最新大学化学第三章
- 格式:doc
- 大小:516.00 KB
- 文档页数:19
第3章氧化还原反应电化学3.1 本章小结3.1.1. 基本要求(包括重点和难点)第一节氧化数的概念第二节电极反应、电池符号、电极类型电动势、电极电势(平衡电势)、标准电极电势能斯特方程、离子浓度及介质酸碱性改变对电极电势的影响及计算原电池电动势与吉布斯函数变的关系利用电极电势判断原电池的正负极、计算电动势、比较氧化剂与还原剂的相对强弱氧化还原反应方向的判据计算氧化还原反应的平衡常数并判断氧化还原反应进行的程度第三节分解电压(理论分解电压、实际分解电压、超电压)电解产物(盐类水溶液电解产物)第四节金属的腐蚀:化学腐蚀、电化学腐蚀(析氢腐蚀、吸氧腐蚀)金属腐蚀的防止3.1.2. 基本概念第一节氧化与还原: 对于一个氧化还原反应,得到电子的物质叫做氧化剂,失去电子的物质叫做还原剂。
氧化剂从还原剂中获得电子,使自身氧化数降低,这个过程叫做还原;还原剂由于给出电子而使自身氧化数升高,这个过程叫做氧化。
还原剂失去电子后呈现的元素的高价态称为氧化态,氧化剂获得电子后呈现的元素的低价态称为还原态。
氧化数: 指化合物分子中某元素的形式荷电数,可假设把每个键中的电子指定给电负性较大的原子而求得。
氧化数的计算遵循以下规律:(1)单质氧化数为0(2)简单离子的氧化数等于该离子所带的电荷数(3)碱金属和碱土金属在化合物中的氧化数分别为+1、+2(4) 氢在化合物中氧化数一般为+1,在活泼金属氢化物中的氧化数为-1。
(5) 化合物中氧的氧化数一般为-2,但在过氧化物中,其氧化数为-1,在超氧化物中为-21,在氧的氟化物OF 2和O 2F 2中氧化数分别为+2和+1。
(6) 在所有的氟化物中,氟的氧化数为-1(7) 在多原子分子中,各元素氧化数的代数和为0,多原子离子中,各元素的氧化数的代数和等于离子所带的电荷数;在配离子中,各元素氧化数的代数和等于该配离子的电荷第二节原电池(电池符号) 利用氧化还原反应产生电流,使化学能转变为电能的装置叫做原电池。
大学无机及分析化学第三章化学动力学题附答案第三章化学动力学基础一判断题1.溶液中,反应物 A 在t1时的浓度为c1,t2时的浓度为c2,则可以由 (c1-c2 ) / (t1 - t2 ) 计算反应速率,当△t→ 0 时,则为平均速率。
......................................................................()2.反应速率系数k的量纲为 1 。
..........................()3.反应2A + 2B → C,其速率方程式v = kc (A)[c (B)]2,则反应级数为 3。
................()4.任何情况下,化学反应的反应速率在数值上等于反应速率系数。
..........()5.化学反应3A(aq) + B(aq) → 2C(aq) ,当其速率方程式中各物质浓度均为 1.0 mol·L-1时,其反应速率系数在数值上等于其反应速率。
......................................................................()6.反应速率系数k越大,反应速率必定越大。
......()7.对零级反应来说,反应速率与反应物浓度无关。
...........................................()8.所有反应的速率都随时间而改变。
........................()9.反应a A(aq) + b B(aq) → g G(aq) 的反应速率方程式为v = k [c (A)]a[ c(B)]b,则此反应一定是一步完成的简单反应。
........................()10.可根据反应速率系数的单位来确定反应级数。
若k的单位是 mol1-n·L n-1·s-1,则反应级数为n。
3.2习题及详解一.判断题1. 在25℃及标准状态下测定氢的电极电势为零。
( X )2. 已知某电池反应为,21212B A B A +→+++而当反应式改为B A B A +→+++222时,则此反应的E Θ不变,而Δr G m Θ改变。
( √ ) 3. 在电池反应中,电动势越大的反应速率越快。
( X ) 4. 在原电池中,增加氧化态物质的浓度,必使原电池的电动势增加。
( X ) 5. 标准电极电势中θE 值较小的电对中的氧化态物质,都不可能氧化θE 值较大的电对中 的还原态物质。
( X ) 6. 若将马口铁(镀锡)和白铁(镀锌)的断面放入稀盐酸中,则其发生电化学腐蚀的阳极反应是相同的。
( X )7. 电解反应一定是0,0<∆>∆G G r r θ的反应。
( X ) 8. 超电势会导致析出电势高于平衡电势。
( X )二.选择题1. 下列关于氧化数的叙述正确的是( A )A.氧化数是指某元素的一个原子的表观电荷数B.氧化数在数值上与化合价相同C.氧化数均为整数D.氢在化合物中的氧化数皆为+12. 若已知下列电对电极电势的大小顺序E Θ(F 2/F -) > E Θ(Fe 3+/Fe 2+) > E Θ(Mg 2+/Mg) >E Θ(Na +/Na),则下列离子中最强的还原剂是( B )A.F -B.Fe 2+C.Na +D.Mg 2+3. 已知电极反应Cu e Cu →+-+22的标准电极电势为0.342V ,则电极反应+-→-2242Cu e Cu 的标准电极电势应为( C )A.0.684VB.-0.684VC.0.342VD.-0.342V 4. 已知E Θ(Ni 2+/Ni)= -0.257V ,测得镍电极的E(Ni 2+/Ni)= -0.210V ,说明在该系统中必有( A )A.121)(-+⋅>kg mol Nim B. 121)(-+⋅<kg mol Ni mC. 121)(-+⋅=kg mol Ni mD.)(2+Ni m 无法确定 5. 下列溶液中,不断增加H +的浓度,氧化能力不增强的是( D )A.MnO 4-B.NO 3-C.H 2O 2D.Cu 2+ 6. 将下列反应中的有关离子浓度均增加一倍,使对应的E 值减少的是( C )A.Cu e Cu →+-+22B. +-→-22Zn e ZnC. --→+Cl e Cl 222D. +-+→+242Sn e Sn7. 某电池的电池符号为(-)Pt|A 3+,A 2+ ¦¦ B 4+,B 3+|Pt(+),则此电池反应的产物应为( B )A. A 3+, B 4+B. A 3+, B 3+C. A 2+, B 4+D. A 2+, B 3+ 8. 在下列电对中,标准电极电势最大的是( D )A.AgCl/AgB.AgBr/AgC.[Ag(NH 3)2]+/AgD.Ag +/Ag 9. A 、B 、C 、D 四种金属,将A 、B 用导线连接,浸在稀硫酸中,在A 表面上有氢气放 出,B 逐渐溶解;将含有A 、C 两种金属的阳离子溶液进行电解时,阴极上先析出C ;把D 置于B 的盐溶液中有B 析出。
第3章氧化还原反应电化学3.1 本章小结3.1.1. 基本要求(包括重点和难点)第一节氧化数的概念第二节电极反应、电池符号、电极类型电动势、电极电势(平衡电势)、标准电极电势能斯特方程、离子浓度及介质酸碱性改变对电极电势的影响及计算原电池电动势与吉布斯函数变的关系利用电极电势判断原电池的正负极、计算电动势、比较氧化剂与还原剂的相对强弱氧化还原反应方向的判据计算氧化还原反应的平衡常数并判断氧化还原反应进行的程度第三节分解电压(理论分解电压、实际分解电压、超电压)电解产物(盐类水溶液电解产物)第四节金属的腐蚀:化学腐蚀、电化学腐蚀(析氢腐蚀、吸氧腐蚀)金属腐蚀的防止3.1.2. 基本概念第一节氧化与还原: 对于一个氧化还原反应,得到电子的物质叫做氧化剂,失去电子的物质叫做还原剂。
氧化剂从还原剂中获得电子,使自身氧化数降低,这个过程叫做还原;还原剂由于给出电子而使自身氧化数升高,这个过程叫做氧化。
还原剂失去电子后呈现的元素的高价态称为氧化态,氧化剂获得电子后呈现的元素的低价态称为还原态。
氧化数: 指化合物分子中某元素的形式荷电数,可假设把每个键中的电子指定给电负性较大的原子而求得。
氧化数的计算遵循以下规律:(1)单质氧化数为0(2)简单离子的氧化数等于该离子所带的电荷数(3)碱金属和碱土金属在化合物中的氧化数分别为+1、+2(4)氢在化合物中氧化数一般为+1,在活泼金属氢化物中的氧化数为-1。
(5) 化合物中氧的氧化数一般为-2,但在过氧化物中,其氧化数为-1,在超氧化物中为-21,在氧的氟化物OF 2和O 2F 2中氧化数分别为+2和+1。
(6) 在所有的氟化物中,氟的氧化数为-1(7) 在多原子分子中,各元素氧化数的代数和为0,多原子离子中,各元素的氧化数的代数和等于离子所带的电荷数;在配离子中,各元素氧化数的代数和等于该配离子的电荷第二节原电池(电池符号) 利用氧化还原反应产生电流,使化学能转变为电能的装置叫做原电池。
原电池由两个电极组成,发生氧化反应的部分称为负极,发生还原反应的部分称为正极。
书写电池符号时,负极写在左边,正极写在右边;以单垂线“|”表示两相界面,同相内不同物质之间用“,”隔开;参与电极反应的气体、液体分别注明压力与浓度;以双虚线“¦¦”表示盐桥,盐桥两边是两个电极所处的溶液。
半电池(电极) 原电池由氧化和还原两个半电池(两个电极)组成,每个半电池(电极)一般由同一种元素不同氧化数的两种物质组成,宏观上表现由电极导体和电极溶液组成,进行氧化态和还原态相互转化的反应。
半反应(电极反应) 半电池中发生的,由同一种元素形成的氧化态物质与还原态物质之间相互转化的反应。
氧化半反应是元素由还原态变为氧化态的过程,而还原半反应是元素由氧化态变为还原态的过程。
半电池中进行的氧化态和还原态相互转化的反应也称做电极反应。
氧化还原电对 构成电极相应的同一元素的氧化态物质和还原态物质称做氧化还原电对。
电极类型大致分为四类:金属—金属离子电极;非金属—非金属离子电极(气体—阴离子电极);氧化还原电极;金属—金属难溶盐电极(氧化物—离子电极)。
电极类型与电极反应 电极符号 电对示例Zn 2++2e - Zn ∣Zn 2+ Zn 2+/ZnO 2+H 2O+4e -- Pt ∣O 2∣OH - O 2/OH -Fe 3++e -Fe 2+ Fe 3+,Fe 2+∣Pt Fe 3+/Fe 2+ Pt ∣ Fe 3+,Fe 2+Hg 2Cl 2(s)+2e 2Hg Hg ∣Hg 2Cl 2∣Cl - Hg 2Cl 2/Hg电极电势 是电极的平衡电势。
对于金属电极而言,即指金属表面与附近含该金属离子溶液形成的类似电容器一样的双电层所产生的电势差,其绝对数值目前是无法得到的;对某一电极来说,其电极电势的相对数值等于在一定温度下,与标准氢电极之间的电势差。
标准电极电势 当构成电极的各物质均处于标准态(纯净气体的分压为100Kpa /或溶液中离子浓度为1.0mol •kg -1/或纯固体/或纯液体)时,与标准氢电极之间的电势差称为标准电极电势。
标准电极电势的物理意义 国际上规定标准氢电极的电极电势为零,其他标准态的待测电极与标准氢电极一起构成原电池,所测得的原电池电动势就是待测电极的标准电极电势。
而标准氢电极是将100Kpa 的纯氢气流通入镀有蓬松铂黑的铂片,并插入到H +浓度为1.0mol •kg -1的酸溶液中,这时,氢气被铂黑吸附,被氢气饱和了的铂电极就是标准氢气电极,其电极符号是H +(1.0mol •kg -1) |H 2(100Kpa )|Pt 。
能斯特方程式 用于表示当电极处于非标准态时,氧化还原电对的电极电势与溶液中相关离子浓度、气体压力、温度等影响因素的定量关系式:电极电势在氧化还原反应、原电池中的应用(1)判断原电池的正负极和计算电动势。
在原电池中,正极发生还原反应,负极发生氧化反应。
因此电极电势代数值大的为正极,电极电势代数值小的为负极。
正极和负极的电势差就是原电池的电动势,即-+-=E E E 。
(2)判断氧化剂、还原剂的相对强弱水溶液中,θE (氧化态/还原态)值越大,电对中氧化态物质氧化性越强,还原态物质的还原性越弱;θE (氧化态/还原态)值越小,电对中还原态物质还原性越强,氧化态物质的氧化性越弱。
(3)判断氧化还原反应的自发方向电极电势代数值大的电对中的氧化态物质与电极电势代数值小的电对中的还原态物质的反应是可以自发进行的,即E>0,反应能正向自发进行;E<0,反应不可能正向自发进行;E=0,反应处于平衡状态。
(4)判断氧化还原反应进行的程度一定温度下,氧化还原反应进行的程度主要由正、负两个电极标准电极电势的差值决定,差值越大,反应完成的程度越高。
可根据公式θθK z E lg 059.0= 进行定量计算。
第三节 电解池的结构 把化学能转化为电能的装置叫电解池。
电解池由阴极和阳极以及电解液构成。
电解池中与直流电源正极相连的电极称阳极、与直流电源负极相连的电极称阴极。
电子从电源负极沿导线进入电解池的阴极;另一方面又从电解池的阳极离去,沿导线流回电源正极。
这样在阴极上电子过剩,在阳极上电子缺少,电解液(或熔融液)中的正离子移向阴极,在阴极上得到电子,进行还原反应;负离子移向阳极,在阳极上给出电子,进行氧化反应。
放电反应 在电解池的两极反应中,氧化态物质在阴极得到电子或还原态物质在阳极给出电子的过程叫做放电反应。
通过电极反应这一特殊形式,使金属导线中电子导电与电解质溶液中离子导电联系起来。
分解电压 分为实际分解电压和理论分解电压。
能使电解顺利进行的最低电压称为实际分解电压,简称分解电压。
电解池的理论分解电压等于阴阳两极产生的电解产物形成的原电池的反向电动势。
超电压 实际分解电压总是高于理论分解电压。
二者的差值称超电压。
()θθθb b b b zF RT E E //(ln 还原态氧化态)+=超电势 超电势r ir ϕϕη-=,式中ir ϕ——有电流通过时的不可逆电极电势;r ϕ——可逆电极电势。
电极极化 凡是电极电势偏离可逆电极电势的现象都称为电极极化。
电极极化规律是:阳极极化后,电极电势升高,即ηϕϕ+=r ir ;阴极极化后,电极电势降低,即ηϕϕ-=r ir 。
其影响因素与电极材料、电极表面状况、电流密度等有关。
电解产物的分析 从热力学角度考虑,在阳极上进行氧化反应首先得到的是,实际析出电势(考虑超电势因素后的实际电极电势)代数值较小的还原态物质;在阴极上进行还原反应首先是析出实际电极电势代数值较大的氧化态物质。
简单盐类水溶液电解产物的一般情况如下:阴极析出的物质:H +只比电动序中Al 以前的金属离子(K +,Ca 2+,Na +,Mg 2+,Al 3+)易放电。
电解这些金属的盐溶液时,阴极析出氢气;而电解其它金属的盐溶液时,阴极则析出相应的金属。
阳极析出的物质:OH -只比含氧酸根离子易放电。
电解含氧酸盐溶液时,阳极析出氧气;而电解卤化物或硫化物时,阳极则分别析出卤素或硫。
但是,如果阳极导体是可溶性金属,则阳极金属首先放电(阳极溶解)。
第四节金属腐蚀当金属与周围环境接触时,由于发生化学作用或电化学作用而引起材料性能的退化和破坏,叫做金属腐蚀。
金属腐蚀的过程可以按化学反应和电化学反应两种不同机理进行,因此可分为化学腐蚀和电化学腐蚀。
化学腐蚀金属表面直接与介质中的某些氧化性组分发生氧化还原反应而引起的腐蚀称为化学腐蚀,其特点是腐蚀介质为非电解质溶液或干燥气体,腐蚀过程无电流产生。
电化学腐蚀指金属表面由于局部电池形成而引起的腐蚀。
所谓局部电池是指在电解质溶液存在下,金属本体与金属中的微量杂质构成的一个短路小电池。
析氢腐蚀在酸性较强的介质中,金属及其表面杂质形成微型原电池,活泼金属做负极(称做腐蚀电池的阳极)失去电子,而介质中的氢离子在正极(称做腐蚀电池的阴极)得到电子而析出氢气,从而发生析氢腐蚀。
吸氧腐蚀在弱酸性或中性的介质中,金属及其表面杂质形成微型原电池,活泼金属做负极(称做腐蚀电池的阳极)失去电子,而在正极(称做腐蚀电池的阴极)氧气得到电子,生成OH-阴离子,从而发生吸氧腐蚀。
浓差腐蚀(差异充气腐蚀)是吸氧腐蚀的一种形式,它是由于金属表面的氧气分布不均匀而引起的。
溶解氧气浓度较小处的金属做腐蚀电池的阳极,发生金属的溶解反应;溶解氧气浓度较大处的金属做腐蚀电池的阴极,发生氧气获得电子,生成OH -阴离子的反应。
腐蚀的防治方法正确选材、覆盖保护层(金属保护层及非金属保护层)、缓释剂法、电化学保护法(阴极保护法及阳极保护法)、改善环境等。
阴极保护法防腐将被保护金属作为腐蚀电池的阴极,可通过两种途径来实现:一是牺牲阳极保护法。
即将较活泼的金属或合金连接在被保护金属上,构成原电池。
这时较活泼的金属作为腐蚀电池的阳极而被腐蚀,被保护的金属作为阴极而获得保护。
一般常用的牺牲阳极材料有铝合金、镁合金与锌合金等;二是外加电流保护法。
即将被保护金属件与另一不溶性辅助件组成宏观电池,被保护金属件连接直流电源负极,通以阴极电流,实现阴极保护。
阳极保护法防腐利用外加电源,给被保护金属通以阳极电流,使其表面产生耐蚀的钝化膜以达到保护目的。
此法只适于易钝化金属的保护,在强腐蚀的酸性介质中应用较多。
缓蚀剂用来阻止或降低金属腐蚀速率的添加剂称为缓蚀剂。
根据其化学组成,可分为无机和有机两类:(1)无机缓蚀剂 在中性和碱性介质中主要采用无机缓蚀剂,如铬酸盐、重铬酸盐、磷酸盐、碳酸氢盐等,它们主要是在金属的表面形成氧化膜或沉淀物。
(2)有机缓蚀剂 在酸性介质中采用,常见的有乌洛托品(六亚甲基四胺)、若丁(主要成分是二邻苯甲基硫脲)等。