当前位置:文档之家› 2020届新高考数学二轮微专题突破专题09 圆锥曲线中的定点(解析版)

2020届新高考数学二轮微专题突破专题09 圆锥曲线中的定点(解析版)

2020届新高考数学二轮微专题突破专题09  圆锥曲线中的定点(解析版)
2020届新高考数学二轮微专题突破专题09  圆锥曲线中的定点(解析版)

专题09

圆锥曲线中的定点、定值问题

一、题型选讲

题型一 圆锥曲线中过定点问题

圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、(2019苏北三市期末)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,

且右焦点到右准线l 的距离为1.过x 轴上一点M(m ,0)(m 为常数,且m ∈(0,2))的直线与椭圆C 交于A ,B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q.

(1) 求椭圆C 的标准方程.

(2) 试判断以PQ 为直径的圆是否经过定点.若是,求出定点坐标;若不是,请说明理由.

思路分析 第(2)问中先要求出P ,Q 点,写出圆的方程(直径式),然后,即令斜率k 的系数为零,常数项也为零,得出关于x ,y 的方程可得定点.审题注意题中m 是常数,而非变量.

规范解答 (1)由题意,得???e =c a =2

2,a 2

c -c =1,

,解得???a =2,

c =1,所以a 2

=2,b 2

=1,

所以椭圆C 的标准方程为x 22

+y 2

=1.(4分)

(2)解法1 由题意,当直线AB 的斜率不存在或为零时显然不符合题意,所以可设直线AB 的斜率为k ,则直线AB 的方程为y =k(x -m).

又准线方程为x =2,

所以点P 的坐标为P(2,k(2-m)).(6分)

由?????y =k (x -m ),x 2+2y 2=2,

得,x 2+2k 2(x -m)2=2,即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0, 所以x A +x B =4k 2m 2k 2+1,则x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k ????2k 2m 2k 2+1-m =-km 2k 2+1

, (8分)

所以k OD =-1

2k

从而直线OD 的方程为y =-

1

2k

x(也可用点差法求解), 所以点Q 的坐标为Q ?

???2,-1

k .(10分) 所以以P ,Q 为直径的圆的方程为(x -2)2+????y +1

k =0, 即x 2-4x +2+m +y 2-

]y =0.(14分)

因为该式对?k ≠0恒成立,令y =0,得x =2±2-m , 所以以PQ 为直径的圆经过定点()2±2-m ,0.(16分)

解法2 由题意,当直线AB 的斜率不存在或为零时显然不符合题意.直线l :x =2. 设直线AB 的方程为x =ny +m ,则P ????

2,2-m n .(6分)

设A(x 1,y 1),B(x 2,y 2),则D ??

??

x 1+x 22,y 1+y 22.(8分)

联立?

????x =ny +m ,x 2+2y 2=2,得(n 2+2)y 2+2nmy +m 2-2=0,Δ=8(n 2-m 2+2)>0,y 1+y 2

=-2nm n 2+2,x 1+x 2=n(y 1+y 2)+2m =

4m n 2+2,故D ? ??

??2m n 2+2,-nm n 2+2.(10分)

所以k OD =-n 2,直线OD: y =-n

2x ,故Q(2,-n),

则PQ 中点为???

?2,2-m -n 22n ,PQ 2=(n 2

-m +2)n 22,

所以以P ,Q 为直径的圆的方程为(x -2)2

+????y +

n 2+m -22n 2=????n 2-m +22n 2

,(14分) 整理得(x -2)2+y 2+m -2+

n 2+m -2

n

y =0,令y =0,解得x =2±2-m , 所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)

解后反思 圆锥曲线综合题要立足直线和曲线的位置关系,弄清楚交点问题.确定好思路后设点或者设线,然后按部就班书写计算过程,平实复习时候要注重计算能力的提高,考试才能算得顺利准确. 例2、(2018苏州期末)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为2

2,椭圆上动点

P 到一个焦点的距离的最小值为3(2-1).

(1) 求椭圆C 的标准方程;

(2) 已知过点M(0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.

思路分析 (1) 椭圆上动点P(x 0,y 0)到左、右焦点的距离的最小值为a -c.

(2) 先根据直径AB 竖直和水平两种情况,猜出定点可能为D(0,3),再考虑DA →·DB →

是否为零. 规范解答 (1) 由题意,得?????c a =22,a -c =3(2-1),解得???a =32,

c =3.所以b 2=a 2-c 2=9.(4分)

椭圆C 的标准方程是x 218+y 2

9

=1.(6分)

(2) 当直线l 的斜率不存在时,以AB 为直径的圆的方程为x 2+y 2=9;(7分) 当直线l 的斜率为零时,以AB 为直径的圆的方程为x 2+(y +1)2=16.(8分)

这两圆仅有唯一公共点,也是椭圆的上顶点D(0,3).猜想以AB 为直径的圆恒过定点D(0,3).(9分) 证明如下:

证法1(向量法) 设直线l 的方程为y =kx -1,A(x 1,y 1),B(x 2,y 2).只要证DA →·DB →

=x 1x 2+(y 1-3)(y 2

-3)=x 1x 2+(kx 1-4)(kx 2-4)=0即可.

即要证DA →·DB →

=(1+k 2)x 1x 2-4k(x 1+x 2)+16=0.(11分)

由?

????y =kx -1,x 2+2y 2=18,消去y ,得(1+2k 2)x 2-4kx -16=0,Δ=16k 2+64(1+2k 2)>0,此方程总有两个不等实根x 1,x 2.

x 1,2=2k ±29k 2+41+2k 2,所以x 1+x 2=4k 1+2k 2,x 1x 2

=-161+2k 2

.(14分) 所以DA →·DB →=(1+k 2

)x 1x 2-4k(x 1+x 2)+16=-16(1+k 2)1+2k 2-16k 21+2k 2+16=0.

所以DA ⊥DB ,所以以AB 为直径的圆恒过定点D(0,3).(16分)

证法2(斜率法) 若设DA ,DB 的斜率分别为k 1,k 2,只要证k 1k 2=-1即可. 设直线l 的斜率为λ,则y A +1

x A

=λ.

由点A 在椭圆x 2+2y 2=18上,得x 2A +2y 2A

=18,变形得y A -3x A ·y A +3x A =-12,即k 1·y A +3x A =-1

2

. 设y A +3=m(y A -3)+n(y A +1),可得m =-12,n =32,得y A +3x A =32λ-1

2k 1.

从而k 1(3λ-k 1)=-1,即k 21-3λk 1-1=0.

同理k 22-3λk 2-1=0,所以k 1,k 2是关于k 的方程k 2

-3λk -1=0的两实根.

由根与系数关系,得k 1k 2=-1.所以DA ⊥DB ,所以以AB 为直径的圆恒过定点D(0,3).(16分) 题型二 圆锥曲线中定值问题

圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

例3、(2019镇江期末)已知椭圆C :x 2a 2+y 2

b 2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A 为椭圆C

的左顶点,直线l 过点D(1,0),且与椭圆C 相交于E ,F 两点.

(1) 求椭圆C 的方程;

(2) 若△AEF 的面积为10,求直线l 的方程;

(3) 已知直线AE ,AF 分别交直线x =3于点M ,N ,线段MN 的中点为Q ,设直线l 和QD 的斜率分别为k(k ≠0),k ′,求证:k·k′为定值.

规范解答 (1)由长轴长2a =4,两准线间距离2a 2

c =42,解得a =2,c =2,(2分)

b 2=a 2-

c 2=2,即椭圆方程为

x 24+y 2

2

=1.(4分) (2) 当直线l 的斜率不存在时,此时EF =6,△AEF 的面积S =12AD ·EF =3

26,不合题意;(5分)

故直线l 的斜率存在,设直线l :y =k(x -1),代入椭圆方程得, (1+2k 2)x -4k 2x +2k 2-4=0.

因为D(1,0)在椭圆内,所以Δ>0恒成立.

设E(x 1,y 1),F(x 2,y 2),则有x 1+x 2=4k 2

1+2k 2,x 1x 2=2k 2-41+2k 2.(6分)

故EF =

(x 1-x 2)2+(y 1-y 2)2=

1+k 2|x 1-x 2|=

1+k 2

223k 2+2

1+2k 2

.(7分)

又点A 到直线l 的距离d =

3|k|

1+k

2

,(8分)

则△AEF 的面积S =12d ·EF =12·3|k|1+k 2

·1+k 2

·223k 2+21+2k 2=323k 4+2k 21+2k 2=10,则k =±1.(9

分)

综上,直线l 的方程为x -y -1=0和x +y -1=0.(10分) (3) 证法1 设点E(x 1,y 1),F(x 2,y 2),则直线AE :y =

y 1

x 1+2

(x +2),令x =3,得点M ????3,5y 1x 1+2,同

理可得N ????3,5y 2x 2

+2,所以点Q 的坐标为? ?????3,52y 1

x 1+2+52y 2x 2

+2.(12分) 直线QD 的斜率为k′=5y 12(x 1+2)+

5y 22(x 2+2)3-1=54????y 1x 1+2+y 2

x 2+2,(13分)

y 1x 1+2+y 2

x 2+2=k (x 1-1)x 1+2+k (x 2-1)x 2+2=k·2x 1x 2+x 1+x 2-4x 1x 2+2(x 1+x 2)+4

.(14分) 由(2)知x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,代入上式得,(15分)

y 1x 1+2+y 2x 2+2=k·4k 2-8+4k 2-4(1+2k 2)2k 2-4+8k 2+4+8k 2=-12k 18k 2=-2

3k .

则有k′=-56k ,所以k·k′=-5

6

,为定值.(16分)

(3) 证法2 设点M(3,m),N(3,n),且m ≠n ,则Q ????

3,m +n 2,从而k′=m +n

23-1

=m +n 4.

直线AM 的方程为y =m 5(x +2),与椭圆方程联立得(x +2)(x -2)+2m 2

25(x +2)2=0,可知x =-2或x =

50-4m 225+2m 2,即点E ? ??

??50-4m 225+2m 2,20m 25+2m 2.故k DE =20m

25+2m 250-4m 2

25+2m 2

-1

=20m 25-6m 2. 同理可得k DF =

20n 25-6n 2.又D ,E ,F 三点共线,则有k =k DE =k DF =20m 25-6m 2=20n

25-6n 2

=20m -20n 6n 2-6m 2

=20(m -n )-6(m +n )(m -n )=-103(m +n )

.从而有k·k′=m +n 4=-56.

例4、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2

=1,椭圆

C 2:x 2a 2+y 2

b

2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.

(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.

①射线PO 与椭圆C 1依次交于点A ,B ,求证:PA

PB

为定值;

②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.

.思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.

(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PA

PB 的表达式,化

简整理得到定值.

②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭

圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 2

0-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,

证得定值.

(1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =3

2,a 2=b 2+c 2,解得b =2,因此椭圆

C 2的标准方程为x 28+y 2

2

=1.(3分)

(2)①1°当直线OP 斜率不存在时,

PA =2-1,PB =2+1,则PA

PB =2-12+1

=3-2 2.(4分)

2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =8

4k 2

+1

.(6分) 所以x 2P =2x 2

A ,由题意,x P 与x A 同号,所以x P =2x A ,

从而PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-2 2.

所以PA

PB

=3-22为定值.(8分)

②设P(x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x -k 1x 0+y 0, 记t =-k 1x 0+y 0,则l 1的方程为y =k 1x +t ,

代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2

-4=0,

因为直线l 1与椭圆C 1有且只有一个公共点,

所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2

+1=0,

将t =-k 1x 0+y 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,(12分) 同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,

所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 2

0-1=0

的两根,从而k 1·k 2=y 20-1

x 20-4

.(14

又点在P(x 0,y 0)椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 2

0,所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)

例5、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)如图,在平面直角坐标系xOy 中,已知B 1,B 2是椭圆x 2a 2+y 2

b 2=1(a>b>0)的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为y =x +3

时,线段PB 1的长为4 2.

(1) 求椭圆的标准方程;

(2) 设点Q 满足QB 1⊥PB 1,QB 2⊥PB 2.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.

思路分析 第(2)问,由于△PB 1B 2,△QB 1B 2的底边相同,所以问题的本质就是研究点P 与Q 的横坐标之间的比值,为此,采用设点法或设线法都可以解决问题.

规范解答 设P(x 0,y 0),Q(x 1,y 1).

(1) 在y =x +3中,令x =0,得y =3,从而b =3.(2分) 由?????x 2

a 2+y 2

9=1,y =x +3得x 2a 2+(x +3)29

=1.

所以x 0=-6a 29+a 2.(4分)

因为PB 1=

x 20+(y 0-3)2

2|x 0|,所以42=2·6a 2

9+a 2

,解得a 2=18.

所以椭圆的标准方程为x 218+y 2

9

=1.(6分)

(2) 证法1(设点法) 直线PB 1的斜率为kPB 1=y 0-3

x 0

由QB 1⊥PB 1,所以直线QB 1的斜率为kQB 1=-x 0

y 0-3.

于是直线QB 1的方程为y =-x 0

y 0-3x +3.

同理,QB 2的方程为y =-

x 0

y 0+3

x -3.(8分) 联立两直线方程,消去y ,得x 1=y 20-9

x 0

.(10分)

因为P(x 0,y 0)在椭圆x 218+y 29=1上,所以x 2018+y 2

09=1,从而y 2

0-9=-x 202.所以x 1=-x 02

.(12分)

所以S △PB 1B 2S △QB 1B 2=???

?

x 0x 1=2.(14分)

证法2(设线法) 设直线PB 1,PB 2的斜率分别为k ,k ′,则直线PB 1的方程为y =kx +3. 由QB 1⊥PB 1,直线QB 1的方程为y =-1

k x +3.

将y =kx +3代入x 218+y 2

9=1,得(2k 2+1)x 2+12kx =0.

因为P 是椭圆上异于点B 1,B 2的点,所以x 0≠0, 从而x 0=-12k

2k 2+1

.(8分)

因为P(x 0,y 0)在椭圆x 218+y 29=1上,所以x 2018+y 209=1,从而y 2

0-9=-x 202

.

所以k·k′=y 0-3x 0·y 0+3x 0=y 20-9

x 20=-12,

得k′=-1

2k

.(10分)

由QB 2⊥PB 2,所以直线QB 2的方程为y =2kx -3. 联立?????y =-1k x +3,y =2kx -3,则x =6k 2k 2+1,即x 1=6k

2k 2+1

.(12分)

所以S △PB 1B 2S △QB 1B 2=????x 0x 1=

?

??

?

??-

12k 2k 2+1

6k

2k 2+1

=2.(14分)

二、达标训练

1、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为3

3

.

(1) 求椭圆E 的标准方程;

(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PB

PC ·PD

为定值.

规范解答 (1)设椭圆的半焦距为c ,由已知得, c a =32,则a 2c -c =3

3,c 2=a 2-b 2,(3分) 解得a =2,b =1,c =3,(5分) 所以椭圆E 的标准方程是x 24

+y 2

=1.(6分)

(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2

-4=0,(8分)

设A(x 1,y 1),B(x 2,y 2).

则x 1+x 2=8k 21t

1+4k 21,x 1x 2=4k 21t 2-41+4k 21

因为PA =1+k 21|x 1-t|,PB =1+k 2

1|x 2-t|,(10分) 所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-

8k 21t

21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21

,(12分) 同理,PC ·PD =(1+k 22)|t 2

-4|

1+4k 22

,(14分)

所以PA·PB PC·PD =(1+k 21)(1+4k 2

2)(1+k 22)(1+4k 21)

为定值.(16分) 解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t), 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).

直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t

1+4k 22,x 3x 4=4k 22t 2

-41+4k 22

PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21

), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22

).(12分)

因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →

=PC ·PD.

PA ·PB PC ·PD =PA →·PB →PC →·PD

→=(x 1-t )(x 2-t )(1+k 21)

(x 3-t )(x 4-t )(1+k 22)=(1+k 2

1)(1+k 2

2)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )

=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t

2x 3x 4-t (x 3+x 4)+t

2. 代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22

,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)

(1+k 22)(1+4k 21)

,(14分) 因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22

)(1+k 22)(1+4k 2

1)

为定值.(16分) 解后反思 本题着重考查了计算能力,而在运算过程中借助了两条直线的地位一致性,只需算出一份数据即可,另外对应换掉相应位置的参数就好,需要考生仔细观察,不能盲目地硬算.定值问题,要恰当去转化,能很好的降低计算量,用向量的坐标来计算,结构对称、优美,代入根与系数关系可以很容易得出结果

2、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2

=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶

点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.

(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积; (2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1?k 2为定值;

规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0), 当直线PM 过椭圆的右焦点F 时, 则直线PM 的方程为

x 3+y -1

=1,即y =3

3x -1,

联立???x 24

+y 2

=1,y =33x -1,解得???x =837,y =17

或?

????x =0,y =-1(舍),即M ????

837,17.(2分)

连结BF ,则直线BF :

x 3+y

1

=1,即x

+3y -3=0,

而BF =a =2,点M 到直线BF 的距离为d =

????837+3×17-312+(3)2

23

7

2

3

7

. 故S △MBF =12·BF ·d =12×2×37=3

7

.(4分)

(2) 解法1(点P 为主动点) ①设P(m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m

=-1

m ,

则直线PM 的方程为y =-1

m

x -1,

联立?

??

y =-1

m x -1,

x 24

+y 2

=1化简得????1+4m 2x 2+8

m x =0, 解得M ? ??

??-8m m 2+4,4-m 2m 2+4,(6分)

所以k 1=4-m 2

m 2+4-1-8m m 2

+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3

m ,(8分)

所以k 1·k 2=-3m ·14m =-3

4

为定值.(10分)

3、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆

O :x 2+y 2=4,椭圆

C :x 24

+y 2

=1,A 为椭

圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-6

5

,0).设直线AB ,AC 的斜率分别为k 1,k 2.

(1) 求k 1k 2的值;

(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;

(3) 求证:直线AC 必过点Q .

思路分析 (1) 直接设出B (x 0,y 0),C (-x 0,-y 0),求出k 1,k 2,并运用椭圆方程消去y 0即可; (2) 设出直线AP 为y =k 1(x -2),与圆联立得出点P 坐标,与椭圆联立得出点B 坐标,通过斜率公式求出k PQ 和

k BC 即得λ的值;

(3) 通过直线PQ 与x 轴垂直时特殊的位置,猜想直线AC 过点Q ,再证明当直线PQ 与x 轴不垂直时,直线AC 也过点Q ,先通过直线PQ 方程与圆方程联立,求出点Q 坐标,再通过证明斜率相等来证明三点共

线,从而证得直线AC 必过点Q .

规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 20

4

+y 20=1, 因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2

所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-1

4x 20x 20-4

=-1

4.(4

分)

(2) 设直线AP 方程为y =k 1(x -2),联立?????

y =k 1(x -2),x 2+y 2=4

得(1+k 21)x 2-4k 21x +4(k 2

1-1)=0,解得x P =

2(k 21-1)

1+k 21,y P =k 1(x P -2)=-4k 11+k 21

, 联立?????

y =k 1(x -2),x 24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 2

1-1)=0,解得x B =2(4k 21-1)1+4k 21,y B =k 1(x B

-2)=-4k 11+4k 21,(8分)

所以k BC =y B x B =-2k 14k 21-1,k PQ =y P

x P +65=-4k 1

1+k 212(k 21-1)1+k 21+65=-5k 14k 21-1

所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =5

2k BC .(10分)

(3) 设直线AC 方程为y =k 2(x -2), 当直线PQ 与x 轴垂直时,Q ????-65

,-8

5, 则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=1

2,

则k AQ =-85-65

-2=1

2=k 2,所以直线AC 必过点Q .

当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1??

??x +6

5, 联立?????

y =-5k 14k 21-1????x +65,x 2+y 2=4解得x Q =-2(16k 21-1)16k 2

1+1,y Q =16k 116k 21+1

, 因为k 2=-y B -x B -2=4k 1

1+4k 212(1-4k 21)

1+4k 21

-2

=-1

4k 1,

所以k AQ =16k 116k 21+1-2(16k 21-1)

16k 21+1-2

=-1

4k 1=k 2,故直线AC 必过点Q .(16分)

(不考虑直线与x 轴垂直的情形扣1分)

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

08届高考数学二轮复习圆锥曲线测试题

2 9 江苏省徐州市 08届高考数学二轮复习圆锥曲线测试题 一、填空题(共14小题,每题5分,计70分) 1.称焦距与短轴长相等的椭圆为"黄金椭圆” ,则黄金椭圆的离心率为 __________ . y = . 2x ,其离心率是 的距离为 2 4. 抛物线y= 4x 的焦点坐标为 X 2 2 5. 已知△ ABC 的顶点B C 在椭圆 + y = 1上,顶点A 是椭圆的一个焦点,且椭圆的另 3 外一个焦点在 BC 边上,则△ ABC 的周长是 _______________ x 2 y 2 6. 椭圆 + = 1的焦点F 1、F 2, P 为椭圆上的一点,已知PF 1 A PF 2,则△ F 1PF 2的 25 9 面积为 ______________ (3, 1),F 是抛物线的焦点,点 P 是抛物线上一点, 2. 中心在原点,焦点在坐标轴的双曲线的一条渐近线方程为 2 2 3. 已知双曲线—--=1的焦点为 6 3 F 、F 2,点M 在双曲线上且 MF i A x 轴,则F i 到直线F 2M 7.已知抛物线y 2 = 4x ,一定点A |AP|+|PF|的最小值_______________ 。 &正四棱锥的侧棱长和底面边长都是 9.以下同个关于圆锥曲线的命题中①设 则动点P 的轨迹为双曲线;②过定圆 1,则侧棱和底面所成的角为 _ A 、 B 为两个定点,k 为非零常数,|PA C 上一定点 A 作圆的动点弦 卜 | PB |= k , AB, O 为坐标原点,若 1 2 OP= (OA+OB),则动点P 的轨迹为椭圆;③方程 2x 2- 5x + 2 2= 0的两根可分别作为 2 2 2 椭圆和双曲线的离心率;④双曲线 ——y = 1与椭圆 —+ y 2 25 9 35 。(写出所有真命题的序号) 1有相同的焦点?其中真 命题的序号为 ____ __ 2 2 10 .方程一x y 1表示椭圆的充要条件是 9—k k -1 2 x 11.在区间[1,5]和[2,4]分别各取一个数,记为 m 和n ,则方程二 m 2 ■ 丫2 = 1表示焦点在x n 轴上的椭圆的概率是 _________________ . 12.嫦娥一号奔月前第一次变轨后运行轨道是以地球中心 F 为焦点的椭圆,测得近地点 A 距 离地面m(km),远地点B 距离地面n(km),地球半径为 R(km),关于这个椭圆有以下四 种说法:①焦距长为 n - m ;②短半轴长为;(m ' R)(n ' R):③离心率e = 其中正确的序号为 2 2 13.以椭圆x - 1内的点 16 4 M (1,1)为中点的弦所在直线方程为 14.设F 1, F 2分别是双曲线x 2 y 1的左、右焦点.若点P 在双曲线上,且PF 1 PF 2 =0 ,

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

高考数学-圆锥曲线练习题

高考数学-圆锥曲线 1. 已知椭圆116252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点 距离为( ) A .2 B .3 C .5 D .7 2. 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ) A .116922=+y x B .1 162522=+y x C .1162522=+y x 或1 25162 2=+y x D .以上都不对 3 .动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4、 抛物线x y 102 =的焦点到准线的距离是( ) A .25 B .5 C .215 D .10 5. 若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。 A .(7, B .(14, C .(7,± D .(7,-± 6. 如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 7. 以椭圆1 16252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .12792 2=-y x C .1481622=-y x 或1 2792 2=-y x D .以上都不对

8. 过双曲线的一个焦点F 2作垂直于实轴的弦PQ ,F 1是另一焦点,若∠PF 1Q=2 π, 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 9. F 1 ,F 2是椭圆1792 2=+y x 的两个焦点,A 为椭圆上一点,且∠0 2145=F AF ,则 Δ 12 AF F 的面积为( ) A .7 B .47 C .27 D .257 10. 抛物线x y 62=的准线方程为_____. 11. 双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________ 12. 若曲线22 141x y k k +=+-表示双曲线,则k 的取值范围是 。 13. 若椭圆 221x my += 的离心率为2,则它的长半轴长为_______________. 14. 椭圆552 2=+ky x 的一个焦点是)2,0(,那么=k 。 15. 求在抛物线2 4y x =上一点,到直线45y x =-的距离最小值_________。 16: 椭圆221 89x y k +=+的离心率为12,则k 的值为______________ 17: 双曲线 22 88kx ky -=的一个焦点为(0,3),则k 的值为______________ 18: 抛物线220y x =的焦点到准线的距离是( ) A .52 B .5 C . 15 2 D .10 19: 双曲线 2241x y -=的渐近线方程是( ) A .2y x =± B . 4y x =± C . 14y x =± D . 1 2y x =±

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

北师大版高二数学选修圆锥曲线方程测试题及答案

北师大版高二数学选修圆锥曲线方程测试题及 答案 SANY GROUP system office room 【SANYUA16H-

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ? ?? 3、双曲线 221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21 ,则该双曲线的离心率e 为 ( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2

7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线 B. 抛物线 C.双曲线 D. 圆 9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( ) (A )(4 3π,π) (B )(4 π,4 3π ) (C )(2 π,π) (D )(2 π,4 3π ) 10、 F 1、F 2是双曲线116 9 2 2 =- y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32, 则∠F 1PF 2是( ) (A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能 11、与椭圆125 16 2 2 =+ y x 共焦点,且过点(-2,10)的双曲线方程为( ) (A ) 14522=-x y (B )14522=-y x (C )13522=-x y (D )13 52 2=-y x 12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程 是( ) A . ?????? B . C . ??????? D . 二、填空题:本大题共4小题,每小题4分,共16分. 13、已知双曲线的渐近线方程为y=±34x ,则此双曲线的离心率为________. B D A 1 B 1 C 1 1 P

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

《圆锥曲线》单元测试题

《圆锥曲线》单元测试题 班级 姓名 学号 分数 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若双曲线x 2a 2-y 2 b 2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2、圆锥曲线y 29+x 2a +8=1的离心率e =1 2 ,则a 的值为( ) A .4 B .-54 C .4或-5 4 D .以上均不正确 3、以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M 、N ,椭圆的左焦点为 F 1,且直线MF 1与此圆相切,则椭圆的离心率e 为( ) A.3-1 B .2-3 C. 22 D.3 2 4、已知双曲线x 2a 21-y 2b 2=1与椭圆x 2a 22+y 2 b 2=1的离心率互为倒数,其中a 1>0,a 2>b >0,那么以 a 1、a 2、 b 为边长的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5、设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为1 2,则此椭 圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 2 48 =1 6、已知椭圆E :x 2m +y 2 4=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx +1 被椭圆E 截得的弦长不可能相等的是( ) A .kx +y +k =0 B .kx -y -1=0 C .kx +y -k =0 D .kx +y -2=0 7、过双曲线M :x 2 -y 2 b 2=1的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线 分别相交于点B 、C ,且|AB |=|BC |,则双曲线M 的离心率是( ) A. 52 B.103 C.5 D.10 8、设直线l :2x +y +2=0关于原点对称的直线为l ′,若l ′与椭圆x 2 +y 2 4=1的交点为A 、 B ,点P 为椭圆上的动点,则使△P AB 的面积为1 2的点P 的个数为( ) A .1 B .2 C .3 D .4

高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点 1 2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于 它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

相关主题
文本预览
相关文档 最新文档