 021.51 V v =−b. Compensation network:If we want20 mV and 10 V 8.33(10)0.0208.33B B C C R V V R R R ++⎛⎞==⎜⎟+⎝⎠⎛⎞=⎜⎟+⎝⎠ or 4.15 M C R ≅Ω______________________________________________________________________________________14.54(a) Offset voltage: ()122105011±=±⎟⎠⎞⎜⎝⎛+=O υmV 142122±=±±=O υmV ()()()16221220203±=±+±⎟⎠⎞⎜⎝⎛−=O υmV Bias current:V()()0105.010501021.0361=××=−O υ or V ()()0095.010501019.0361=××=−O υ 12O O υυ= ()()()()0042.010201021.0113613+−=××+−=−O O O υυυor()()0038.010201019.013613+−=××+−=−O O O υυυ By superposition5.225.21≤≤−O υmV5.245.42≤≤−O υmV7.103.223≤≤−O υmV(b) Bias currents:()()()110501002.010*******±=⇒××±=×±=−O OS O I υυmV()()()4.010201002.010*******±=⇒××±=×±=−O OS O I υυmVBy superposition: ()4.02213±±±=O O υυ13131≤≤−O υmV15152≤≤−O υmV4.174.173≤≤−O υmV______________________________________________________________________________________14.55For circuit (a), effect of bias current:390(5010)(10010) 5 mV v −=××⇒ Effect of offset voltage 050(2)1 4 mV 50v ⎛⎞=+=⎜⎟⎝⎠ So net output voltage is09 mV v = For circuit (b), effect of bias current:Let then from Equation (14.79),2550 nA,B I =1450 nA,B I = 93960250(45010)(5010)(55010)(10)1502.2510 1.1v −−−⎛⎞=××−×+⎜⎟⎝⎠=×− or0 1.0775 V v =− If the offset voltage is negative, then0(2)(2)4mV v =−=− So the net output voltage is 0 1.0815 Vv =− _____________________________________________________________________________________14.56a. At so the output voltage for each circuit is25C,T =°0 2 mV S V = 0 4 mV v = b. Forthe offset voltage for is 50C,T =° 0 2 mV (0.0067)(25) 2.1675 mV S V =+= so the output voltage for each circuit is 0 4.335 mVv = ______________________________________________________________________________________14.57 a. At then25C,T =°0 1 mV,S V = 010150(1)1 6 mV 10v v ⎛⎞=+⇒=⎜⎟⎝⎠and 020********(1)120206(4)(1)(4)28 mV v v v ⎛⎞⎛⎞=+++⎜⎟⎜⎟⎝⎠⎝⎠=+⇒= b. Atthen 50C,T =°01(0.0033)(25) 1.0825 mV,S V =+= 0101(1.0825)(6) 6.495 mV v v =⇒=and 02(6.495)(4)(1.0825)(4)v =+ or 0230.31 mVv = ______________________________________________________________________________________14.580025C;500 nA,200 nA50C,500 nA (8 nA /C)(25C)700 nA200 nA (2 nA /C)(25C)250 nA B S B S I I I I °==°=+°°==+°°= a. Circuit (a): For ,B I bias current cancellation, 00v =Circuit (b): For ,B I Equation (14.79), 93960050(50010)(5010)(50010)(10)1500.025 1.000.975 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=− b. Due to offset bias currents.Circuit (a): 930(20010)(5010)0.010 V v −=××⇒=0vCircuit (b): 21Let 600 nA400 nA B B I I == Then93960050(40010)(5010)(60010)(10)1500.020 1.20 1.18 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=−c. Circuit (a): Due to ,B I 0v = Circuit (b): Due to ,B I93960050(70010)(5010)(70010)(10)1500.035 1.40 1.365 V v v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=−Circuit (a): Due to 0,S I930(25010)(5010)0.0125 V v v −=××⇒=0Circuit (b): Due to0,S I 21Let 825 nA575 nA B B I I == Then 93960050(57510)(5010)(82510)(10)1500.02875 1.65 1.62 Vv v −−⎛⎞=××−×+⎜⎟⎝⎠=−⇒=− ______________________________________________________________________________________14.590025C; 2 A,0.2 A 50C, 2 A (0.020 A /C)(25C 2.5 A 0.2 A (0.005 A /C)(25C)0.325 A B S B S I I I )I μμμμμμμμ°==°=+°°==+°°= a. Due to :B I (Assume bias currents into op-amp). 630101(50 k )(210)(5010)0.10 VB v I v −=Ω=××⇒= 020*********(60 k )(50 k )12020(0.1)(4)(210)(6010)(210)(6010)4B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−××3 or020.12 V v = b. Due to0:S I1121st op-amp. Let 2.1 A2nd op-amp. Let 2.1 A1.9 A B B B I I I μμμ===6301101(50 k )(2.110)(5010)0.105 V B v I v −=Ω=××⇒= 020112636360601(60 k )(50 k )12020(0.105)(4)(2.110)(6010)(1.910)(5010)(4)B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.166 V v =c. Due to :B I 63010101026363(2.510)(5010)0.125 V60601(60 k )(50 k )12020(0.125)(4)(2.510)(6010)(2.510)(5010(4)B B v v v v I I −−=××⇒=⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.15 V v =Due to0:S I12Let 2.625 A2.3375 A B B I I μμ== 6301101(50 k )(2.662510)(5010)1.133 V B v I v −=Ω=××⇒= 020112636360601(60 k )(50 k )12020(0.133)(4)(2.662510)(6010)(2.337510)(5010)(4)B B v v I I −−⎛⎞⎛⎞=++Ω−Ω+⎜⎟⎜⎟⎝⎠⎝⎠=+××−×× or 020.224 Vv = ______________________________________________________________________________________14.60(a) 0.51050==d A For common-mode, 21I I υυ=From Chapter 9, 12431211R R R R R R A cm −⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛+= If , ()75.50015.1502==R ()85.9015.01101=−=R, ()85.9015.01103=−=R ()75.50015.1504==R Then 610046.515228.519409.115228.685.975.5075.5085.9185.975.501−×=−=−++=cm A If , ()15.10015.1103==R ()25.49015.01504=−=R Then 051268.015228.520609.115228.685.975.5025.4915.10185.975.501−=−=−++=cm A If , 25.492=R 15.101=R Then 04877.085222.419409.185222.515.1025.4975.5085.9115.1025.491+=−=−++=cm A Now ()8.39051268.05log 20min 10=⎟⎠⎞⎜⎝⎛=dB CMRR dB (b) , ()5.5103.1502==R ()70.997.0101==R, ()5.4897.0504==R ()3.1003.1103==R。
《模拟电子技术》课程教学大纲执笔人:王毅,张晓冬,周晖,王昕,张秀敏编写日期:2012年12月一、课程基本信息1.课程编号:94L116Q2.课程体系/类别:专业类/专业基础课,专业主干课3.学时/学分:64/44.先修课程:电路原理,大学物理等5.适用专业:电气工程及其自动化二、课程教学目标及学生应达到的能力本课程为电气工程及其自动化专业本科生的专业基础主干课。
本课程知识内容是从事电气工程领域研究和应用的必备知识内容。
学生在学完本课程后,应达到下列要求:1.清楚模拟电子电路的基本工作原理,掌握模拟电子电路的基本分析和设计方法;2.通过设计型模拟电子电路的实验,具备有工业控制或测量系统中故障分析、检测、以及设计的能力;3.通过模拟电子技术课程的理论学习与实验设计,进一步提高学生的工程素质。
三、课程教学内容和要求四、课程教学安排由于该课程是电气信息类专业的主干课,且是一门与实际联系较为紧密的课程,而且由于电子器件特性的非线性,致使其工作状态的多样性,学生入门比较难。
针对这种情况,应着重加强理论教学与实验教学联系的紧密性,并做好各个教学环节有针对性安排与策划。
1.课堂讲授对于大学生的教学,注重发挥学生的自主学习的积极性,课堂上重点对课程与课程之间的联系、章节与章节之间的联系为学生理清思路,加强对难点问题的剖析,加强对重点知识的训练,提高课堂效率与质量。
2.CAI辅助教学及启发教学对于像器件内部载流子的运动机理、静态工作点、反馈过程、振荡电路的起振等比较抽象的问题,适当地采用CAI辅助教学方式及启发教学方式。
3.习题课对于模拟电子电路中重要的分析计算部分,如微变等效电路的分析计算、运算放大电路的分析等部分,宜采用习题课的方式,巩固学生对于模拟放大电路分析方法的掌握,同时在习题课的算例中,可适当地增加一些实际系统中工作的模拟基本放大电电路的故障分析。
4.个性化教学个性化讲授内容,由各位教师自由发挥空间,展示自己的个性和特长,同时也有利于动态优化教学内容。
电子技术专业优质课模拟电子电路的设计与应用电子技术专业优质课:模拟电子电路的设计与应用一、引言在当今科技迅速发展的时代,电子技术的应用逐渐渗透到人们的生活和工作中。
模拟电子电路设计是电子技术专业中重要的一部分。
本文将重点介绍模拟电子电路的设计原理与应用,并通过实例加以说明,帮助读者更好地理解和运用该知识。
二、基础概念1. 什么是模拟电子电路模拟电子电路是指通过模拟信号进行处理和传输的电路。
与数字电子电路不同,模拟电路处理的是连续变化的信号,涉及到电压、电流、声音等连续量的处理。
2. 模拟电子电路的设计原则(1)合理的电路拓扑结构(2)选取适当的元件(3)合理选择工作点(4)尽可能减小功耗(5)考虑电路的可靠性和稳定性三、模拟电子电路设计步骤设计一个模拟电子电路需经过以下步骤:需求分析、电路拓扑设计、元件选取、工作点确定、性能测试、优化调整等。
四、模拟电子电路设计实例:放大电路的设计以放大电路为例,介绍模拟电子电路设计的实际应用。
1. 需求分析根据具体的需求,选择设计一个放大倍数较高的放大电路。
需考虑输入阻抗、输出阻抗、频率响应等因素。
2. 电路拓扑设计根据需求和所学的电路知识,可以选择相应的放大电路拓扑结构,如共射放大电路、共基放大电路等。
3. 元件选取根据实际需求,选取适当的放大管、电容、电阻等元件,并进行合理的布局。
4. 工作点确定通过计算和实验,确定放大管各极的电流和电压等参数。
5. 性能测试完成电路的搭建后,进行性能测试,如检测电路的放大倍数、频率响应等。
6. 优化调整根据性能测试结果,对电路进行优化和调整,以达到更好的工作效果。
五、模拟电子电路的应用模拟电子电路广泛应用于各个领域,如音频放大器、计算器、通信设备、医疗设备等。
1. 音频放大器模拟电子电路在音频放大器中的应用,可以增加音频信号的幅度,提供更好的音质。
2. 通信设备模拟电子电路在通信设备中的应用,可以实现信号的放大、调制、解调等功能,保证通信的稳定性和可靠性。