飞思卡尔8位单片机MC9S08JM60开发板实践教程
- 格式:pdf
- 大小:2.00 MB
- 文档页数:55
Freescale 8位单片机入门与实践第一章单片机概论(当前各公司单片机使用情况、发展情况、freescale单片机命名规则、开发步骤、CodeWarrior软件开发环境的安装要求和安装说明)第二章Freescale 8位单片机(特点、结构、存储器结构、CPU内寄存器,介绍MC68HC908QY4和GP32内部资源)第三章Freescale 8位单片机指令系统(汇编指令)(CodeWarrior使用、软件仿真)第四章复位、中断、系统配置、通用IO端口第五章CodeWarrior应用综述(在线调试、VisualTools的使用)第六章MC68HC908QY4在线编程开发系统(特点、硬件、监控方式、C语言)第七章定时器模块第八章AD、键盘中断模块(各个模块的使用及例程)第九章综合应用(C和汇编混合编程、程序,扩展应用)附录:1、存储器分配图2、寄存器及中断矢量表3、MC68HC08指令集4、MC68HC908QY4开发系统原理图参考书Motorola(Freescale)微控制器MC68HC08原理及其嵌入式应用刘慧银等编著清华大学出版社嵌入式应用技术基础教程王宜怀刘晓升编著清华大学出版社单片机嵌入式应用的在线开发方法邵贝贝编著清华大学出版社mc68hc908qy4sm_simplified_Chinese.pdfMC68HC908QY4.pdfMC68HC908GP32.pdf前言飞思卡尔(前身为摩托罗拉公司半导体产品事业部)在微电子产品领域拥有50年的悠久历史,为全球的汽车、消费、工业、网络和无线市场生产半导体产品。
飞思卡尔总部位于德克萨斯州的奥斯汀,在全球超过25个国家拥有设计、生产和销售运营部门。
飞思卡尔是众多市场领域中的领导者,是世界上最大的微控制器类集成电路供应商,随着国内市场投资的增加,其产品得到越来越多的认同,尤其是移动通信、汽车电子、工业控制等环境恶劣的场所,其应用越多,因为它的产品抗干扰性能很强。
飞思卡尔8位单片机实用教程课程设计一、课程设计概述本次课程设计旨在让学生深入了解飞思卡尔8位单片机的基本原理和使用方法,掌握其应用开发技能,为自主研发嵌入式系统打下基础。
在设计过程中,学生可以自由选择项目主题,包括但不限于:•智能家居控制系统•电子秤设计•数码钟表设计•电子琴•LED矩阵显示屏•红外遥控器除了项目主题选择自由,学生也需要在设计过程中独立完成软硬件开发,并能够撰写设计报告并进行实验现场讲解。
二、课程设计要求1. 硬件要求•飞思卡尔8位单片机开发板•液晶显示屏•七段数码管或LED矩阵显示屏•简易电路板•相关电子元器件:电阻、电容、LED、按键等2. 软件要求学生需要下载并安装相关软件进行开发,包括:•CodeWarrior软件•P&E Micro的USB Multilink接口3. 设计报告要求学生需要撰写完整的课程设计报告,报告内容包括:•选题背景及意义•设计思路及实现步骤•软硬件设计图及接口说明•代码编写及调试过程•实验现场演示三、课程设计流程1. 硬件连接将飞思卡尔8位单片机开发板与液晶显示屏、七段数码管或LED矩阵显示屏、简易电路板以及相应的电子元器件进行连接,并将P&E Micro的USB Multilink接口插入电脑上的USB接口。
2. 编写程序使用CodeWarrior软件编写程序,并进行调试。
需要注意的是,程序中需要包括板子上所有的设备,比如液晶显示屏、七段数码管或LED矩阵显示屏、按键等的驱动程序。
程序编写完成后,可以将程序烧录到单片机中。
3. 实验现场演示学生在课程设计报告演示时,需要准备好实验现场演示。
在演示过程中,需要详细讲解所设计的主题、实现效果以及编写程序的过程等,并针对现场观众的问题进行回答。
学生还需将实验现场演示过程录制下来,并与课程设计报告一起提交。
四、注意事项•编写程序时,需要注意代码规范,确保代码的可读性和维护性。
•在连接硬件时,需仔细核对电路板上的元器件及连接方式,避免出现电路连接错误。
通过SCI口单片机通过飞思卡尔MC9S08及MC9S12 单片机更新程序的一种方法王佚(Freescale 8/16bit MCU FAE) 飞思卡尔的8/16 Bit 单片机内置FLASH可以通过单片机编程来进行擦除与编程,所以,理论上就可以通过SCI口接口实现软件的自我升级.在实际工作中,我们也遇到不少客户询问相关的实现方法,而我们也给了一些参考代码,但还是有不少工程师不能很好地理解,基于这些原因,我写了点东西来介绍一种比较简单的实现方法,供大家参考,如有不周,敬请批评与谅解.一,飞思卡尔MC9S08单片机内部存储器介绍MC9S08有很多系列单片机,一般程序空间均在64K以下,为了介绍方便,我们以MC9S08AW60一种为例进行介绍.上图为MC9S08AW60的数据空间分布图,对于大于64K空间的MC9S08单片机,其结构与MC9S12单片机类似,故先不做介绍.从图中我们不难看出,由于飞思卡尔单片机的数据存储器(RAM)与程序存储器(FLASH)是统一编址,所以,我们可以将程序引导到RAM里运行.二,飞思卡尔 8位单片机内部中断相量地址介绍飞思卡尔 8位单片机对中断处理是通过判断中断相量表的地址来判断程序的入口地址的.飞思卡尔 8位单片机的中断相量为16位,其放置在从0xFFFF地址向下按照中断号以此排放.三, 飞思卡尔MC9S08单片机FLASH操作简介飞思卡尔MC908及MC9S08系列单片机的FLASH都可以通过软件进行擦除与编程,不同的是MC908有相应的程序内置在单片机的ROM空间,而MC9S08没有,其需要用户自己编写.飞思卡尔的CodeWarrior for MC9(S)08软件在安装后,在\freescale\CodeWarrior for Microcontrollers V6.0\(CodeWarrior_Examples)\HCS08\Device Initialization C Examples\GB60_Modules\Sources\Flash_GB60目录下有响应的参考代码.MC9S08系列单片机的Flash有四种操作模式:Byte program, Byte program (burst), Page erase及Mass erase,其操作时间见下表.需要说明的是,在此操作其间,不可以使能任何中断.下图为操作流程图.需要说明的是,用来实现”Write a data value to an address in the FLASH array”的语句代码,表面上看是将一个数据写到一个Flash数据区去,但实际上是将所需要编程的Flash地址或是擦除的Flash的块地址及数据分别写入到单片机内类似地址积存器及数据寄存器里.CodeWarrior里自带的代码,是用机器码的方式来做的,其也给出了相应的代码,大家可以对应着看看,一般来说,只做Flash模拟EEPROM,该代码即可满足大家使用.在此,本文就不详细描述代码实现的方法.四,实现程序自我更新的两种常见方法及各自特点一般说来,我们有两种方法来,我们有两种常见方法实现程序自我更新.一种是将实现程序更新的部分的程序与应用程序融合在一起,系统在更新程序时甚至可以将整个程序包括更新程序一起更新掉,其优点是可以花费少的程序空间,缺点是数据及主程序空间分配比较麻烦,且在做更新程序时一旦掉电或是其它什么原因,可能无法进行程序的再次更新.另外一种是,将实现程序更新的程序写成是一个独立的程序,其缺点是要浪费部分程序空间,且中断相量无法更新所以要做程序的映射,类似引导(bootload)的概念.其优点是在编写应用程序时不用考虑数据空间地址分配的问题,同时不用担心下载过程出现任何异常情况.本文后面所涉及的内容,均以第二种方法为例,为描述方便,我们定义其为下载程序.五, 下载程序如何实现中断相量的映射由于我们无法预知究竟系统会用多少中断,所以对于应用程序的中断,都必须在更新程序中做映射,即,我们在单片机的某个程序空间建立一个程序跳转表,更新程序的中断相量表做一个固定的表,对应固定地址,我们只需在固定地址放相应的跳转指令,就可以实现中断相量的映射.例题如下:地址A: JMP 地址B. JMP地址B其实是个引导程序.中断相量<1>: 地址A.其中, “中断相量<1>”地址放的”地址A”由更新程序确定,而”地址A” 地址放的” JMP地址B”,JMP由计算机来添加,”地址B”则由应用程序确定.对于复位中断,其处理方法有点不同,其实现方法如下:中断相量<1>: Main.地址A:JMP 地址B.Main:If (a>b){goto地址B }中断相量表的定义参考方法如下:void (* const _vect[])() @0xFFCC = { /* Interrupt vector table */0xf998, /* Int.no. 25 Vrti (at FFCC) Unassigned */0xf99c, /* Int.no. 24 Viic1 (at FFCE) Unassigned */…_Startup /* Int.no. 0 Vreset (at FFFE) Reset vector */};六,单片机程序注意事项1,程序空间分配下载程序的空间应该从0xfff地址向下排放,具体大小需要根据实际的大小及单片机Flash的Block大小来同时决定.空间的安排,一定是Block的倍数.应用程序的空间是从程序的最低段开始排放,除了中断向量外,不可以有任何代码地址与下载程序重叠.在用CodeWarrior来写程序时,我们可以修改PRM文件来控制程序排放地址.下面是下载程序的PRM参考代码.NAMES ENDSEGMENTSROM = READ_ONLY 0xfA00 TO 0xFFAF;Z_RAM = READ_WRITE 0x0070 TO 0x00FF;RAM = READ_WRITE 0x0200 TO 0x086F;ROM2 = READ_ONLY 0xFFC0 TO 0xFFCB;ENDPLACEMENTDEFAULT_RAM INTO RAM;DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;_DATA_ZEROPAGE, MY_ZEROPAGE INTO Z_RAM;ENDSTACKSIZE 0x802,程序代码保护为了使下载程序在任何异常情况下不会被改写,其除了放置引导程序的空间外,均要做代码保护.其在C语言种的参考代码如下.const unsigned char NVPROT_INIT @0x0000FFBD = 0xFA;.3,计算机应用程序如何处理单片机应用程序的中断相量表计算机在应用程序处理该中断相量表时,应根据下载程序的映射关系,将两个字节的相量数据自动计算到对应引导地址,并变为JMP+地址(相量)的模式.下面是参考转变模式.单片机应用程序复位相量为0x8000,其变为跳转后的代码则为0xCC8000.如本文参考代码,其对应引导地址为0xf9fc,则计算机应用程序则应通知下载程序在0Xf9fc后写0XCC8000三个字节数据,运行完成后,反编译的代码如下:F9FC: JMP 0x80003,其它建议为保证应用程序的正确性,可以在下载程序里判断程序的校验码,可以用16位CRC码等.七,S19文件格式简介S-记录实际上是由五个部分组成的字符串的集合。
Freescale HCS08原理及应用Version: 0.10Freescale MC9S08AW60单片机实验指导书华中科技大学电信系Freescale 联合实验室May 8, 2009REVISIONSRev.DescriptionOriginDate0.10初始化版本YangMing2009.04目录REVISIONS (II)1Freescale HCS08单片机实验指导书 (4)1.1 MC9S08AW60 单片机 (4)1.2 AW60 开发系统 (4)1.2.1 MC9S08AW60开发套件及其连接 (5)1.3 使用A W60 开发板时P C 串口的设置 (6)1.4 命令详解 (8)1.4.1 H 命令 (8)1.4.2 D 命令 (9)1.4.3 M 命令 (10)1.4.4 E命令 (10)1.4.5 L 命令 (10)1.4.6 G 命令 (11)1.4.7 R 命令 (11)1.4.8 B 命令 (12)1.5 监控程序及监控命令详解 (12)1.6 常用命令组合—向实验板下载程序 (12)1.7 运行本地用户程序 (14)1.8 清华开发板用户编程说明 (14)1.9 实验步骤 (15)2HCS08实验模块原理图 (17)2.1 8位数字量输入电路与8位数字量显示电路 (17)2.2 A/D模拟电平产生电路 (18)2.3 数码管显示电路 (19)2.4 外部键盘电路 (19)2.5 IRQ中断信号产生电路 (20)2.6 SPI输入电路 (21)2.7 SPI扩展输出电路 (21)参考文献 (23)1 Freescale HCS08单片机实验指导书1.1 MC9S08AW60 单片机MC9S08AW60 是首个能支持 5V 而基于高性能 H CS08 核系列成员。
它包含众多有价值 的特性--60K flash 存储器、2K RAM 、灵活而无需外部元件的内部时钟发生器、低压检测、 高性能、模数转换器(ADC )、串行通信模块等。
第一章搭建实验环境系统时钟设置#include "App\Include\App.h"#ifndef _MCG_C#define _MCG_C//oscillator 12MHZ 倍频为24MHZ()先8分频后16倍频void S_MCGInit(void){/* the MCG is default set to FEI mode, it should be change to FBE mode*//************************************************************************** ***********MCGC2[7:6] BDIV总线频率分频因子–选择由MCGC1寄存器中CLKS位决定的时钟源的分频。
这控制总线频率。
00 编码0 –时钟1分频01 编码1 –时钟2分频(复位后默认)10 编码2 –时钟4分频11 编码3 –时钟8分频[5] RANGE频率范围选择–选择外部振荡器或者外部时钟源的频率范围。
1 选择1MHz到16MHz外部振荡器的频率范围。
(1MHz到40MHz的外部时钟电源)的高频率范围0 选择32kHz到100kHz外部振荡器的频率范围。
(32kHz到1MHz的外部时钟电源)的低频率范围[4] HGO高增益振荡器选择–控制外部振荡器操作模式。
1 配置外部振荡器为高增益运行0 配置外部振荡器为低功耗运行[3] LP低功耗选择–控制在忽略模式中FLL(或者PLL)是否为无效1 FLL(或PLL)在忽略模式(低功耗)中为无效的。
0 FLL(或PLL)在忽略模式中为无效的。
[2] EREFS外部参考时钟选择–为外部参考选择时钟源1 选择振荡器0 选择外部时钟源[1] ERCLKEN外部参考时钟使能–使能外部参考时钟作为MCGERCLK1 MCGERCLK激活0 MCGERCLK 无效[0] EREFSTEN外部参考时钟停止使能MCGC2 0b0011 0110 激发外部时钟(晶振)(没有使能)*************************************************************************** ***********/MCGC2=MCGC2_RANGE_MASK|MCGC2_HGO_MASK|MCGC2_EREFS_MASK|MCGC2_ERCLK EN_MASK;while(!MCGSC_OSCINIT);//MCGSC寄存器中OSCINIT(第1位)为1,表示由EREFS位选择的晶振被初始化。
第一章搭建实验环境系统时钟设置#include "App\Include\App.h"#ifndef _MCG_C#define _MCG_C//oscillator 12MHZ 倍频为24MHZ()先8分频后16倍频void S_MCGInit(void){/* the MCG is default set to FEI mode, it should be change to FBE mode*//************************************************************************** ***********MCGC2[7:6] BDIV总线频率分频因子–选择由MCGC1寄存器中CLKS位决定的时钟源的分频。
这控制总线频率。
00 编码0 –时钟1分频01 编码1 –时钟2分频(复位后默认)10 编码2 –时钟4分频11 编码3 –时钟8分频[5] RANGE频率范围选择–选择外部振荡器或者外部时钟源的频率范围。
1 选择1MHz到16MHz外部振荡器的频率范围。
(1MHz到40MHz的外部时钟电源)的高频率范围0 选择32kHz到100kHz外部振荡器的频率范围。
(32kHz到1MHz的外部时钟电源)的低频率范围[4] HGO高增益振荡器选择–控制外部振荡器操作模式。
1 配置外部振荡器为高增益运行0 配置外部振荡器为低功耗运行[3] LP低功耗选择–控制在忽略模式中FLL(或者PLL)是否为无效1 FLL(或PLL)在忽略模式(低功耗)中为无效的。
0 FLL(或PLL)在忽略模式中为无效的。
[2] EREFS外部参考时钟选择–为外部参考选择时钟源1 选择振荡器0 选择外部时钟源[1] ERCLKEN外部参考时钟使能–使能外部参考时钟作为MCGERCLK1 MCGERCLK激活0 MCGERCLK 无效[0] EREFSTEN外部参考时钟停止使能MCGC2 0b0011 0110 激发外部时钟(晶振)(没有使能)*************************************************************************** ***********/MCGC2=MCGC2_RANGE_MASK|MCGC2_HGO_MASK|MCGC2_EREFS_MASK|MCGC2_ERCLK EN_MASK;while(!MCGSC_OSCINIT);//MCGSC寄存器中OSCINIT(第1位)为1,表示由EREFS位选择的晶振被初始化。
图书基本信息书名:《飞思卡尔8位单片机实用教程》13位ISBN编号:978712108999210位ISBN编号:7121089998出版时间:2009-6出版社:曾周末、李刚、陈世利、 周鑫玲 电子工业出版社 (2009-06出版)页数:222版权说明:本站所提供下载的PDF图书仅提供预览和简介以及在线试读,请支持正版图书。
更多资源请访问:前言飞思卡尔原是全球领先的半导体公司,为汽车、消费电子、工业控制、网络和无线市场设计并制造嵌入式半导体产品。
飞思卡尔系列单片机由于其低成本和高性能的特点越来越受到用户的青睐。
本书介绍的MC9S08QG8单片机采用高性能、低功耗HCS208飞思卡尔8位微控制器为内核,是一款集成度很高、功能丰富、适用于各种应用的低价位单片机。
本书将给大家介绍它的一些主要功能及特性,包括灵活多样的低功耗模式、3.3V电压下的Flash编程、片内调试仿真器、高速ADC、IC总线、片内比较器等。
本书共12章,深入浅出地从一般单片机的基础知识人手,引出飞思卡尔8位单片机基础知识、最小系统设计,进而有步骤地、详略得当地介绍飞思卡尔8位单片机的寄存器与片内存储器、指令系统与汇编程序设计、中断系统等基本功能,并在之后的章节中,详细而又有针对性地一一介绍了集成在这款单片机内部的其他功能模块,比如定时器和比较器、异步串行通信、SPI、IC、模/数转换等功能模块。
本书还介绍了飞思卡尔单片机与MCS51单片机的区别,学过5l单片机的人会很快掌握其要点。
在本书最后一章里,有针对性地介绍了S08系列单片机c语言编程,并详细介绍了Code Warrior IDE调试软件的使用方法。
本书给出的所有例题都在实验板上运行验证过。
总之,本书力求通过最简洁的语言和表述方式、最通俗易懂的应用举例,向广大读者全面地介绍MC9S080G8单片机的功能及特性,以求能够为大专院校的学生及各相关领域的工作者提供一些帮助。
参加本书编写的还有天津大学精仪学院的薛彬、汤其剑、刘世廷、高雅彪、叶德超、黄邦奎、孙晔等研究生。
应用笔记AN3560使用MC9S08JM60开发USB设备——MC9S08JM60 USB模块的深度理解文件编号:AN3560版本:0,08/2005苏州大学飞思卡尔嵌入式系统研发中心翻译2009年11月I1.简介 (1)2.MC9S08JM60USB模块简介 (1)2.1 USB端点 (3)2.2 VREG (3)2.3 USB收发器 (3)2.4 USB SIE (4)2.5 USB RAM (4)2.5.1 缓冲区描述符表(BDT) (5)2.5.2双缓冲(Ping-Pong缓冲) (9)B设备开发 (11)3.1 硬件设计 (11)3.1.1时钟产生 (11)3.1.2 USB设备电源 (11)3.1.3 上拉电阻 (13)3.2 USB固件设计 (13)3.2.1 USB通信模型 (13)3.2.2主固件框架 (14)3.2.3 USB状态机 (15)3.2.4 USB设备枚举过程 (17)3.2.5 端点1-6的USB事务 (23)3.2.6 挂起和恢复 (24)4结束语 (28)附录A HID鼠标固件 (28)附录B HID鼠标枚举过程 (29)II1. 简介MC9S08JM60是Freescale Flexis系列微控制器的组成部分。
Flexis系列微控制器是Freescale控制器连续性的连接点,它使得8位和32位兼容成为现实。
8位的MC9S08JM60 MCU是带有全速USB模块的设备,提供同类中最好的USB 模块性能、系统整合及软件支持。
JM系列MCU的USB模块有7个端点及256字节的RAM用于高效数据传输。
MC9S08JM60 MCU提供许多外围模块,如USB、SPI、IIC、SCI、ADC、TPM和RTC。
该类MCU灵活并容易集成到不同的应用中,如:游戏摇杆、安全控制板、打印机和PC外设。
本文论述了MC9S08JM60 USB模块的更多细节以及如何使用。
另外,还包括一些技巧以及设计中的一些注意点。
第10章实验系统10.1实验板简介本实验系统采用HCS08系列MC9S08AW60CFGE单片机,实验板集成了以下功能:➢OSBDM:集成OSBDM (HC08及HCS08)➢ADC:1路8/10位模数转换器电位器调节➢PWM:1路pwm控制蜂鸣器➢SCI:1路RS-232通信(DB9接头和TTL电平接口)➢KBI:4路按键中断输入➢数字量输入:4路数字量输入➢数码管:4位8段数码管显示➢LED:8位发光二极管显示➢SPI:一路串行SPI通讯接口(插针引出)10.1.1实验板系统特点➢基于BDM方式调试程序。
➢BDM方式提供给用户各种基本的开发和调试功能,包括程序下载和运行、汇编和反汇编、断点设置、单步执行和内存显示修改等。
➢用户可对自编程序进行实时仿真和在线监测。
➢系统板提供了大量外围功能模块,可辅助完成对并行IO口,键盘和外部中断、AD和SCI等模块的实验和测试。
10.1.2实验板开发套件实验板开发套件包括:➢系统板(内含BDM)➢5V直流电源➢RS-232串口电线➢USB电缆10.1.3实验板系统与PC的连接实验系统与PC的连接如图10-1所示。
BDM编程接口用来给实验板下载程序。
RS-232串行总线用来与实验板进行通讯。
RS-232串行通讯接口HCS08试验板BDM编程接口图10-110.2 实验板接口定义10.2.1 4位数字量输入电路实验板用拨码开关为用户提供了4位数字量输入模块,其原理图如图10-2所示。
图10-2当拨码开关状态为OFF时,输入由内部上拉电阻置高;当拨码开关为ON时,相应的输入为0。
10.2.3 4位按键输入电路实验板用拨码开关为用户提供了4位数字量输入模块,其原理图如图10-3所示。
图10-3按键电路由单片机内部提供上拉电阻,可以通过内部寄存器设置工作在扫描或中断方式。
10.2.4 8位数字量显示电路实验板用LED为用户提供了8位数字量输出模块,其原理图如10-4所示。
第一章搭建实验环境1、实验电路板及下载器实物图片2、实验电路图本实验图包含两大部分,分别是CPU.SCH和实验资源.SCH。
CPU采用飞思卡尔8位单片机MC9S08JM60CLD,(电路图介绍)实验资源部分电路LCD串口1602液晶电路图1-5RS232接口电路图1-6数码管显示电路发光管、ad转换以及按键电路图1-83、集成开发软件环境的建立1〉运行文件CW_MCU_V6_3_SE.EXE,在电脑C盘安装飞思卡尔8位(及简化32位)单片机集成开发环境codewarrior6.3版本2〉运行USBDM_4_7_0i_Win,这个程序会在c盘的程序文件夹下增加一个目录C:\Program Files\pgo\USBDM 4.7.0,在这个目录下a>C:\Program Files\pgo\USBDM 4.7.0\FlashImages\JMxx下的文件USBDM_JMxxCLD_V4.sx是下载器的固件文件;b>C:\Program Files\pgo\USBDM 4.7.0\USBDM_Drivers\Drivers下有下载器的usb驱动.因此在插入usb下载器,电脑提示发现新的usb硬件的时候,选择手动指定驱动安装位置到以上目录即可。
3〉运行USBDM_4_7_0i_Win之后,还会在目录:C:\Program Files\ for Microcontrollers V6.3\prog\gdi下增加一些文件,从修改时间上来看,增加了6个文件,这些文件是为了在codewarrior集成开发环境下对usb下载器的调试、下载的支持。
4、C语言编程基础第二章LED闪烁程序编写过程1、新建工程运行单片机集成开发环境codewarrior IDE出现如下界面●Create New Project :创建一个新项目工程●Load Example Project :加载一个示例工程●Load Previous Project :加载以前创建过的工程●Run Getting started Tutorial:运行CodeWarrior软件帮助文档●Start Using CodeWarrior:立刻使用CodeWarrior点击Create New project按钮,以创建一个新的工程,出现选择CPU的界面如下,请选择HCS08/HCS08JM Family/MC9S08JM60,在右边的Connection 窗口可以选择最后一个开源下载器HCS08 Open Source BDM。
应用笔记AN3561MC9S08JM60的USB Bootloader文件编号:AN3561版本:0,08/2005苏州大学飞思卡尔嵌入式系统研发中心翻译2009年11月I1.简介 (1)2.B OOTLOADER概述 (1)2.1 Bootloader资源 (1)2.2 Flash存储器保护 (2)2.3 向量重定向 (3)2.4软件启动过程 (3)2.4.1用户模式 (3)2.4.2 bootloader初始化 (4)2.4.3 Bootloader模式 (5)2.5 PC驱动及PC GUI工具 (6)3B OOTLOADER实现指南 (7)3.1 软件整合 (7)3.2 PC驱动安装 (9)3.3 运行PC GUI工具 (11)3.3.1 启动PC GUI工具 (11)3.3.2 擦除Flash (14)3.3.3 空白检测 (14)3.3.4 Flash写入 (15)3.3.5 代码校验 (17)4.结论 (18)附录A例程 (19)MC9S08JM60的USB BootloaderII1.简介 (1)2.B OOTLOADER概述 (1)2.1 Bootloader资源 (1)2.2 Flash存储器保护 (2)2.3 向量重定向 (3)2.4软件启动过程 (3)2.4.1用户模式 (3)2.4.2 bootloader初始化 (4)2.4.3 Bootloader模式 (5)2.5 PC驱动及PC GUI工具 (6)3B OOTLOADER实现指南 (7)3.1 软件整合 (7)3.2 PC驱动安装 (9)3.3 运行PC GUI工具 (11)3.3.1 启动PC GUI工具 (11)3.3.2 擦除Flash (14)3.3.3 空白检测 (14)3.3.4 Flash写入 (15)3.3.5 代码校验 (17)4.结论 (18)附录A例程 (19)III1. 简介本应用笔记描述了MC9S08JM60的bootloader(可译作“引导装入”)技术,该bootloader允许通过USB对Flash进行在线编程。