cr28高铬铸铁化学成分
- 格式:doc
- 大小:12.00 KB
- 文档页数:1
高铬铸热处理工艺化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.351、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行200~260℃的低温回火。
2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。
高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。
如果适当减少保温时间,对薄截面零件也可以取得效果。
该工艺的不足是工艺消耗热能较多。
加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样?要控制加热速度,最好在650 750 850 时保温一定时间。
我以前做过,正火就可以了。
硬度能做到61----65HRC成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。
使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。
我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。
价格要包括中间的软化退火和精加后的淬火及回火。
楼主的材料应该叫Cr26做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。
磨球规格φ40-φ80。
工艺是1050淬火+250~350回火金属耐磨材料在水泥企业的研究和应用[摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。
[关键词] 金属耐磨材料水泥企业研究应用一、金属耐磨材料的概述材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。
高铬耐蚀铸铁成分组织和性能高铬耐蚀铸铁中铬的质量分数为20-36%,在氧化性腐蚀介质中,其表面能生成一层很薄(约10nm)且附着紧密的氧化膜,从而大大提高了耐腐蚀性。
高铬耐蚀铸铁属于白口铸铁,其硬度较高,因此不但耐蚀性好,还有优异的抗固液两相流冲蚀磨损性能,其耐热性也很好。
高铬耐蚀铸铁的金相组织为合金基体上较均匀分布着碳化物,基体可以是铁素体、奥氏体或铁素体+奥氏体混合基体。
当合金含碳量较低(<1.3%C),且奥氏体稳定元素镍、铜、氮含量很少时,基体为铁素体;当含碳量较高,或含一定量奥氏体稳定化合金元素时,基体为奥氏体,或奥氏体加铁素体混合基体。
高铬耐蚀铸铁的化学成分和力学性能分别见表高铬耐蚀铸铁的碳化物数量取决于其化学成分,主要与碳、硅和铬有关。
碳、硅、铬量高,碳化物数量多,碳增加碳化物的作用最大,硅的作用是碳的1/4,铬的作用是碳的1/30。
碳化物主要是凝固过程中形成的共晶碳化物。
高铬耐蚀铸铁中的碳化物的耐蚀性优于基体,提高耐蚀性的关键是提高基体的耐蚀性,而基体的耐蚀性主要取决于其含铬量。
高铬耐蚀铸铁中加入钼、镍和铜可进一步增加耐蚀性,特别是在酸性介质中的耐蚀性。
但随镍和铜加入量增加,铸铁基体由铁素体变为奥氏体,耐相间腐蚀(与晶间腐蚀现象一致)性能下降。
铁素体高铬耐蚀铸铁很脆,含铬量越高,脆性越大。
奥氏体基体的高铬耐蚀铸铁,如-". 合金,有较高的力学性能,强韧性优于普通灰铸铁。
同普通的高铬抗磨铸铁相比,高铬耐蚀铸铁的碳含量低,铬含量高,因而其流动性更差,铁液氧化倾向更大,收缩和热裂倾向也更大。
工艺特性及化学成分化学成分对高铬耐蚀铸铁的使用性能有显著影响。
铬的含量越高,铸造工艺性越差,但铬含量范围是根据铸件的使用环境确定的,降低铬会影响铸件的使用性能。
碳和硅高有利于改善铁液的流动性,提高充型能力,降低氧化倾向,减少铸件的冷隔和皱皮缺陷,但也增加合金的脆性。
在铁素体基体的高铬耐蚀铸铁中,硅含量高会显著粗化合金显微组织,增加合金脆性;在奥氏体基体高铬耐蚀铸铁中硅对力学性能没有显著影响。
铮铮硬骨高铬铸铁(上篇)2009-8-5 17:20:49高铬白口抗磨铸铁(以下简称高铬铸铁)是一种性能优良而受到特别重视的抗磨材料。
它以比合金钢高得多的耐磨性,和比一般白口铸铁高得多的韧性、强度,同时它还兼有良好的抗高温和抗腐蚀性能,加之生产便捷、成本适中,而被誉为当代最优良的抗磨料磨损材料之一。
高铬铸铁属金属耐磨材料、抗磨铸铁类铬系抗磨铸铁的一个重要分支,是继普通白口铸铁、镍硬铸铁而发展起来的第三代白口铸铁。
早在1917年就出现了第一个高铬铸铁专利。
高铬铸铁一般泛指含Cr量在11-30%之间,含C量在2.0-3.6%之间的合金白口铸铁。
我国抗磨白口铸铁国家标准(GB/T8623)规定了高铬白口铸铁的牌号、成分、硬度及热处理工艺和使用特性。
其典型成分及工艺如下表:表1高铬铸铁的牌号及化学成分(GB/T 8623) %表2高铬铸铁的硬度(GB/T 8623)表3 高铬铸铁件热处理规范(GB/T 8623)美国高铬铸铁执行标准为ASTMA532M,英国为BS4844,德国为DIN1695,法国为NFA32401。
俄罗斯在前苏联时期曾研制了12-15%Cr、3-5.5%Mn,壁厚达200mm 的球磨机衬板,现执行ҐOCT7769标准。
特别值得一提的是在近一个世纪里,曾为抗磨白口铸铁做出了卓越贡献的美国克莱梅克斯(Climax)钼业公司。
1928年该公司首先发明了镍硬铸铁,把抗磨铸铁科技推向了一个空前高度。
1974年为纪念国际GIFA,在杜赛尔多夫展览会上展示了名为“神秘1号”和“神秘2号”。
即经典的高铬抗磨铸铁153(Cr15Mo3)和1521(Cr15Mo2Cu),现如今克莱梅克斯公司执行高铬铸铁标准如下,栏主提示大家这是特别值得一看的。
表4 美国Climax钼公司规定的高铬铸铁成分(质量分子数) %注:①碳含量为下限时,大断面中可能出现贝氏体。
高铬铸铁规模化工业应用,发达国家始于上世纪六十年代。
介质-材质选用表介质, 材质硝酸( HNO 3 )一般特点:属氧化性介质。
浓HNO 3工作温度一般为40度以下,元素Cr 、Si为抗氧化性,含Cr 、Si 的不锈钢和其它材料为浓HNO 3 的耐蚀理想材料。
高硅铸铁(STSi15R):温度93% 以下的一切温度;高铬铸铁(Cr28):温度80% 以下的一切温度;不锈钢(SUS304 、SUS316 、SUS316L):温度80% 以下的一切温度;S-05钢(0Cr13Ni7Si4):温度98% 以下的一切温度;工业纯钛(TA1 、TA2):沸点以下的一切温度(除发烟外);工业纯铝(Al):室温的一切温度(仅用于容器);CD-4MCu 时效硬化合金:沸点以下的一切温度;因可耐、哈氏合金C 、金、钽等都有良好的耐蚀性。
硫酸(H 2 SO 4 )一般特点:沸点随浓度升高而升高。
如:浓度5% ,其沸点为101 ℃;浓度50% ,其沸点为124℃;浓度98% ,其沸点为332℃。
浓度75%以下呈还原性(或呈中性),超过75% 呈氧化性。
不锈钢(SUS316 、SUS316L) :温度40 ℃以下,浓度20% 左右;904 钢(SUS904 、SUS904L) :适于温度40~60 ℃、浓度20~75% ;温度80 ℃、浓度60% 以下;高硅铸铁(STSi15R) :室温至90 ℃之间各种浓度;纯铅、硬铅:室温的各种温度;S-05 钢(0Cr13Ni7Si4) :90 ℃以下的浓硫酸,高温浓硫酸(120~150 ℃);普通碳钢:室温70% 以上的浓硫酸;铸铁:温度为室温的浓硫酸;蒙乃尔、金属镍、因可耐尔:中温中等浓度的硫酸;钛钼合金(Ti-32Mo) :沸点以下、60% 的硫酸和50 ℃以下、98% 的硫酸;哈氏合金B 、D :100 ℃以下、75% 的硫酸;哈氏合金C :100 ℃左右的各种温度;镍铸铁(STNiCr202) :室温60~90% 的硫酸。
盐酸(HCl)一般特点:还原性介质,最高温度为36~37%.沸点:浓度在20% 时,为110 ℃;浓度在20~36% 时,为50℃;因此盐酸的最高温度为50 ℃。
高铬铸铁化学成分范围
高铬铸铁化学成分范围
高铬铸铁是一种具有高强度、高耐磨性和高耐腐蚀性的铸铁材料。
其化学成分范围对于材料的性能有着至关重要的影响。
高铬铸铁的化学成分范围通常为:C 2.5-3.5%,Si 0.5-1.5%,Mn 0.5-1.0%,Cr 12-28%,Mo 0-3%,Ni 0-3%,Cu 0-1%,P ≤0.15%,S ≤0.10%。
其中,碳是高铬铸铁的主要合金元素之一,可以提高材料的硬度和强度。
硅可以提高铸铁的流动性和耐磨性。
锰可以提高铸铁的强度和韧性。
铬是高铬铸铁的关键合金元素,可以提高材料的耐磨性和耐腐蚀性。
钼、镍和铜等元素可以进一步提高材料的耐腐蚀性和耐磨性。
在高铬铸铁的化学成分范围中,磷和硫的含量也非常重要。
过高的磷和硫含量会降低材料的韧性和冲击韧性,从而影响材料的使用寿命和安全性。
在实际应用中,高铬铸铁的化学成分范围可以根据不同的使用要求进行调整。
例如,在一些高温环境下使用的高铬铸铁中,通常会增加钼的含量,以提高材料的耐热性和耐腐蚀性。
高铬铸铁的化学成分范围对于材料的性能有着至关重要的影响。
在实际应用中,需要根据不同的使用要求进行合理的调整,以获得最佳的性能表现。
第六章合金元素在铸铁中的作用及合金铸铁在铸铁中加入一定的合金元素可以改变铸铁的铸态或热处理后的组织,从而改变其物理性能和化学性能。
我们把含有一定数量的合金元素,从而具有特定的物理或化学性能的铸铁称为合金铸铁。
本章主要介绍合金铸铁中常见合金元素在铸铁中的作用及合金铸铁的组织及性能特点。
第一节铬在铸铁中的作用及铬系耐磨铸铁一、铬对铁碳相图的影响及含铬碳化物为了更好地了解铬在铸铁中的作用,首先介绍有关相图。
图6—1是Fe-Cr 二元相图。
在Fe-Cr相图中,γ相区接近于环弧状,与Fe-C相图的γ相区相比,其温度范围要小一些,而成分范围更大一些。
在该相图中存在着σ相区,这种相为脆性相。
图6—1 Fe-Cr二元相图1──非平衡磁性转变线2──平衡磁性转变线图6—2为杰克逊(Jackson)用热分析法得到的Fe-C-Cr三元相图的液相面投影图。
6—2 Fe-C-Cr 三元合金的液相面图 该图表明,Fe-C-Cr 合金凝固时,随合金成分的不同,可以析出α、γ、K 1、K 2、K C五种不同的相。
在这五种相中,α和γ是固溶体相,其余三个相为结构不同的碳化物相,它们分别为:K 1=(Cr,Fe)23C 6K 2=(Cr,Fe)7C 3K C =(Cr,Fe)3C按照杰克逊所提出的相图,在准稳态时Fe-Cr-C 三元合金有三个包共晶反应和一个包共析反应,即1449℃时,L + K 1→α+K 21292℃时,L +α→γ+K 21184℃时,L +K 2→γ+K C795℃时,γ+K 2→α+K C这三种碳化物的晶体结构类型及其溶解碳和铬的能力见表6—1。
由图6—2可以看出,铬对铁碳合金中碳化物的相结构有重要影响。
当铬含量很低时,铁碳合金中的碳化物为K C ;铬含量较高时,碳化物主要为K 2;而只有当铬含量大于60%时,才可以在很窄的含碳量范围里析出K 1相。
这些碳化物可以和γ相形成共晶体,如果合金是亚共晶成分,则凝固时先析出γ相,当铁液成分达到共晶成分时,析出γ相和碳化物共晶体;如果合金是过共晶成分,则先析出碳化物,然后析出共晶体。
cr28高铬铸铁化学成分
cr28高铬铸铁是一种高铬合金材料,其化学成分主要包括铁、碳、铬、硅、锰、钼等元素。
其中,铬是最关键的合金元素,可提高合金的硬度、耐磨性、抗腐蚀性和高温性能。
铬的含量通常在25%~30%之间。
此外,碳的含量也非常重要,可影响合金的强度和耐磨性。
通常情况下,cr28高铬铸铁的碳含量为2.3%~3.3%。
硅和锰是常见的合金元素,可提高合金的强度和韧性。
钼的含量通常在0.2%~0.5%之间,可提高合金的硬度和耐磨性。
总体来说,cr28高铬铸铁的化学成分经过精心调配,能够满足各种工业领域的需要,特别是对于需要高强度、高耐磨性和高抗腐蚀性的应用场合,具有非常重要的作用。
- 1 -。